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Enhanced photon correlations due to strong laser-atom-cavity coupling
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We investigate the resonant quantum dynamics of a laser-pumped real or artificial two-level single-atom
system embedded in a leaking microcavity. We found that for stronger laser-atom-cavity couplings the generated
microcavity photons exhibit larger steady-state correlations. In particular, the second- and third-order photon
correlation functions are greater than the corresponding ones obtained for an incoherent light source, respectively.
Furthermore, the emitted microcavity photon flux is enhanced in comparison to weaker coupling cases.
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I. INTRODUCTION

Correlation functions describing the coherence properties
of interacting or noninteracting quantum particles received
considerable attention [1–17]. These functions are almost used
in all branches of modern physics. Typically, standard sources
of incoherent light generate photons possessing a second-order
correlation function g(2)(0) = 2 [1–3]. Very recently it was
shown that photons emitted by a single two-level system,
ultrastrong coupled with a thermal optical cavity, show photon
correlation functions g(2)(0) > 2 or even smaller than unity
exhibiting quantum light features, i.e., sub-Poissonian photon
statistics [4]. The effect occurs when the atom-cavity coupling
rate becomes comparable to the cavity resonance frequency.
For such an interaction regime, the counter-rotating terms
in the interaction Hamiltonian should be taken into account.
Therefore, various schemes generating highly correlated light
are still important. Particularly, larger photon correlations are
useful for a number of practical applications in many-body
phenomena with strongly interacting photons [5] as well
as in photonic quantum information processing [6–8]. An
ensemble of N collectively interacting few-level atoms via
an incoherent electromagnetic field reservoir generates light
with g(2)(0) = 4 or even higher in the steady state. However,
the photon intensity is rather weak [9,10]. Applying external
coherent light sources, one can generate intenser photon fluxes
proportional to N or N2 with, however, lower second-order
photon correlations in the steady state, i.e., g(2)(0) < 4 [11,12].
Furthermore, higher-order photon correlations [13,14] can be
generated in a somehow more complicated setup involving
nonlinear crystal superlattices [15]. Finally, correlated photon
emission can be achieved from multi-atom entangled Rydberg
states, for instance [16,17]. Thus, it becomes intriguing to
find alternative ways to generate both an intense steady-state
photon flux with enhanced photon-photon correlations.

Here we demonstrate a scheme capable of generating a
moderately intense and highly correlated photon flux. In par-
ticular, the obtained second- and third-order photon correlation
functions in the steady state are several times larger than
corresponding ones but for a thermal light source. The scheme
is based on pumping a two-level emitter embedded in a leaking
optical microcavity. At moderately strong pumping, i.e., the
respective Rabi frequency is larger than the spontaneous and
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cavity decay rates, respectively, the spontaneous scattered
photons into free electromagnetic field modes show the well-
known Mollow spectrum [18] modified by the cavity field [19].
Now, if the laser-atom-cavity system is in resonance with
the central band of the Mollow spectrum then the sidebands
will contribute to the atom-microcavity quantum dynamics
only via the nonsecular terms. Under certain conditions, these
terms are responsible for enhancing the microcavity mean-
photon number as well as the second- and third-order photon
correlations in the steady state. Furthermore, a moderate
incoherent pumping of the resonator mode does not modify
the photon statistics considerably. Notice the existence of an
experiment measuring two- and three-photon correlations in a
strongly driven atom-cavity system for different parameters of
interest [20]. This makes our results experimentally attractive.

The article is organized as follows. In Sec. II we describe
the analytical approach and the system of interest, while in
Sec. III we obtain the corresponding equations of motion and
describe the obtained results. The summary is given in Sec. IV.

II. NONLINEAR QUANTUM DYNAMICS OF A PUMPED
QUBIT INSIDE A MICROCAVITY

The Hamiltonian describing a two-level real (or artificial)
atomic system possessing the frequency ω0 and interacting
with a coherent source of frequency ωL, and embedded in a
microcavity of frequency ωc, in a frame rotating at ωL, is

H = h̄�a†a + h̄g(a†S− + aS+) + h̄�(S+ + S−), (1)

where we have assumed that ω0 = ωL. In the Hamiltonian (1)
the first term describes the cavity free energy with � = ωc −
ωL, while the second one characterizes the interaction of the
two-level emitter with the microcavity mode via the coupling
g. The third term considers the qubit’s interaction with the
laser field with � being the corresponding Rabi frequency. The
atomic bare-state operators S+ = |2〉〈1| and S− = [S+]+ obey
the commutation relations for SU(2) algebra: [S+,S−] = 2Sz

and [Sz,S
±] = ±S±. Here Sz = (|2〉〈2| − |1〉〈1|)/2 is the bare-

state inversion operator. |2〉 and |1〉 are the excited and ground
state of the qubit, respectively, while a† and a are the creation
and the annihilation operator of the electromagnetic field
(EMF) in the resonator, and satisfy the standard bosonic com-
mutation relations, i.e., [a,a†] = 1, and [a,a] = [a†,a†] = 0.

We are interested in the laser dominated regime where
� � {γ,κ} (here γ and κ are the spontaneous and cavity decay
rates, respectively) and shall describe our system using the
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dressed-states formalism [3]: |1〉 = (|1̄〉 + |2̄〉)/√2, and |2〉 =
(|2̄〉 − |1̄〉)/√2. Applying this transformation in Eq. (1)
with � = 0, one arrive then at the following dressed-state
Hamiltonian in a frame rotating at the Rabi frequency �:

H0 = h̄g0Rz(a + a†) + h̄g0(R+e2i�t − R−e−2i�t )(a† − a).

(2)

Here g0 = g/2 while the new quasispin operators, i.e., R+ =
|2̄〉〈1̄|, R− = [R+]+ and Rz = |2̄〉〈2̄| − |1̄〉〈1̄| are operating in
the dressed-state picture. They obey the following commu-
tation relations: [R+,R−] = Rz and [Rz,R

±] = ±2R±. One
can observe that the Hamiltonian (2) can be separated into a
time-independent part and a time-dependent one containing
fast oscillating terms. Therefore, the time-dependent part Hf

can be regarded as a perturbation to the time-independent
part when � > g0. One can apply then the transformation
H̄ = − i

h̄
Hf (t)

∫
dtHf (t) [21–23] to arrive at the final time-

independent Hamiltonian characterizing the coherent evolu-
tion of the laser-atom-cavity system:

H0 = h̄g0Rz(a
† + a) + h̄βRza

†a − h̄
β

2
Rz(a

†2 + a2), (3)

where β = g2
0/� and β � g0. The nonlinear terms propor-

tional to β in Eq. (3) are due to the nonsecular contribution
and are responsible for squeezed one-atom lasing [21] as well
as nonclassical EMF coherences [22] in a different related
setup.

In the Heisenberg picture, the master equation describing
the laser-dressed two-level qubit inside a leaking resonator
and damped via the vacuum modes of the surrounding EMF
reservoir [3] is

d

dt
〈Q(t)〉 − i

h̄
〈[H0,Q]〉

= −�0〈Rz[Rz,Q]〉 − �{〈R+[R−,Q]〉 + 〈R−[R+,Q]〉}
− κ(1 + n̄)〈a†[a,Q]〉 − κn̄〈a[a†,Q]〉 + H.c. (4)

Here, in general, for the non-Hermitian atomic or EMF
operators Q, the H.c. terms should be evaluated without
conjugating Q, i.e., by replacing Q+ with Q in the Hermitian
conjugate parts. Furthermore, �0 = γ /4 and � = (γ + γd )/4
with 2γ being the single-atom spontaneous decay rate, while
γd is the qubit dephasing rate. Finally, n̄ is the microcavity
mean-photon number due to incoherent pumping of the cavity
mode. This is achieved via pumping of the microcavity mode
with a broadband laser field with its spectral width larger than
the resonator decay rate κ , respectively. Note that in Eq. (4) we
have performed the secular approximation in the spontaneous
emission damping [12].

In the following section we shall describe the microcavity
photon statistics via the second- and third-order photon
correlation functions.

III. SECOND- AND THIRD-ORDER PHOTON
CORRELATION FUNCTIONS

The equations of motion for the variables of interest can be
easily obtained from the master equation (4). For instance, the
steady-state value of the mean-photon number, i.e., 〈a†a〉s , can

be extracted from the following system of linear steady-state
equations:

0 = 2κ〈a†a〉s + ig0〈Rza
†〉s − ig0〈Rza〉s

− iβ〈Rza
†2〉s + iβ〈Rza

2〉s − 2κn̄,

0 = (κ + 4�)〈Rza
†〉s − iβ〈a†〉s + iβ〈a〉s − ig0,

0 = (2κ + 4�)〈Rza
†2〉s − 2ig0〈a†〉s − 2iβ〈a†2〉s (5)

+ iβ(1 + 2〈a†a〉s),
0 = κ〈a†〉s − iβ〈Rza

†〉s + iβ〈Rza〉s ,
0 = 2κ〈a†2〉s − 2ig0〈Rza

†〉s − 2iβ〈Rza
†2〉s

+ 2iβ〈Rza
†a〉s ,

0 = (2κ + 4�)〈Rza
†a〉s + ig0〈a†〉s − ig0〈a〉s

− iβ〈a†2〉s + iβ〈a2〉s .

In the system of Eqs. (5), and throughout the paper, we used
the fact that the dressed-state inversion is zero in the steady
state, i.e., 〈Rz〉s = 0, as well as the trivial condition R2

z = 1,
which is the case for a single-atom system. By completing the
system of Eqs. (5) with the respective H.c. equations, it takes
a closed form and can be exactly solved. In particular, one of
the solutions of (5) represents the steady-state mean-photon
number in the microcavity mode, namely:

〈a†a〉s = n̄ + g2
0

κ(κ + 4�)
+ 8g2

0 + κ(κ + 4�)(1 + 2n̄)

2κ2(κ + 2�)(κ + 4�)
β2.

(6)

One can observe here that the mean-photon number in the
steady state is enhanced due to both the incoherent pumping
and the nonlinear contribution proportional to β2. This is
clearly seen in Fig. 1, where we plotted the microcavity
mean-photon number n = 〈a†a〉s as a function of different
relevant parameters. For κ/� > 1, the photon number in the
steady state goes to n̄ as the bad-cavity limit is achieved.

Furthermore, we focus on the degree of second- and third-
order coherences of microcavity photons defined, respectively,
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FIG. 1. The steady-state dependencies of the microcavity mean-
photon number n = 〈a†a〉s versus the parameter κ/�. Dashed and
solid curves are for β/� = 0 and 0.1, respectively. The inset shows
the same behavior for a particular range of κ/�. Here n̄ = 0 and
g0/� = 5.
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as [1,2]

g(2)(0) = 〈a†2a2〉s
〈a†a〉2

s

, and g(3)(0) = 〈a†3a3〉s
〈a†a〉3

s

. (7)

The unnormalized k-order correlation function 〈a†kak〉s de-
scribes the probability of a k-photon detection, simultaneously.
To obtain the steady-state expressions for correlation functions
given in Eq. (7), the system of Eqs. (5) have to be completed
with additional equations obtained with the help of Eq. (4). In
particular, the unnormalized steady-state second-order photon
correlation function can be obtained from the following system
of equations (and the corresponding H.c. expressions):

0 = 4κ〈a†2a2〉s + 2ig0〈Rza
†2a〉s − 2ig0〈Rza

†a2〉s
− iβ(〈Rza

†2〉s + 2〈Rza
†3a〉s − 〈Rza

2〉s
− 2〈Rza

†a3〉s) − 8κn̄〈a†a〉s ,
0 = (3κ + 4�)〈Rza

†2a〉s + ig0〈a†2〉s − 2ig0〈a†a〉s
− iβ(〈a†2a〉s + 〈a†3〉s − 〈a〉s − 2〈a†a2〉s)
− 4κn̄〈Rza

†〉s ,
0 = (4κ + 4�)〈Rza

†3a〉s + ig0〈a†3〉s − 3ig0〈a†2a〉s
− iβ(2〈a†3a〉s + 〈a†4〉s − 3〈a†2a2〉s − 3〈a†a〉s)
− 6κn̄〈Rza

†2〉s ,
0 = 3κ〈a†a2〉s + 2ig0〈Rza

†a〉s − ig0〈Rza
2〉s

+ iβ(〈Rza
†a2〉s − 〈Rza

†〉s − 2〈Rza
†2a〉s

+〈Rza
3〉s) − 4κn̄〈a〉s ,

0 = 3κ〈a†3〉s − 3ig0〈Rza
†2〉s

+ 3iβ(〈Rza
†2a〉s + 〈Rza

†〉s − 〈Rza
†3〉s),

0 = 4κ〈a†4〉s − 4ig0〈Rza
†3〉s + 2iβ(2〈Rza

†3a〉s
+ 3〈Rza

†2〉s − 2〈Rza
†4〉s),

0 = 4κ〈a†3a〉s + ig0〈Rza
†3〉s − 3ig0〈Rza

†2a〉s
− iβ(2〈Rza

†3a〉s + 〈Rza
†4〉s − 3〈Rza

†2a2〉s
− 3〈Rza

†a〉s) − 6κn̄〈a†2〉s ,
0 = (3κ + 4�)〈Rza

†3〉s − 3ig0〈a†2〉s
+ 3iβ(〈a†2a〉s + 〈a†〉s − 〈a†3〉s),

0 = (4κ + 4�)〈Rza
†4〉s − 4ig0〈a†3〉s

+ 2iβ(2〈a†3a〉s + 3〈a†2〉s − 2〈a†4〉s),
0 = (4κ + 4�)〈Rza

†2a2〉s + 2ig0〈a†2a〉s − 2ig0〈a†a2〉s
− iβ(〈a†2〉s + 2〈a†3a〉s − 〈a2〉s − 2〈a†a3〉s)
− 8κn̄〈Rza

†a〉s . (8)

The equation of motions required to obtain the third-order
correlation function are given in Appendix B.

Taking into account the systems of Eqs. (5) and (8), one
can obtain the steady-state expression for the second-order
coherence function, that is

g(2)(0) = (κ + 2�)(κ + 4�)

3(κ + �)2(3κ + 4�)2

A + Bβ2 + Cβ4

Ã + B̃β2 + C̃β4
, (9)

where

A = A0 + A1n̄ + A2n̄
2, Ã = Ã0 + Ã1n̄ + Ã2n̄

2,

B = B0 + B1n̄ + B2n̄
2, B̃ = B̃0 + B̃1n̄ + B̃2n̄

2,

C = C0 + C1n̄ + C2n̄
2, C̃ = C̃0 + C̃1n̄ + C̃2n̄

2,

while the missing parameters are given in Eqs. (A1), in
Appendix A. Here, again, one can observe that the nonlinear
term β modifies the second-order photon correlation. In
particular, when β = 0 one obtains

g(2)(0) = 2 + g4
0(4� − 3κ)

(4� + 3κ)
[
g2

0 + κ(κ + 4�)n̄
]2 , (10)

while for {g0,β} = 0 one has g(2)(0) = 2, that is, we recover
the incoherent-source result for a second-order correlation
function. For smaller values of κ/� and β �= 0, the second-
order coherence function tends to a constant value:

lim
κ→0

g(2)(0) = 95
12 ≈ 7.91, (11)

while for β = 0 and g0 �= 0 we have

lim
κ→0

g(2)(0) = 3. (12)

These behaviors are shown in Fig. 2, plotted with the help
of Eq. (9). Thus, for particular values of involved parameters
one can obtain larger photon correlations, i.e., g(2)(0) � 2,
as well as bigger photon numbers (see Figs. 2 and 1,
respectively) due to nonlinear terms proportional to β in the
interaction Hamiltonian (3). To elucidate the role played by
the incoherent pumping, in Fig. 3 we depict the difference
�g(2)(0) = g(2)(0)|n̄�=0 − g(2)(0)|n̄=0 as a function of κ/�. For
very small values of κ/�, a moderate incoherent pumping
almost does not affect the photon coherences, while when the
ratio κ/� increases the photon statistics modifies accordingly
[see Fig. 3 and Eqs. (9) and (10)].

In order to understand that the photon correlations indeed
are enhanced due to the nonlinearity characterized by β, in
Fig. 4 we plot the third-order microcavity photon correlation
function g(3)(0) [with the help of the corresponding equations,
i.e., Eqs. (B1), given in Appendix B]. Remarkable, the
third-order photon correlations are enhanced as well due to
presence of β. In particular, for an incoherent bath, i.e., g0 = 0,
g(3)(0) = 6, while for β/� = 0 the third-order steady-state
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FIG. 2. The steady-state dependencies of the microcavity second-
order photon correlation function g(2)(0) versus the parameter κ/�.
Short-dashed, long-dashed, and solid curves are for β/� = 0, 0.05,
and 0.1, respectively. Other parameters are n̄ = 0 and g0/� = 5.
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FIG. 3. The variance of the second-order correlation functions
�g(2)(0) = g(2)(0)|n̄ �=0 − g(2)(0)|n̄=0 as a function of κ/�. Short-
dashed, long-dashed, and solid lines are for n̄ = 1, 5, and 10,
respectively. Here g0/� = 5 and β/� = 0.05.

photon coherence function is given by the expression

g(3)(0) = 6 + 12g6
0κ(5κ − 12�)(5κ + 4�)−1

(3κ + 4�)
[
g2

0 + κ(κ + 4�)n̄
]3

+ 9g4
0(−3κ + 4�)

(3κ + 4�)
[
g2

0 + κ(κ + 4�)n̄
]2 . (13)

In general, i.e., for β �= 0, the expression for g(3)(0) is too
complicated and it is not shown here. However, for smaller
values of κ/� and β �= 0 one has

lim
κ→0

g(3)(0) = 33203
180 ≈ 184.46. (14)

If β = 0 and g0 �= 0 we have

lim
κ→0

g(3)(0) = 15. (15)

Thus, in both limits described by expressions (14) and
(15), the third-order correlation function is bigger than the
corresponding one but for an incoherent-type light source,
i.e., g(3)(0) > 6 (see, also, Fig. 4). The influence of a moderate
incoherent pumping into the cavity mode on third-order photon
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FIG. 4. The steady-state dependencies of the microcavity third-
order photon coherence function g(3)(0) as a function of κ/�. Solid
and long-dashed curves are for β/� = 0.1 and 0.05, respectively.
The inset shows the case of β/� = 0. Other parameters are n̄ = 0
and g0/� = 5.
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FIG. 5. The same as in Fig. 3, but for �g(3)(0) = g(3)(0)|n̄ �=0 −
g(3)(0)|n̄=0.

statistics is shown in Fig. 5. Similar to Fig. 3, very small values
of κ/� do not modify the third-order photon correlations in
presence of incoherent photons n̄. g(3)(0) slightly changes with
increasing n̄ and κ/�. Stronger incoherent pumping will lead
to a photon statistics which is typical for an incoherent-light
source. Furthermore, the photon statistics does not depend on
g0 for {n̄,β} = 0 [see, for instance, Eqs. (10) and (13)]. Finally,
one can conjecture that even higher-order photon correlation
functions will behave similarly to those shown in Figs. 2–5
with, however, larger magnitudes.

IV. SUMMARY

In summary, we have investigated the correlations functions
of microcavity photons generated due to coherent interaction
of a two-level qubit with an external laser field as well as a
microcavity mode and in the presence of both the spontaneous
emission and cavity damping, respectively. In addition, the
cavity mode is pumped incoherently. In the intense-field
limit, i.e., the involved Rabi frequency is larger than the
spontaneous and cavity decay rates, respectively, we found
enhanced second- and third-order photon correlations. These
correlation functions are larger than the corresponding ones
but for an incoherent-light source. The photon correlation
enhancement is due to the nonsecular contribution in the
coherent dressed-state Hamiltonian describing the pumped
atom interacting with the microcavity mode. This contribution
is relevant for stronger laser-atom-cavity interactions.
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APPENDIX A: THE PARAMETERS ENTERING IN THE
SECOND-ORDER PHOTON CORRELATION FUNCTION

Here are the parameters entering in Eq. (9):

A0 = 36g4
0κ

2(� + κ)2(2� + κ)(4� + 3κ),

A1 = 48g2
0κ

3(� + κ)2(2� + κ)(4� + 3κ)2,

A2 = 24κ4(� + κ)2(2� + κ)(4� + κ)(4� + 3κ)2,

Ã0 = 4g4
0κ

2(2� + κ)2,
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Ã1 = 8g2
0κ

3(2� + κ)2(4� + κ),

Ã2 = 4κ4(2� + κ)2(4� + κ)2,

B0 = κ(� + κ)[3κ2(� + κ)(4� + κ)(4� + 3κ)2

+ 32g4
0(50�2 + 74�κ + 27κ2)

+ 4g2
0κ(4� + 3κ)(100�2 + 139�κ + 45κ2)],

B1 = 4κ2(� + κ)(4� + 3κ)
[
g2

0(392�2 + 614�κ

+ 234κ2) + 9κ(� + κ)(4� + κ)(4� + 3κ)
]
,

B2 = 60κ3(� + κ)2(4� + κ)(4� + 3κ)2,

B̃0 = 4κg2
0(2� + κ)

[
8g2

0 + κ(4� + κ)
]
,

B̃1 = 4κ2(2� + κ)(4� + κ)
[
10g2

0 + κ(4� + κ)
]
,

B̃2 = 8κ3(2� + κ)(4� + κ)2,

C0 = 9κ2(� + κ)(4� + κ)(4� + 3κ)2

+ 16g4
0(190�2 + 289�κ + 108κ2)

+ 4g2
0κ(4� + 3κ)(220�2 + 319�κ + 108κ2),

C1 = 4κ(4� + 3κ)[9κ(� + κ)(4� + κ)(4� + 3κ)

+ g2
0(440�2 + 638�κ + 216κ2)],

C2 = 36κ2(� + κ)(4� + κ)(4� + 3κ)2,

C̃0 = [
8g2

0 + κ(4� + κ)
]2

,

C̃1 = 4κ(4� + κ)
[
8g2

0 + κ(4� + κ)
]
,

C̃2 = 4κ2(4� + κ)2. (A1)

APPENDIX B: EQUATIONS OF MOTION FOR
THE THIRD-ORDER PHOTON COHERENCES

To obtain the third-order correlation function g(3)(0) the
system of linear equations (5) and (8) should be completed
with the following equations of motion (and the corresponding
H.c. equations):

0 = 6κ〈a†3a3〉s + 3ig0〈Rza
†3a2〉s − 3ig0〈Rza

†2a3〉s
− 3iβ(〈Rza

†4a2〉s + 〈Rza
†3a〉s − 〈Rza

†2a4〉s
−〈Rza

†a3〉s) − 18κn̄〈a†2a2〉s ,
0 = (6κ + 4�)〈Rza

†3a3〉s + 3ig0〈a†3a2〉s
− 3ig0〈a†2a3〉s − 3iβ(〈a†4a2〉s + 〈a†3a〉s
−〈a†2a4〉s − 〈a†a3〉s) − 18κn̄〈Rza

†2a2〉s ,

0 = (5κ + 4�)〈Rza
†3a2〉s + 2ig0〈a†3a〉s − 3ig0〈a†2a2〉s

− iβ(〈a†3a2〉s + 〈a†3〉s + 2〈a†4a〉s
− 3〈a†2a3〉s − 3〈a†a2〉s) − 12κn̄〈Rza

†2a〉s ,
0 = 5κ〈a†3a2〉s + 2ig0〈Rza

†3a〉s − 3ig0〈Rza
†2a2〉s

− iβ(〈Rza
†3a2〉s + 〈Rza

†3〉s + 2〈Rza
†4a〉s

− 3〈Rza
†2a3〉s − 3〈Rza

†a2〉s) − 12κn̄〈a†2a〉s ,
0 = (6κ + 4�)〈Rza

†4a2〉s + 2ig0〈a†4a〉s − 4ig0〈a†3a2〉s
− iβ(2〈a†4a2〉s + 〈a†4〉s + 2〈a†5a〉s
− 4〈a†3a3〉s − 6〈a†2a2〉s) − 16κn̄〈Rza

†3a〉s ,
0 = 6κ〈a†4a2〉s + 2ig0〈Rza

†4a〉s − 4ig0〈Rza
†3a2〉s

− iβ(2〈Rza
†4a2〉s + 〈Rza

†4〉s + 2〈Rza
†5a〉s

− 4〈Rza
†3a3〉s − 6〈Rza

†2a2〉s) − 16κn̄〈a†3a〉s ,
0 = (5κ + 4�)〈Rza

†4a〉s + ig0〈a†4〉s − 4ig0〈a†3a〉s
− iβ(3〈a†4a〉s + 〈a†5〉s − 4〈a†3a2〉s − 6〈a†2a〉s),
− 8κn̄〈Rza

†3〉s ,
0 = 5κ〈a†4a〉s + ig0〈Rza

†4〉s − 4ig0〈Rza
†3a〉s

− iβ(3〈Rza
†4a〉s + 〈Rza

†5〉s − 4〈Rza
†3a2〉s

− 6〈Rza
†2a〉s) − 8κn̄〈a†3〉s ,

0 = (6κ + 4�)〈Rza
†5a〉s + ig0〈a†5〉s − 5ig0〈a†4a〉s

− iβ(4〈a†5a〉s + 〈a†6〉s − 5〈a†4a2〉s − 10〈a†3a〉s)
− 10κn̄〈Rza

†4〉s ,
0 = 6κ〈a†5a〉s + ig0〈Rza

†5〉s − 5ig0〈Rza
†4a〉s

− iβ(4〈Rza
†5a〉s + 〈Rza

†6〉s − 5〈Rza
†4a2〉s

− 10〈Rza
†3a〉s) − 10κn̄〈a†4〉s ,

0 = (5κ + 4�)〈Rza
†5〉s − 5ig0〈a†4〉s

− iβ(5〈a†5〉s − 5〈a†4a〉s − 10〈a†3〉s),
0 = 5κ〈a†5〉s − 5ig0〈Rza

†4〉s − iβ(5〈Rza
†5〉s

− 5〈Rza
†4a〉s − 10〈Rza

†3〉s),
0 = (6κ + 4�)〈Rza

†6〉s − 6ig0〈a†5〉s
− iβ(6〈a†6〉s − 6〈a†5a〉s − 15〈a†4〉s),

0 = 6κ〈a†6〉s − 6ig0〈Rza
†5〉s

− iβ(6〈Rza
†6〉s − 6〈Rza

†5a〉s − 15〈Rza
†4〉s). (B1)
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