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Effects of phase fluctuations on phase sensitivity and visibility of path-entangled photon Fock states
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We study effects of phase fluctuations on phase sensitivity and visibility of a class of robust path-entangled
photon Fock states (known as mm′ states) as compared to the maximally path-entangled NOON states in the
presence of realistic phase fluctuations such as turbulence noise. Our results demonstrate that the mm′ states,
which are more robust than the NOON state against photon loss, perform equally well when subject to such
fluctuations. We derive the quantum Fisher information with the phase-fluctuation noise and show that the phase
sensitivity with parity detection for both of the above states saturates the quantum Cramér-Rao bound in the
presence of such noise, suggesting that parity detection is an optimal detection strategy.
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I. INTRODUCTION

Quantum states of light such as squeezed sates or entangled
states have long been known to produce greater precision,
resolution, and sensitivity in metrology, imaging, and object
ranging [1–4] than what is possible classically. One of the most
prominent examples of such a nonclassical state is the NOON
state [5–7], which is an equal coherent superposition of N

photons in one path of a Mach-Zehnder interferometer with
none in the other, and vice versa. This state may be written
as |N :: 0〉 = (|N,0〉 + |0,N〉)/√2, and can be used to achieve
Heisenberg-limited supersensitivity as well as super-resolution
in quantum metrology [5,8]. In recent years, several schemes
for reliable production of such states have been proposed,
making them useful in superprecision measurements in op-
tical interferometry, atomic spectroscopy, gravitational wave
detection, and magnetometry, along with potential applications
in rapidly evolving fields such as quantum imaging and
sensing [9–15].

However, due to inevitable interactions with the surround-
ing environment, the NOON state tends to decohere in the
presence of a noisy environment. Recently, a few authors
investigated the effects of photon loss on the performance
of NOON state in quantum interferometric setups [16–20]
that demonstrate that NOON states undergoing loss decohere
very rapidly, making it difficult to achieve supersensitivity
and resolution in a lossy environment. Huver et al. proposed
a class of generalized Fock states, known as mm′ states, by
introducing decoy photons to the NOON state in both paths of
the interferometer, and showed that such states provide better
metrological performance than NOON states in presence of
photon loss [19].

In real-life applications such as a quantum sensor or radar,
phase fluctuation due to different noise sources can further
degrade the phase sensitivity by adding significant noise
to the phase φ to be estimated or detected. For instance,
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when one considers propagation of the entangled states over
distances of kilometers, through say the atmosphere, then
atmosphere turbulence becomes an issue as it can cause
uncontrollable noise or fluctuation in the phase. In this sense,
phase fluctuation stands as the most detrimental for phase
estimation, rendering the quantum metrological advantage for
achieving supersensitivity and super-resolution totally useless.
It is therefore imperative to investigate the impacts of such
random phase fluctuations on the phase sensitivity of quantum
mechanically entangled states. In particular, we consider both
the mm′ and NOON states, and show how the phase sensitivity
and visibility of the phase signal are affected by added phase
fluctuations caused by turbulence noise.

We study the parity detection [21] for the interferometry
with the phase-fluctuated mm′ and NOON states. This de-
tection scheme has been shown to reach Heisenberg limited
sensitivity when combined with the lossless NOON state
[21–24]. Here we calculate the minimum detectable phase
shift in the presence of the turbulence noise and show that
the lower bound of the phase-fluctuated sensitivity for both
the states saturates the quantum Cramér-Rao bound [25,26],
which gives the ultimate limit to the precision of the phase
measurement. This result suggests that the parity detection
serves as an optimal detection strategy when the given states
are subject to the phase fluctuations.

The paper is organized as follows. In Sec. II, we introduce
the mm′ and NOON states and describe their evolution under
the phase fluctuations. We define the parity detection operator
in Sec. III and calculate the phase sensitivity and the visibility
with the phase noise using the parity operator. In Sec. IV,
we derive lowest possible uncertainty (quantum Cramér-Rao
bound) in estimating the phase φ for these path-entangled Fock
states and show that the parity operator saturates the quantum
Cramér-Rao bound for both mm′ and NOON states. Using the
same detection technique, we then derive the phase sensitivity
and the visibility in a more general case with both the photon
loss and phase fluctuations in Sec V. Section VI contains
our concluding remarks and further outlook with the potential
implementations of the phase estimation with fluctuating phase
noise.
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II. EVOLUTION OF THE mm′ AND NOON STATES
UNDER PHASE FLUCTUATIONS

The states we investigate are the following:

|m :: m′〉a,b = 1√
2

(|m,m′〉a,b + |m′,m〉a,b), (1)

where a and b indicate the two paths of a two-mode optical
interferometer. These states are called the mm′ states, and they
can be produced, for example, by postselecting on the output
of a pair of optical parametric oscillators [27].

The mm′ state reduces to a NOON state when m = N and
m′ = 0, leading to

|N :: 0〉a,b = 1√
2

(|N,0〉a,b + |0,N〉a,b). (2)

The mm′ states have been shown to be more robust than
the NOON states against photon loss [19,20]. In following
calculations, we drop the subscripts and always assume the
first number in a ket or bra corresponds to mode a while the
second corresponds to mode b.

We start with the propagation of mm′ and NOON states
through a simplified Mach-Zehnder interferometer as shown
in Fig. 1, where details of source and detection are represented
by their respective boxes. The input state at stage I is presented
by Eq. (1), and the photon number difference (�m = m − m′)
between the two arms is fixed.

The presence of the phase shifter in the upper path b

introduces a phase shift φ to the photons traveling through
it, so that the state at stage II becomes

|ψ〉II = 1√
2

(eim′φ|m,m′〉 + eimφ|m′,m〉)

= α|m,m′〉 + β|m′,m〉, (3)

where α = eim′φ/
√

2 and β = eimφ/
√

2. Because of the differ-
ent number of photons being phase shifted on the upper path
b, phase shifts accumulated are different along the two paths,
thus providing the possibility of interference upon detection.

Source Detector

φ

a

I

b
Δφ

II III

Π̂

FIG. 1. Schematic diagram of a simplified Mach-Zehnder inter-
ferometer with the modes a and b for the mm′ and NOON states
as the input. The source and detector in the interferometer are
represented by the respective boxes. Effects of the phase fluctuations
due to the turbulence noise are represented by �φ in the upper path
b of the interferometer. The upper beam passes through a phase
shifter φ, and the phase acquired depends on the total number of
photons �m = m − m′ (or N ) passing throughout the upper path.
Transformed parity detection is used as the detection scheme at both
of the two modes at stage III inside the interferometer.

The combined effects of random phase fluctuations are
represented by �φ in the upper path in Fig. 1, and the mm′
state at stage III is then given by

|ψ(�φ)〉III = αeim′�φ|m,m′〉 + βeim�φ |m′,m〉. (4)

Notice that because of the random nature of the phase
fluctuations, the state of the system becomes a mixed state
and the associated density matrix is then

ρmm′ = 〈|ψ(�φ)〉III III〈ψ(�φ)|〉. (5)

Random fluctuations �φ in the phase effectively causes the
system to undergo pure dephasing. As a result, the off-diagonal
terms in the density matrix will acquire decay terms, while the
diagonal terms representing the population will remain intact,
i.e., the photon number will be preserved along the path [28].

We can expand the exponential in Eq. (4) in a series
expansion and consider the terms up to the second order in
�φ. We assume the random-phase fluctuation �φ to have
Gaussian statistics described by the Wiener process, i.e., with
zero mean and nonzero variance 〈�φ2〉 = 2�L (L is the length
of the dephasing region and � is the dephasing rate). Ensemble
averaging over all realizations of the random process then gives

〈ei�m�φ〉 = 1 + i�m〈�φ〉 − (�m)2〈�φ2〉/2

= 1 − (�m)2�L ≈ e−(�m)2�L.

The density matrix for the mm′ state is given by

ρmm′ = |α|2|m,m′〉〈m,m′| + |β|2|m′,m〉〈m′,m|
+α∗βe−(�m)2�L|m,m′〉〈m′,m|
+αβ∗e−(�m)2�L|m′,m〉〈m,m′|. (6)

This result agrees with the density matrix obtained from
solving the master equation in Ref. [28]. The similar equation
for the NOON state can be obtained from Eq. (2) as

ρNOON = |α|2|N,0〉〈N,0| + |β|2|0,N〉〈0,N |
+α∗βe−N2�L|N,0〉〈0,N | + αβ∗e−N2�L|0,N〉〈N,0|.

(7)

III. PARITY OPERATOR

Achieving super-resolution and supersensitivity depends
not only on the state preparation but also on the optimal
detection schemes with specific properties. In this paper, we
study parity detection, which was originally proposed by
Bollinger et al. in the context of trapped ions [29] and was later
adopted for optical interferometry by Gerry [21]. The original
parity operator can be expressed as π̂ = exp(iπn̂), which
distinguishes states with even and odd numbers of photons
without having to know the full photon number counting
statistics. Usually the parity detection is only applied to one of
two output modes of the Mach-Zehnder interferometer. In our
case, the parity operator inside the interferometer, following
Ref. [30], can be written as


̂ = i(m+m′)
m∑

k=0

(−1)k|k,n − k〉〈n − k,k|, (8)
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where 
̂2 = 1 and n = m + m′, is the total number of photons.
It should be noticed that the parity operator inside the
interferometer detects both modes a and b of the field.

The expectation value of the parity for the mm′ state is then
calculated as

〈
̂〉mm′ = Tr[
̂ρmm′ ]

= (−1)(m+m′)e−(�m)2�L cos[�m(φ − π/2)], (9)

where the density matrix ρmm′ is given by Eq. (6). If we put a
half-wave plate in front of the phase shifter, which amounts to
replacing φ by φ + π/2, the expectation value becomes

〈
̂〉mm′ = (−1)(m+m′)e−(�m)2�L cos[�mφ]. (10)

Using the density matrix ρNOON in Eq. (7) for the NOON state,
we can also obtain the expectation value of the parity operator
for the NOON state as

〈
̂〉NOON = Tr[
̂ρNOON] = (−1)Ne−N2�L cos[Nφ]. (11)

A. Phase sensitivity

In quantum optical metrology, the precision of the phase
measurement is given by the phase sensitivity. We now
calculate the phase sensitivity for both the mm′ and NOON
states using the expectation values of the parity operator
obtained above.

Phase sensitivity using the parity detection is defined by the
linear error propagation method [31]

δφ = �
̂

|∂〈
̂〉/∂φ| , (12)

where �
̂ =
√

〈
̂2〉 − 〈
̂〉2. Given 〈
̂2
mm′ 〉 = 1 the phase

sensitivity with the parity detection for the mm′ state is

δφmm′ =
√

1 − e−2(�m)2�L cos2(�mφ)

(�m)2e−2(�m)2�L sin2(�mφ)
. (13)

For the NOON state the phase sensitivity with the parity
detection is similarly obtained as

δφNOON =
√

1 − e−2N2�L cos2 Nφ

N2e−2N2�L sin2 Nφ
. (14)

We note that in the limit of no dephasing (� → 0), δφmm′ →
1/(�m). For the NOON state, � → 0 case leads to δφNOON →
1/N (Heisenberg limit of the phase sensitivity for the NOON
state).

In Fig. 2, we plot the phase sensitivities δφmm′ and δφNOON

for the various dephasing rates � choosing �m = N , so that
the amount of phase information is the same for either state.
For �m = N , Eqs. (13) and (14) show that the mm′ and NOON
states give rise to the same phase sensitivity. In particular, we
show the phase sensitivity for the states |4 :: 0〉 and |5 :: 1〉 and
find that both the states perform equally well in the presence
of phase fluctuations when parity detection is used, although
the former has been shown to outperform NOON states in the
presence of photon loss [19,20].

The minimum phase sensitivities δφmin can be obtained
from Eqs. (13) and (14) for φ = π/(2�m), or φ = π/(2N )
for the mm′ or NOON states, respectively. For the |4 :: 0〉 and
|5 :: 1〉 states, we plot the minimum phase sensitivity δφmin in

FIG. 2. (Color online) Phase sensitivity δφ of the mm′ state
|5 :: 1〉, or the NOON state |4 :: 0〉, having the same phase information,
as a function of phase shift φ from a two-mode interferometer for
different values of �: � = 0.1 (curved dashed line, blue online),
� = 0.3 (curved black double-dotted line), and � = 0.5 (curved
dotted line, purple online). The Heisenberg limit (1/N ) and the shot
noise limit (1/

√
N ) of the phase sensitivity for the NOON state

are shown by the red (gray) solid line and the black dashed line,
respectively, for comparison.

Fig. 3 for as a function of � and compare it with the SNL and
HL for both the states.

The HL for a general mm′ state is 1/(m + m′) in terms of
the total number of photons available and is equal to 1/N for
the NOON state. The SNLs for these two states are given by
1/(

√
m + m′) and 1/

√
N , respectively. In Fig. 3, we see that

the minimum phase sensitivity δφmin hits the HL for the NOON
state for � = 0 only, while it never reaches the HL for the mm′
state. However, δφmin is below the SNL for both of the states for
small values of �, but increase in the phase fluctuation, i.e., �,
leads to the phase sensitivity above the SNL, as shown in Fig. 3.

B. Visibility

We use the parity operator for the detection, and to quantify
the degree of measured phase information we define the

SNL(N00N)

SNL(mm')
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FIG. 3. (Color online) Minimum phase sensitivity δφmin of the
mm′ state |5 :: 1〉 or the NOON state |4 :: 0〉 as a function of �. The
shot noise limits (SNL) and the Heisenberg limits (HL) of the phase
sensitivity for both the states are also shown for comparison.
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FIG. 4. (Color online) Visibility V of the mm′ state for different
�m (for different N in case of NOON states with the same phase
information) as a function of �. The visibility V is plotted for N (or
�m) = 2 (solid line, blue online), N (or �m) = 4 (dashed line, red
online), N (or �m) = 6 (double dotted black line), and N (or �m) = 8
(dot-dashed line, purple online). We see that the visibility drops faster
for larger values of �m (or N ).

relative visibility as

Vmm′ = 〈
̂mm′ 〉max − 〈
̂mm′ 〉min

〈
̂mm′(� = 0)〉max − 〈
̂mm′(� = 0)〉min
, (15)

where the numerator corresponds to the difference in the
maximum and minimum parity signals in the presence of
phase fluctuations, while the denominator corresponds to the
one with no dephasing, i.e., � = 0. Visibility for the NOON
state is similarly defined as

VNOON = 〈
̂NOON〉max − 〈
̂NOON〉min

〈
̂NOON(� = 0)〉max − 〈
̂NOON(� = 0)〉min
. (16)

Using Eqs. (10) and (11), we then obtain the visibilities for
the mm′ state

Vmm′ = e−(�m)2�L (17)

and for the NOON state

VNOON = e−N2�L. (18)

We note that the visibility of the NOON state with the parity
detection in Eq. (18) agrees with the visibility in Ref. [28].

The visibility in Eqs. (17) and (18) depends on the value
of the dephasing rate � and N (or �m = m − m′), and for
a given value of �, the visibility falls down faster as N
increases. Hence, high-NOON states (or mm′ states) with large
number of photons are very much susceptible to the phase
fluctuations compared to the low-NOON states and hence are
not suitable to achieve metrological advantage with robustness
in the presence of phase noise. This is shown in Fig. 4, where
we plotted the visibility for different N (or �m) with respect
to the dephasing rate �.

IV. QUANTUM FISHER INFORMATION:
BOUNDS FOR PHASE SENSITIVITY

In order to minimize the uncertainty δφ of the measured
phase, we now seek to provide the lowest bound on the

uncertainty of the phase. This bound is given by the quantum
Cramér-Rao bound δφQCRB, and is inversely proportional to
the quantum Fisher information F (φ) [25,26,32,33]

δφQCRB � 1√
F (φ)

. (19)

A general framework for estimating the ultimate precision
limit in noisy quantum-enhanced metrology has been studied
by Escher et al. [34]. In the following, we first obtain the
quantum Fisher information, leading to the quantum Cramér-
Rao bound for both the mm′ and NOON states in the presence
of the phase fluctuations, and show that the parity detection
attains the quantum Cramér-Rao bound for both of these states
subject to the dephasing.

The quantum Cramér-Rao bound has been shown to
be always reached asymptotically by maximum likelihood
estimations and a projective measurement in the eigenbasis
of the symmetric logarithmic derivative Lφ [25,26,35], which
is a self-adjoint operator satisfying the equation

Lφρφ + ρφLφ

2
= ∂ρφ

∂φ
, (20)

where ρφ is given by Eq. (6) for the mm′ state and by Eq. (7)
for the NOON state. The quantum Fisher information F (ρφ)
is then expressed as [36]

F (ρφ) = Tr(ρφLφL
†
φ) = Tr

(
ρφL2

φ

)
. (21)

The symmetric logarithmic operator Lφ is given by

λi + λj

2
〈i|Lφ|j 〉 = 〈i|∂ρφ

∂φ
|j 〉, (22)

for all i and j , where λi and |i〉 are the eigenvalue and the
corresponding eigenvector of ρφ . By evaluating ρφ and ∂ρφ/∂φ

from Eq. (6) and then using Eqs. (21) and (22), we obtain the
quantum Fisher information for the mm′ state

Fmm′ = (�m)2e−2(�m)2�L, (23)

leading to the quantum Cramér-Rao bound

δφQCRB,mm′ � 1√
Fmm′

= 1

�me−(�m)2�L
. (24)

For the NOON states, a similar calculation with Eq. (7) yields

FNOON = N2e−2N2�L (25)

and

δφQCRB,NOON � 1√
FNOON

= 1

Ne−N2�L
. (26)

Equations (24) and (26) represent the lowest bound on the
uncertainty of the phase measurement for the mm′ and NOON
states, respectively.

For a detection scheme to be optimal, it has to saturate
the quantum Cramér-Rao bound. Equations (13) and (14)
represent phase sensitivity for the mm′ and NOON states
respectively, and these expressions can be shown to be identical
to the quantum Cramér-Rao bounds in Eqs. (24) and (26) for
φ = π/(2�m) or φ = π/(2N ) for the mm′ or NOON states
respectively. Thus, parity detection saturates the quantum
Cramér-Rao bounds and is optimal for both the states in the
presence of the phase fluctuations.

023857-4



EFFECTS OF PHASE FLUCTUATIONS ON PHASE . . . PHYSICAL REVIEW A 88, 023857 (2013)

Source Detector

φ

I

Δφ

II III

Π̂

â â
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FIG. 5. Two fictitious beam splitters are introduced to Fig. 1 to
mimic the loss of photons from the system into the environment. After
tracing out the environment modes vb and va , the system results in a
mixed state at stage I.

V. EFFECTS OF BOTH PHOTON LOSS
AND PHASE FLUCTUATIONS

A. Evolution

Following Ref. [20], two fictitious beam splitters are added
before stage I of our previous configuration to model photon
loss from the system into the environment, as shown in Fig. 5.
The two fictitious beam splitters have transmittance Ta and Tb,
and reflectance Ra = 1 − Ta and Rb = 1 − Tb, respectively.
General Ta and Tb are used in the following derivation of the
density matrix, but later we assume Ra = 0 to mimic the local
path, which is well isolated from the environment.

The photon loss entangles the system with the environment
and leaves the system in a mixed state. For a general mm′ input
state, the density matrix of the system at stage II can be easily
deducted from Ref. [20] as

ρmm′ (t) =
m∑

k=0

m′∑
k′=0

{|α|2d1(t)|k,k′〉〈k,k′|

+ |β|2d2(t)|k′,k〉〈k′,k|}

+
m′∑

k=0

m′∑
k′=0

{αβ∗d3(t)|�m + k,k′〉〈k,�m + k′|

+α∗βd4(t)|k′,�m + k〉〈�m + k′,k|}, (27)

where α = eim′φ/
√

2, β = eimφ/
√

2 as before, and the coeffi-
cients di(i = 1,2,3,4) are defined as

d1(k,k′,t = 0) =
(

m

k

)(
m′

k′

)
|Ta|k|Ra|m−k|Tb|k′ |Rb|m′−k′

,

d2(k,k′,t = 0) =
(

m

k

)(
m′

k′

)
|Ta|k′ |Ra|m′−k′ |Tb|k|Rb|m−k,

d3(k,k′,t = 0) =
(

m

�m + k

) 1
2
(

m

�m + k′

) 1
2
(

m′

k

) 1
2
(

m′

k′

) 1
2

× T
1
2 (�m+2k)

a Rm′−k
a T

1
2 (�m+2k′)

b Rm′−k′
b ,

d4(k,k′,t = 0) =
(

m

�m + k

) 1
2
(

m

�m + k′

) 1
2
(

m′

k

) 1
2
(

m′

k′

) 1
2

× T
1
2 (�m+2k′)

a Rm′−k′
a T

1
2 (�m+2k)

b Rm′−k
b . (28)

Given that the system undergoes pure dephasing after stage II,
we may use the previous result and show that the evolution of
the density matrix ρmm′(t) is

ρ̇mm′ (t) = −�m2�

m′∑
k,k′=0

{αβ∗d3(t)|�m + k,k′〉〈k,�m + k′|

+α∗βd4(t)|k′,�m + k〉〈�m + k′,k|}. (29)

It is then easy to see that d1(t) = d1(0), d2(t) = d2(0), d3(t) =
e−�m2�Ld3(0), and d4(t) = e−�m2�Ld4(0).

B. Phase sensitivity and visibility

Similar to what was done in Ref. [20], we define

K1(t) =
m′∑

k=0

[d1(k,k,t) + d2(k,k,t)],

(30)

K2(t) =
m′∑

k=0

[d3(k,k,t) + d4(k,k,t)],

and it is straightforward to show that K1(t) = K1(0) and
K2(t) = K2(0)e−�m2�L. From Eqs. (10) and (27), the parity
signal of a mm′ state under both photon loss and phase
fluctuation can be shown to be

〈
̂mm′ 〉 = K1(t) + (−1)m+m′
K2(t) cos(�mφ). (31)

This gives rise to the phase sensitivity for the parity detection
for a mm′ state under both photon loss and phase fluctuations
as

δφmm′ =
√

1 − {K1(t) + (−1)m+m′
K2(t) cos(�mφ)}2

{�mK2(t) sin(�mφ)}2
,

(32)

where linear error propagation method in Eq. (12) is employed.
Notice that when loss is negligible this sensitivity recovers
Eq. (13).

A relative visibility with respect to both loss and phase
fluctuations can be defined as

Vmm′ = 〈
̂mm′ 〉max − 〈
̂mm′ 〉min

〈
̂mm′ (� = 0,L= 0)〉max − 〈
̂mm′(� = 0,L= 0)〉min
,

= K2(0)e−�m2�L (33)

where L = Rb characterizes the loss in the upper path and Ra

is set to be zero as mentioned previously. In the limit of L → 0,
K2(0) approaches one and the visibility reduces to the previous
result. Notice the dephasing only affects the off-diagonal terms
of the density matrix while loss affects both diagonal and
off-diagonal terms. However, because of the linearity of the
Mach-Zehnder interferometer, the effect from photon loss is
independent of that from phase fluctuation, as expected. All
results in this section apply to NOON states with N = m and
m′ = 0.

VI. SUMMARY

In this work, we studied the effects of phase fluctuations on
the phase sensitivity and visibility of mm′ and NOON states in
an optical interferometric setup. Although mm′ states are more
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robust than NOON states against photon loss, we showed that
they do not provide any better performance in the presence
of such phase fluctuations than their equivalent NOON
counterpart. We have used the parity-detection technique for
phase estimation, which can be readily implemented using
photon-number-resolving detectors [37] in the low-power
regime and using optical nonlinearities and homodyning in
the high-power regime [21,38–40]. Using the same detection
technique, we explicitly derived the phase sensitivity and the
visibility in a more general case with both the photon loss and
phase fluctuations. We have also presented a brief study on

the quantum Fisher information for both the mm′ and NOON
states and shown that the parity detection serves as the optimal
detection strategy in both cases as it saturates the quantum
Cramér-Rao bound of the interferometric scheme.
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