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Polarization-dependent manipulation of optical properties in a tripod system
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We analyze the dependence of the transmission profiles of an atom in a tripod configuration on the polarizations
of the coupling and the probe beams and use room-temperature metastable helium (4He*) as a model system.
We show that, by rotating the orthogonally polarized coupling-probe beams with respect to an applied small
magnetic field, one can manipulate the detuned peaks due to electromagnetically induced transparency [Kumar,
Lauprêtre, Ghosh, Bretenaker, and Goldfarb, Phys. Rev. A 84, 023811 (2011)] and the central peak arising
because of ground-state coherent population oscillations [Lauprêtre, Kumar, Berger, Faoro, Ghosh, Bretenaker,
and Goldfarb, Phys. Rev. A 85, 051805(R) (2012)] observed earlier separately. Our experimental results match
well with our numerical simulation using the Floquet method.
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I. INTRODUCTION

The effect termed as electromagnetically induced trans-
parency (EIT) is a well-known phenomenon of quantum
interference in a three-level � system, which leads to the
cancellation of absorption of a resonant probe in the presence
of a coupling beam [1–3]. It is a two-photon process, and the
width of the EIT resonance is limited by the Raman coherence
lifetime involving the two lower levels of the �. EIT has many
applications in a variety of research areas, such as slow and
fast light [4–7], light storage [8], quantum memory [9–11],
sensitive magnetometers [12,13], quantum nonlinear optics
[7,14], quantum-information processing [10,15], and quantum
networking [16].

Extensions of the usual three-level EIT to multilevel
schemes have led to a number of interesting and potentially
useful coherence effects, such as coherent superposition of
quantum states using stimulated Raman adiabatic passage
[17–19], interacting dark resonances [20,21], Zeeman coher-
ent oscillations in degenerate duplicated two-level systems
[22] and nondegenerate duplicated two-level systems [23],
and magneto-optical rotation and cross phase modulation
via coherently driven tripod systems [24]. We also have
experimentally and theoretically demonstrated interacting EIT
resonances in a tripod system of hot atomic vapor of metastable
helium [25] subjected to a weak magnetic field, in which the
three optical transitions in the tripod are excited separately
by the probe and coupling beams, with either two probed
transitions or two coupling transitions on the side legs.

A completely different effect that can give rise to very
narrow transmission resonances occurs in two-level atomic
systems and is called coherent population oscillations (CPO)
[26,27], in which the beat note between a coupling beam
and a coherent probe beam leads to a temporal modulation
of the population difference between the excited and ground
levels. The dispersion associated with CPO resonances has
led to applications such as slow and fast light for microwave
photonics [28–30]. As this phenomenon is limited by the
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population decay rate of the upper level, it leads to resonances
that are usually broader than EIT ones. Nevertheless, we have
observed CPO phenomena in a three-level � system using
room-temperature metastable 4He (4He*) with a linewidth
even narrower than the one achieved by EIT in the same
system [31]. This is due to a transfer of CPOs to the lower
levels of the � system. Such a CPO transfer has already been
seen in the case of absorption resonances by Berman et al. [32],
and Goren et al. [33] predicted a few years ago that very narrow
absorption resonances can more generally be achieved in
cycling degenerate two-level transitions, where Fe = Fg + 1
and Fg � 1, interacting with pump and probe lasers of the same
polarization. Recently, it has been theoretically suggested that
CPO resonances can be applied in spatial optical memories
[34] or narrowband biphoton generation [35].

Given the interest in such transparency resonances, the
importance of a clear understanding of their diverse origins,
proven by unambiguous experimental demonstrations, cannot
be overemphasized. The system of room-temperature 4He*
offers itself as a model in which the different effects of EIT
and CPO can be combined and probed effectively. As is already
well known, 4He* has some peculiar favorable properties.

(i) Velocity changing collisions enable us to span the entire
Doppler profile [36].

(ii) The absence of nuclear spin simplifies the level scheme
and eliminates the need for repumping lasers compensating
for losses into the other ground-state hyperfine levels.

(iii) Diffusive motion increases the transit time of the atoms
through the laser beam and hence the Raman coherence
lifetime.

(iv) Collisions with the ground-state atoms do not depolar-
ize the colliding 4He*. Thus there are no background atoms to
contribute to noise.

(v) Penning ionization among identically polarized 4He*
atoms is almost forbidden [37].

In this paper, we again consider a four-level tripod system
of 4He*. The excited state 2 3P0 (me = 0, |e〉) of 4He*
can be coupled selectively to the 2 3S1 sublevels, mg = −1
(|g−〉), 0 (|g0〉), and +1 (|g+〉), by copropagating laser beams
at around 1083 nm, with σ+, π , and σ− polarizations,
respectively. The energy separation between the 2 3P0 and
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the next lower sublevel 2 3P1 is large (29.6 GHz) compared
to the Doppler width (�1 GHz), allowing one to ensure that
each transition is isolated. This is not the case, for example, in
Rb [33,38]. By rotating the polarization of mutually orthogonal
coupling-probe beams, we create intermediate cases of the
two basic tripod configurations explained in Ref. [25], now
with possible mixing of the excitations on each of the three
optical transitions in the tripod. In this four-level “double”
tripod configuration, we record the transmission profiles in
the presence of an applied magnetic field and for different
combinations of orthogonal polarizations of coupling and
probe beams on the three transitions. We observe detuned
EIT peaks together with a central CPO resonance in the
intermediate cases. EIT peaks shift with increasing magnetic
field and for different combinations of coupling and probe
polarizations and split into two or four peaks. The central
narrow CPO resonance, limited only by the decay rate of
ground-state populations, appears for some intermediate cases
of the coupling and probe polarizations and disappears in
the extreme cases of Ref. [25]. The strong dependencies
of the transmission profiles on the external magnetic field,
coupling Rabi frequency, and coupling-probe polarizations
lend themselves to suitable control and manipulation.

The paper is organized as follows. In Sec. II, we describe
the experimental setup. In Sec. III, we present the model of the
four-level tripod system using the Floquet method. In Sec. IV,
we present the experimental results and compare them with
our numerical simulations based on the Floquet method. Our
conclusions are presented in Sec. V.

II. EXPERIMENTAL SETUP

The experimental setup is similar to the one in Ref. [25]
and shown in Fig. 1(a). The helium cell is 6 cm long, has a
diameter of 2.5 cm, and is filled with 4He at 1 Torr. The cell is
placed in a three-layer μ-metal shield to isolate it from stray
magnetic field inhomogeneities. Helium atoms are excited to
the metastable state by a rf discharge at 27 MHz. We use

FIG. 1. (Color online) (a) Experimental setup. PBS: polarizing
beam-splitter, λ/2: half-wave plate. (b) Four-level tripod system with
perpendicularly polarized probe (blue dashed line) and coupling (red
continuous line) beams. θ is the angle between the probe polarization
and the Z axis. The Z axis is fixed by the direction of the magnetic
field B so that θ = 0 gives a π probe and a σ coupling. �Z is the
Zeeman splitting.

the 2 3S1 → 2 3P0 transition of 4He* (D0 line). The coupling
and probe beams are derived from the same 1083-nm diode
laser, and their frequencies and intensities are controlled by
two acousto-optic modulators (not shown). The probe power
of about 100 μW is small compared to the milliwatt range
of the coupling power. A variable weak magnetic field (B)
generated by a pair of rectangular coils surrounding the helium
cell removes the degeneracy of the lower Zeeman sublevels.
These coils produce a horizontal magnetic field perpendicular
to the direction of propagation of the laser beams. A polarizing
beam-splitter (PBS) is used to recombine the two beams, and a
λ/2 wave plate changes the relative angle between the coupling
and probe beams and the quantization axis defined by the
magnetic field. The coupling and probe beam diameters are
about 1 cm after the telescope as they enter the helium cell.

III. THEORETICAL FORMULATION AND STEADY-STATE
SOLUTION BY FLOQUET METHOD

We consider a four-level tripod system, with perpendicu-
larly polarized coupling and probe beams of Rabi frequencies
�C and �P, respectively [Fig. 1(b)]. The direction of the mag-
netic field B is taken as the quantization axis Z. For the helium
2 3S1 state, the Landé g factor is 2.002. The magnetic field shifts
the metastable 2 3S1 (mJ ) state by μBBmJ g, where μB =
eh̄/2me = 9.274 × 10−24 J/T is the Bohr magneton. This
gives the Zeeman splitting, �Z ≡ μBBmJ g/h = 2.8 kHz for
B = 1 mG. The Rabi frequency of the coupling beam �C is
much larger than the Zeeman splitting �Z.

The Hamiltonian of the system can be expressed as

H = H0 + HI. (1)

H0 is the unperturbed Hamiltonian,

H0 =
∑

i

h̄ωi |i〉〈i|, (2)

where i = e,g−,g0,g+ corresponds to the different levels,
labeled in Fig. 1(b). HI is the interaction Hamiltonian,

HI = −h̄

2
e−iωCt [X2|e〉〈g0| + X1(|e〉〈g−| + |e〉〈g+|) + H.c.],

(3)

where X1 = (�Pe
−iδt sin θ + �C cos θ )/

√
2, X2 = −(�Pe

−iδt

cos θ − �C sin θ ), and δ is the frequency difference between
the probe and the coupling beams. θ is the angle between the
probe beam polarization and the magnetic field, as shown in
Fig. 1(b). For θ = 0, the probe is π polarized and the coupling
is σ polarized, while it is the other way for θ = π/2. In these
two cases, the probe and coupling beams excite the three
optical transitions separately, while an intermediate θ mixes
the excitations on each transition.

The time evolution of the density matrix operator, in the
presence of decay, is obtained from the Liouville equation as

d

dt
ρ = − i

h̄
[H,ρ] + Dρ, (4)

where D is the relaxation matrix. The density matrix elements
obey the conditions

∑
i ρii = 1 and ρli = ρ∗

il . The sources of
relaxation in our system are spontaneous emission from the
excited state to the lower states with equal decay rates �0/3
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(�0 = 107 s−1), transit relaxation of the atoms through the
beams from all allowed states with the rate �t (≈103 s−1),
the Raman coherence decay with the rate �R (≈104 s−1), and
the optical coherence decay rate �. In our simple model, we
do not explicitly take into account the Doppler effect, but
assume that the optical coherence decay rate �/2π would
effectively be given by the width (≈0.5 GHz) of the transition
in the Doppler-broadened medium. This approximation has
already been shown to be valid in the case of EIT in a standard
three-level system in 4He* [36,39].

From Eq. (4), the equations of evolution of the density
matrix elements ρ̃mn(t) for the four-level double tripod system
interacting with the π - and σ -polarized beams can be written as

dρg∓g∓(t)

dt
= �0

3
ρee(t) − �t

[
ρg∓g∓ (t) − 1

3

]

+ i

2
[X∗

1 ρ̃eg∓ (t) − X1ρ̃g∓e(t)], (5)

dρg0g0 (t)

dt
= �0

3
ρee(t) − �t

[
ρg0g0 (t) − 1

3

]

+ i

2
[X∗

2 ρ̃eg0 (t) − X2ρ̃g0e(t)], (6)

dρ̃eg∓ (t)

dt
= −[� ± i�Z]ρ̃eg∓(t) + i

2
{X1[ρg∓g∓(t)

− ρee(t)] + X2ρ̃g0g∓(t) + X1ρ̃g±g∓(t)}, (7)

dρ̃eg0 (t)

dt
= −�ρ̃eg0 (t) + i

2
{X1[ρ̃g−g0 (t) + ρ̃g+g0 (t)]

+X2[ρg0g0 (t) − ρee(t)]}, (8)

dρ̃g∓g0 (t)

dt
= −[�R ∓ i�Z]ρ̃g∓g0 (t)

+ i

2
[X∗

1 ρ̃eg0 (t) − X2ρ̃g∓e(t)], (9)

dρ̃g+g− (t)

dt
= −[�R + 2i�Z]ρ̃g+g−(t)

+ i

2
[X∗

2 ρ̃eg− (t) − X1ρ̃g+e(t)], (10)

where ρ̃eg∓ ≡ ρeg∓eiωCt , ρ̃eg0 ≡ ρeg0e
iωCt , ρ̃g±g0 ≡ ρg±g0 , and

ρ̃g±g∓ ≡ ρg±g∓ .
For a closed atomic system, the population is conserved,

i.e.,

ρee + ρg0g0 + ρg−g− + ρg+g+ = 1, (11)

and we can eliminate, say, ρee from Eqs. (5)–(10). Thus these
equations can be written in a matrix form as

Ṙ = BR − S, (12)

where we define

R ≡ (ρg−g− ,ρg0g0 ,ρg+g+ ,ρ̃g0g− ,ρ̃g0g+ ,ρ̃eg− ,ρ̃eg0 ,ρ̃eg+ ,

ρ̃g−g0 ,ρ̃g+g0 ,ρ̃g−e,ρ̃g0e,ρ̃g+e,ρ̃g+g− ,ρ̃g−g+)T

and S is a constant vector.
The equation of motion (12) can be solved for the harmonic

terms of δ using the Floquet theorem as has been done in
Refs. [40,41]. We expand each term in the equation of motion
accordingly as

B = �∗
PB−1e

iδt + B0 + �PB1e
−iδt , (13)

S = �∗
PS−1e

iδt + S0 + �PS1e
−iδt . (14)

We assume that the probe beam is very weak compared to the
coupling beam so that the Floquet harmonic expansion can be
truncated at first order [42]:

R = �∗
PR−1e

iδt + R0 + �PR1e
−iδt . (15)

Substituting the above equations into Eq. (12) and equating the
coefficients of the different harmonics of δ, the steady-state
solution of Eq. (12) gives us the recurrence relation for the
harmonic terms of R as

R0 = B−1
0 S0, (16)

R± = (B0 ± iδ)−1(S±1 − B±1)R0, (17)

Sq = B1Rq−1 + [B0 + iqδ]Rq + B−1Rq+1, (18)

where q = 0,±1,±2, . . . and Sq is nonzero only for q =
0,±1.

B0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−�a −�0
3 −�0

3 0 0 
C 0 0 0 0 −
C 0 0 0 0
−�0

3 −�a −�0
3 0 0 0 �C 0 0 0 0 −�C 0 0 0

−�0
3 −�0

3 −�a 0 0 0 0 
C 0 0 0 0 −
C 0 0
0 0 0 d 0 �C 0 0 0 0 0 −�C 0 0 0
0 0 0 0 d∗ 0 0 �C 0 0 0 −�C 0 0 0

2
C 
C 
C �C 0 e 0 0 0 0 0 0 0 
C 0
�C 2�C �C 0 0 0 −� 0 
C 
C 0 0 0 0 0

C 
C 2
C 0 �C 0 0 e∗ 0 0 0 0 0 0 
C

0 0 0 0 0 0 
C 0 d∗ 0 −�C 0 0 0 0
0 0 0 0 0 0 
C 0 0 d 0 0 −�C 0 0

−2
C −
C −
C 0 0 0 0 0 −�C 0 e∗ 0 0 0 −
C

−�C −2�C −�C −
C −
C 0 0 0 0 0 0 −� 0 0 0
−
C −
C −2
C 0 0 0 0 0 0 −�C 0 0 e −
C 0

0 0 0 0 0 
C 0 0 0 0 0 0 −
C g 0
0 0 0 0 0 0 0 
C 0 0 −
C 0 0 0 g∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

S0 = (−�b −�b −�b 0 0 
C �C 
C 0 0 −
C −�C −
C 0 0)T , (20)
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where �a ≡ �t + �0
3 , �b ≡ �t+�0

3 (�a ≈ �b ≈ �0/3 since �t 
 �0), 
C = i

2
√

2
�C cos θ , �C = i

2�C sin θ , d = −(�R + i�Z),
e = −(� + i�Z), g = −(�R + 2i�Z), and the superscript T denotes the transpose of a vector.

B1 = i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 
P 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 �P 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 
P 0 0 0 0 0 0 0

0 0 0 0 0 �P 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 �P 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 
P 0 0 0 0 0 0 0 0

0 0 0 0 0 0 
P 0 0 0 0 0 0 0 0

−2
P −
P −
P 0 0 0 0 0 −�P 0 0 0 0 0 −
P

−�P −2�P −�P −
P −
P 0 0 0 0 0 0 0 0 0 0

−
P −
P −2
P 0 0 0 0 0 0 −�P 0 0 0 −
P 0

0 0 0 0 0 
P 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 
P 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

S1 = i

2
(0 0 0 0 0 0 0 0 0 0 −
P −�P −
P 0 0)T , (22)

B−1 = i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 −
P 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −�P 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −
P 0 0

0 0 0 0 0 0 0 0 0 0 0 −�P 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −�P 0 0 0

2
P 
P 
P �P 0 0 0 0 0 0 0 0 0 
P 0

�P 2�P �P 0 0 0 0 0 
P 
P 0 0 0 0 0


P 
P 2
P 0 �P 0 0 0 0 0 0 0 0 0 
P

0 0 0 0 0 0 0 0 0 0 −�P 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −�P 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −
P 0 0

0 0 0 0 0 0 0 0 0 0 −
P 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23)

S−1 = i

2
(0 0 0 0 0 
P �P 
P 0 0 0 0 0 0 0)T , (24)

where 
P = sin θ√
2

and �P = − cos θ .
The populations of the atomic levels can be obtained from

the first three elements of the R0 vector. The first three
elements of the R±1 vector contain information concerning
the pulsation of the ground- and excited-level populations
at the difference frequency δ between the coupling and the
probe beams, and these also provide the information about
population redistribution and coherence among Zeeman sub-
levels in the ground or excited levels due to the simultaneous
interaction with the coupling and probe beams [43]. The probe

absorption and dispersion are proportional to the imaginary
and real parts of the linear susceptibility and the linear
susceptibility of the probe beam can be obtained from three
elements of the R−1 vector. The imaginary part of the probe
susceptibility Im[χ (ωP)] is proportional to Im(μeg−
Pρeg− +
μeg0�Pρeg0 + μeg+
Pρeg+ ), where μeg− = −μeg0 = μeg− =
μ = 1/

√
3. The transmission profiles are generated from

exp{−kLIm[χ (ωP)]}, where k is the magnitude of the wave
vector of the probe beam and L is the length of the helium
cell.
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Probe Coupling 

ΔZ 

(3) 

FIG. 2. (Color online) (a) Experimental result of transmission
versus probe-coupling detuning obtained for θ = 30◦, with magnetic
field = 30 mG, and coupling power = 4 mW. The Zeeman shift
�Z is 84 kHz. Four peaks can be attributed to EIT as shown in
subfigures (1), (2), and (3), where the coupling beam (red continuous
line) has a frequency equal to the atomic transition m = 0 → m = 0
frequency. The small peak labeled 1 on the left is given by the �

system drawn in subfigure (1) below, the second peak labeled 2 is due
to two different � systems drawn in subfigure (2). The two peaks on
the right are due to symmetrical � systems. As shown in subfigure
(3), the central resonance happens for coupling and probe beams
of the same frequency, which does not correspond to any Raman
resonance in the � subsystems of the tripod. (b) Amplitudes of the
oscillating parts of the populations (at a fixed time) versus δ, with the
same Zeeman shift, a coupling Rabi frequency of �C/2π = 6 MHz
(corresponding to a coupling power of 4 mW), and a Raman
coherence decay rate of �R/2π = 3 kHz. �ρg+g+ ≡ 2Re(R+1)31e

−iδt

and �ρg−g− ≡ 2Re(R+1)11e
−iδt (blue and green dashed lines) are

in phase and oscillate in antiphase with �ρg0g0 ≡ 2Re(R+1)21e
−iδt

(black dotted line), while the excited-state population �ρee (red
continuous line) does not exhibit any variation.

IV. COMPARISON OF EXPERIMENTAL AND
NUMERICAL RESULTS

We record the probe transmission by scanning the probe
frequency around the coupling frequency, thus scanning the
probe-coupling detuning δ over about 500 kHz around 0.
In the absence of the magnetic field (�Z = 0), δ is the
two-photon Raman detuning. The experimental result of a
probe transmission profile, obtained with a coupling power
of 4 mW for an angle θ = 30◦ between the probe beam
and a 30-mG magnetic field (defining the Z axis), is shown
in Fig. 2(a). The coupling beam frequency is chosen equal
to the frequency of the atomic transition m = 0 → m = 0.
The small peak labeled 1 on the left is given by the �

system drawn in subfigure (1): the optical detuning of the
pump on the m = −1 → m = 0 transition is the Zeeman
shift −�Z � −84 kHz, which does not introduce a strong
asymmetry in the resonance as the Zeeman shift is small
compared to the Doppler broadening. Raman resonance is then
achieved for the same optical detuning for the probe on the
m = 1 → m = 0 transition, which corresponds to twice the
Zeeman shift with respect to the m = 0 → m = 0 transition
frequency. The peak labeled 2 appears when the coupling
and probe beam frequency difference is �Z. It is due to two

different � systems drawn in subfigure (2): one is at optical
resonance (coupling beam on the m = 0 → m = 0 transition
and probe beam on the m = −1 → m = 0 transition), and
the other is optically detuned by +�Z (coupling beam on
the m = +1 → m = 0 transition and probe beam on the
m = 0 → m = 0 transition). The two symmetrical peaks on
the right are due to similar and symmetrical � systems. But
as shown in subfigure (3), the central resonance appears for
coupling and probe beams of the same frequency, which does
not correspond to any Raman resonance in the � subsystems
of the tripod: depending on the � subsystem considered, the
Raman detuning is ±�Z or ±2�Z.

Indeed, the central peak is a signature of the ground-state
CPO, which was also observed in a three-level � system
(equivalent to two open, interdependent two-level systems)
in our previous work [31]. In this case, the two legs of the
� system are excited by the same pair of coupling and probe
fields. The populations in the two ground-state sublevels |g±〉
are in phase and oscillate in antiphase with the population of the
ground level |g0〉 as these are driven by intensity modulations
which are in antiphase. This is visible in the simulation plotted
in Fig. 2(b): the population oscillations of the ground states are
plotted with respect to δ (for a given time chosen to make them
visible) and show a resonance in amplitude of some kilohertz
in width. This induces a transfer of the CPOs between each
ground state and the common excited state to CPOs between
the two ground states, which gives rise to a sharp central
resonance limited by the decay rate of ground-state populations
given in our case by the transit time of the atoms through the
laser beam. We have checked that no resonance in population
oscillations occurs for the values of δ that correspond to the
EIT peaks, which confirms that the central and the detuned
transmission windows do not come from the same physical
phenomenon.

Evidence of the fact that the physical explanation for the
central resonance cannot be the same as the side EIT peaks
is its sensitivity to the Raman coherence decay rate. We
show the numerically calculated transmission profiles for the
tripod configuration in Fig. 3 for two different values of the
Raman coherence decay rate �R/2π and for two intermediate
θ values of (a) 30◦ and (b) 60◦. It is clearly seen that the
EIT resonances, detuned in the presence of the magnetic field

FIG. 3. (Color online) Numerically calculated transmission pro-
files versus probe-coupling detuning with (a) θ = 30◦ and (b) θ = 60◦

for �̄R ≡ �R/2π = 3 kHz (black squares) and �R/2π = 12 kHz (red
dots). Other parameters used are Zeeman splitting �Z/2π = 84 kHz
(corresponding to a magnetic field, B = 30 mG) and coupling Rabi
frequency �̄C ≡ �C/2π = 6 MHz (corresponding to a coupling
power of 4 mW).
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FIG. 4. (Color online) Transmission profiles versus probe-
coupling detuning for the double tripod system. (a)–(d) Experi-
mentally measured with magnetic fields at 0 mG (black squares),
10 mG (red dots), and 30 mG (blue triangles), at coupling power =
4 mW. (e)–(h) Numerically calculated with Zeeman splitting �̄Z ≡
�Z/2π = 0 kHz (black squares), �Z/2π = 28 kHz (red dots),
and �Z/2π = 84 kHz (blue triangles), at coupling Rabi frequency
�C/2π = 6 MHz with the Raman coherence decay rate �R/2π =
3 kHz.

(�Z/2π = 84 kHz or B = 30 mG), are extremely sensitive to
the Raman coherence, but the central peak is unaffected by a
change in �R. This proves that the Raman coherence is not
involved in this central resonance, which, as explained above,
is the consequence of a transfer of CPOs between each ground
state and the excited state to CPOs between the state |g0〉 and
the states |g±〉.

The left panels in Fig. 4 show the transmission profiles
recorded in our experiment for a coupling power of 4 mW;
a magnetic field of 0, 10, and 30 mG; and four different θ

values. The right panels in Fig. 4 show the corresponding
numerical simulations obtained with the Floquet expansion
described in Sec. III. The configurations (a) [or (e)] and (d) [or
(h)] are for θ = 0 and 90◦, respectively, which correspond
to the two configurations considered in Ref. [25]. In the
first case (θ = 0◦) with π -polarized probe and σ±-polarized
coupling beams, the EIT resonances split by the magnetic field
interfere destructively, while in the second case (θ = 90◦)

FIG. 5. (Color online) Variation of populations, ρee (black
squares), ρg−g− (red dots), ρg0g0 (blue triangles), and ρg+g+ (green
rhombuses), with rotation angle θ for (a) �̄Z ≡ �Z/2π = 0 (B =
0) and (b) �Z/2π = 84 kHz (B = 30 mG), with coupling Rabi
frequency �̄C ≡ �C/2π = 6 MHz (corresponding to a coupling
power of 4 mW) and Raman coherence decay rate �R/2π = 3 kHz.

with π -polarized coupling and σ±-polarized probe beams,
the EIT resonances add incoherently. This can be understood
from the fact that the dark states induced by the σ -polarized
coupling beams are roughly |g0〉 for both but with different
phases, which cannot be satisfied simultaneously by the same
π -polarized probe beam. In the second case, we need to
consider two � systems that give two different dark states
|g±〉, which do not interfere.

It is visible that there is a change in the background level
(transmission level in the wings) with and without the magnetic
field for θ = 0◦ [Figs. 4(a) and 4(e)], unlike for θ = 90◦
[Figs. 4(d) and 4(h)]. To understand this effect, we plot the
average populations, ρee, ρg0g0 , and ρg±g± (given by the first
three elements of the R0 vector), versus the rotation angle θ

for (a) zero magnetic field and (b) a moderately high (30 mG)
magnetic field. The result is shown in Fig. 5. When θ = 0◦,
in the absence of the magnetic field, the optical pumping
of the population into the probe ground level is not perfect
(ρg0g0 < 0.7) [Fig. 5(a)], and in the presence of the 30-mG
magnetic field, it improves to ρg0g0 > 0.9 [Fig. 5(b)], resulting
in more probe absorption (or less probe transmission) in the
wings. For intermediate cases in which the excitations on each
of the three optical transitions are mixed, the background level
variations can be explained by adding the absorption of the
probe on each transition.

For the intermediate cases of θ = 30◦ [Figs. 4(b) and
4(f)] and θ = 60◦ [Figs. 4(c) and 4(g)], as has already
been explained using Fig. 2, the four symmetrically detuned
transmission peaks at ±�Z and ±2�Z are due to EIT
resonances. The central peak is a signature of CPO. For these
intermediate values of θ , both coupling and probe excite the
three transitions, which leads to intensity beats that give a
transmission window when the frequency of the beats is less
than the population decay rate. For the usual CPO in a two-level
system, the relevant population decay rate is the decay rate of
the upper level, which is much larger (about 1.6 MHz) than
the Raman coherence decay rate. In our case, as coupling
and probe polarizations are orthogonal, the beats on the σ

transitions are in opposite phase with respect to the beats on
the π transition. This explains a transfer of the oscillations to
population oscillations between |g0〉 and |g±〉, which is then
limited by the ground-state decay rate given by the transit rate
of atoms through the beam. The amplitude of the oscillation
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is maximum for θ = 45◦, when both coupling and probe laser
are equally shared on the σ and π transitions. We have checked
that these oscillations disappear for angles of 0◦ and 90◦, when
coupling and probe beams do not excite the same transitions
so that no CPO phenomenon can occur.

Our experimental results in all the cases match very well
with the numerical simulations done using the Floquet method.
It is seen that the height of the central CPO resonance and the
EIT peaks can be manipulated by rotating the coupling-probe
polarizations.

V. CONCLUSIONS

In conclusion, we have studied a four-level double tripod
system using metastable helium gas at room temperature, in
which transmission resonances due to both EIT and CPO are
established. In this system, we can manipulate EIT and CPO
resonances by rotating the orthogonally polarized coupling-
probe beams with respect to the quantization axis, defined by

a magnetic field. The heights of the EIT and CPO resonance
peaks are dependent on the polarization direction. Also, the
appearance and disappearance of the central CPO resonance
can be controlled by rotating the coupling-probe polarizations.
This system can, in principle, be useful as a polarization-
dependent switch [44] in the presence of a magnetic field.

Our experimental results match fairly well with our numer-
ical simulations using the Floquet method. Our work may lead
to further studies related to elliptically polarized excitations
in three-level � systems [45,46] and to the explanation of
the central resonance dip [47] observed with nonorthogonally
polarized coupling-probe beams.
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