
PHYSICAL REVIEW A 88, 023850 (2013)

Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems

Talitha Weiss and Andreas Nunnenkamp
Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

(Received 10 April 2013; published 27 August 2013)

Mechanical oscillators can be cooled by coupling them to an optical or microwave cavity. Going beyond the
standard quantum noise approach, we find an analytic expression for the steady-state phonon number in systems
where the position of the mechanical oscillator modulates the cavity frequency as well as the cavity linewidth.
We trace the origin for the quantum limit of cooling to fluctuations in the optical force both at and away from
the mechanical frequency. Finally, we calculate the minimal phonon number for the different types of couplings.
Our study elucidates how to beneficially combine dispersive and dissipative optomechanical couplings.
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I. INTRODUCTION

Optomechanics is an area of research that is concerned with
systems in which the position of a mechanical oscillator mod-
ulates the properties of an optical or microwave mode [1–5].
Apart from fundamental questions, e.g., about the decoherence
of increasingly macroscopic objects [6], these systems have
promising applications in information and quantum science,
e.g., transducers in quantum hybrid systems [7].

To enable these applications, reducing the thermal motion
of the mechanical oscillator has been the focus of intense
research. Adapting laser-cooling techniques from atomic
physics [8,9] experiments have observed the quantum ground
state [10–12] as well as an asymmetry in the mechanical
sidebands [13,14].

In Ref. [15], an optomechanical system has been introduced
where the cavity linewidth depends parametrically on the
position of a mechanical oscillator. A strikingly new feature is
a Fano line shape in the force spectrum that is a consequence
of quantum noise interference. In a recent study, we have
shown that this form of force spectrum features two cooling
and two instability regions [16]. Following the proposal in
Ref. [17], an interferometer setup has recently investigated
these effects [18].

For an optimal detuning between laser and cavity frequen-
cies, the zero of the Fano line shape coincides with the mechan-
ical frequency. As the quantum noise approach [19] estimates
the fluctuations in the optical force with the noise spectrum
at the mechanical frequency, it predicts the unphysical result
that the phonon number goes to zero as the coupling is
increased, i.e., it does not give a quantum limit of cooling.

In this paper, we go beyond this level of approximation
and derive an analytic expression for the steady-state phonon
number which takes into account the noise in the force
spectrum at all frequencies. We show that noise away from
the mechanical frequency can become the limiting process for
cooling. In this case, the steady-state phonon number depends
on the coupling in a qualitatively different way featuring a
minimum at finite coupling. We give explicit expressions for
the minimal phonon number for so-called purely dissipative as
well as dissipative and dispersive couplings. While the Fano
line shape due to dissipative coupling leads to a vanishing
amplification rate, additional dispersive coupling can increase
the cooling rate and, thus, further lower the phonon num-
ber. Our study provides the physical limit of cooling and

shows how to exploit the presence of these two kinds of
optomechanics.

II. MODEL

We investigate an optomechanical system where the reso-
nance frequency ωc of a cavity and its linewidth κ are both
modulated by the displacement of a mechanical oscillator
with resonance frequency ωM . These two types of couplings
between optical and mechanical degrees of freedom will be re-
ferred to as dispersive and dissipative couplings, respectively.

The Hamiltonian (h̄ = 1) of such a system is given by Ĥ =
ωcâ

†â + ωMĉ†ĉ + Ĥκ + Ĥγ + Ĥint, where â† (â) are bosonic
creation (annihilation) operators of the cavity mode, ĉ† (ĉ) are
bosonic creation (annihilation) operators of the mechanical
mode, and Ĥκ and Ĥγ describe driving and damping of
the cavity and the mechanical oscillator, respectively. The
optomechanical coupling is given by [15]

Ĥint = −
[
Ãκâ†â + i

√
κ

2πρ

B̃

2

∑
q

(â†b̂q − b̂†q â)

]
x̂

x0
, (1)

where Ãκ = − dωc(x)
dx

x0 is the dispersive and B̃κ = dκ(x)
dx

x0

the dissipative coupling strength [20]. Here, x̂ = x0(ĉ + ĉ†)
denotes the displacement of the mechanical oscillator, x0 =
(2mωM )−1/2 is the size of the zero-point fluctuations and m

is the mass of the mechanical oscillator, b̂
†
q (b̂q) are bosonic

creation (annihilation) operators of the optical bath coupled to
the cavity, and ρ is the density of states of the optical bath that
we treat as a constant for the relevant frequencies.

We work in a frame rotating with the drive frequency ωd ,
using â = (ā + d̂)e−iωd t , where ā denotes the mean cavity
amplitude and d̂ denotes the fluctuations around this mean
value. Then, using the input-output formalism [19] adapted for
dissipatively coupled systems, we write down the linearized
equations of motion [15,17,21],

˙̂c = −
(

iωM + γ

2

)
ĉ − √

γ ĉin + ix0F̂ , (2)

˙̂d =
(

i� − κ

2

)
d̂ − √

κd̂in +
[
iÃκā −

(
i� + κ

2

)
B̃

2
ā

]
x̂

x0
,

(3)

with F̂ x0 = Ãκā∗d̂ + i B̃
2 ā∗√κd̂in + i B̃

2 ā∗(i� + κ
2 )d̂ + H.c.

Here, � = ωd − ωc is the detuning between the drive

023850-11050-2947/2013/88(2)/023850(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.023850


TALITHA WEISS AND ANDREAS NUNNENKAMP PHYSICAL REVIEW A 88, 023850 (2013)

frequency ωd and the cavity resonance ωc, and d̂in (ĉin) de-
scribes the fluctuations in the optical (mechanical) input mode.
We assume Markovian baths where the mechanical bath has a
finite temperature T and, thus, a thermal phonon number nth =
(eωM/kBT − 1)−1, where kB denotes Boltzmann’s constant,
i.e., 〈ĉ†in(ω)ĉin(ω′)〉 = 2πδ(ω + ω′)nth and 〈ĉin(ω)ĉ†in(ω′)〉 =
2πδ(ω + ω′)(nth + 1), whereas, the optical bath is assumed
to be at zero temperature, i.e., 〈d̂in(ω)d̂†

in(ω′)〉 = 2πδ(ω + ω′).

III. NOISE CONTRIBUTIONS TO THE
MECHANICAL SPECTRUM

For weak coupling, we can use the quantum noise approach
to derive transition rates for the mechanical oscillator with
Fermi’s golden rule [19]. In our case, the force F̂ leads to
transitions between states with n and n ± 1 phonons. The rates
are given by 	n→n+1 = (n + 1)	↑ and 	n→n−1 = n	↓ with
the amplification rate 	↑ = x2

0SFF (−ωM ) and cooling rate
	↓ = x2

0SFF (ωM ). They are obtained from the weak-coupling
force spectrum SFF (ω) = ∫

dt eiωt 〈F̂ †(t)F̂ 〉 evaluated in the
absence of coupling. Here, it is given by [15]

SFF (ω) = B̃2|ā|2
4x2

0

κ(ω + 2� − 2Ãκ/B̃)2

(κ/2)2 + (ω + �)2
. (4)

As discussed in Ref. [15], for the optimal detuning
� = �opt = ωM/2 + κÃ/B̃, a Fano interference leads to
a vanishing amplification rate 	↑ = x2

0SFF (−ωM ) = 0. The
steady-state mean phonon number n within the quantum
noise approach is given by n = (γ nth + 	↑)/(γ + 	↓ − 	↑).
If, however, 	↑ = 0 and 	↓ 
= 0, the mean phonon number n

goes to zero in the limit of large coupling strength, i.e., there
is no quantum limit of cooling at this level of approximation.

In the following, we go beyond this standard quantum
noise approach and take the complete force spectrum SFF (ω)
into account, i.e., the noise at all frequencies. To do so,
we solve Eq. (3) in the Fourier domain for d̂(ω) and insert
the result into the equation of motion of the mechanical
oscillator (2). Neglecting correlations between the optical
field and the mechanical bath, e.g., 〈d̂(ω)ĉin(ω′)〉 = 0, we
obtain an approximation for the mechanical spectrum Scc(ω) =∫

dt eiωt 〈ĉ†(t)ĉ〉 as

Scc(ω) = |χ̃M (−ω)|2[γ nth + x2
0SFF (ω)

]
, (5)

where χ̃M (ω) = [γ̃ /2 − i(ω − ωM )]−1 is the effective me-
chanical response function and where we have taken into
account the optically induced damping γ̃ = γ + 	↓ − 	↑ but
have neglected the optically induced frequency shift, i.e., the
optical spring.

In Fig. 1(a), we plot the mechanical spectrum Scc(ω) for
purely dissipative coupling Ã = 0 and detuning � = �opt.
Within the quantum noise approach, the mechanical spectrum
has a peak at the mechanical frequency ω = −ωM describing
the response of the mechanical oscillator to thermal fluctua-
tions γ nth and optical force fluctuations at the mechanical fre-
quency, i.e., Scc(ω) = |χ̃M (−ω)|2[γ nth + x2

0SFF (−ωM )]. In
the resolved-sideband regime ωM � κ , the approximation (5)
features an additional peak due to optical force fluctuations
|χ̃M (−ω)|2x2

0SFF (ω) missed by the quantum noise approach.
For κ � γ̃ , it is centered at ω = −ωM/2 with a zero at
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FIG. 1. (Color online) (a) The mechanical spectrum Scc(ω)ωM

obtained from the exact solution (solid black line) [16] and the
approximate expression (5) (orange dotted line) for Ã = 0, B̃|ā| =
0.2, and � = ωM/2. The green dot-dashed (blue dashed) line
shows the first (second) term in Eq. (5). The thin red solid line
is the weak-coupling force spectrum SFF (ω)x2

0/ωM (4). (b) The
optical output spectrum Sout

dd (ω) for Ã = 0, B̃|ā| = 0.01, � = ωM/2
(solid black line), Ã = 0, B̃|ā| = 0.2, � = ωM/2 (dashed blue line),
and Ã|ā| = 0.2, B̃ = 0, � = −ωM (green dot-dashed line). Other
parameters are ωM/γ = 105, nth = 100, and ωM/κ = 5.

ω = −ωM due to quantum noise interference [15]. In Fig. 1(a),
we plot the mechanical spectrum Scc(ω) obtained from the
exact solution to Eqs. (2) and (3) as given in Ref. [16]. The
agreement with the approximate expression (5) is excellent.

The reason for the failure of the quantum noise approach can
be understood by looking more closely at the force spectrum
SFF (ω) also in Fig. 1(a). Within the quantum noise approach,
we approximate the optical force fluctuations by evaluating the
force spectrum SFF (ω) at the mechanical frequency. However,
this is only justified if SFF (ω) varies slowly around ±ωM on
a scale of γ̃ . For Ã = 0 and � = �opt, this is clearly not the
case, and the quantum noise approach fails.

The two contributions to the mechanical spectrum Scc(ω)
in Eq. (5) can also be detected in the optical output spectrum
Sout

dd (ω) = ∫
dt eiωt 〈d̂†

out(t)d̂out〉 where the input-output relation
is d̂in − d̂out = −√

κd̂ − √
κB̃āx̂/2x0 [16]. In Fig. 1(b), we

show the optical output spectrum Sout
dd (ω) for detuning � =

ωM/2. It features a dominant peak of width γ̃ at ω = −ωM ,
a sharp dip to zero at ω = +ωM , and two smaller peaks of
width κ at ω = ±ωM/2. The one at ω = +ωM/2 exists at
small coupling, whereas, the one at ω = −ωM/2 appears at
a larger coupling strength. In the limit of strong coupling,
the two peaks have equal weight. This differs significantly
from the optical output spectrum Sout

dd (ω) for purely dispersive
coupling B̃ = 0 and detuning � = −ωM , which features
the well-known mechanical sidebands, i.e., two peaks of
width γ̃ at ω = ±ωM , symmetric around the drive frequency.
The different optical output spectra Sout

dd (ω) are a signature
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of the different cooling processes for these two kinds of
couplings.

IV. IMPROVED EXPRESSION FOR THE MEAN
PHONON NUMBER

Given the improved approximation for the mechanical
spectrum Scc(ω), Eq. (5), we obtain an expression for the
mean phonon number n by integrating over all frequencies
ω, i.e., n = 〈ĉ†ĉ〉 = ∫

Scc(ω)dω/(2π ) where we have the
analytic result,

n = γ nth

γ̃
+ B̃2|ā|2

4

κ(−ωM + 2� − 2Ãκ/B̃)2

γ̃ [(γ̃ + κ)2/4 + (� − ωM )2]
+ B̃2|ā|2

4

× γ̃ κ + 4�2 − 16Ã �κ/B̃ + (1 + 16Ã2/B̃2)κ2

(γ̃ + κ)2 + 4(� − ωM )2
. (6)

The first term in Eq. (6) accounts for the thermal fluctuations
due to the mechanical bath with thermal phonon number nth

reduced by the optically induced damping. In the limit κ � γ̃ ,
the second term simplifies to x2

0SFF (−ωM )/γ̃ , i.e., together
with the first term it gives the standard quantum noise result.
Note that the second term vanishes at the detuning � = �opt,
and thus, it does not provide a quantum limit of cooling. The
third term in Eq. (6) goes beyond the quantum noise approach
and is nonzero at the optimal detuning � = �opt, thus, it
leads to a quantum limit of cooling. For purely dissipative
coupling Ã = 0, Eq. (6) coincides with an expression in
Ref. [17].

For purely dissipative coupling Ã = 0 at the detuning � =
ωM/2 and in the limit κ � γ̃ , Eq. (6) simplifies to

n = γ nth

γ̃
+ B̃2|ā|2

4
. (7)

We see that the phonon number n has a qualitatively different
dependence on the coupling strength as compared to the
purely dispersive coupling B̃ = 0 discussed above. It is
surprising that the second term in Eq. (7) depends only on
the coupling strength B̃|ā| and not on the sideband parameter
ωM/κ .

In Fig. 2(a), we plot the mean phonon number n as a
function of the coupling strength B̃|ā| for purely dissipative
coupling Ã = 0. Within the quantum noise approach, the
phonon number n approaches zero in the limit B̃|ā| → ∞.
For small coupling, the approximation (6) agrees well with
the quantum noise approach but, in contrast to the quantum
noise approach, it features a minimum at finite coupling which
defines a finite minimal phonon number nmin. Following, e.g.,
Ref. [22], an exact but cumbersome and not very illuminating
expression for the phonon number n can be derived. It agrees
very well with our approximate result (6) and deviates from it
only for large coupling strengths close to the unstable region.

In Fig. 2(b), we plot the mean phonon number n given by
Eq. (6) as a function of detuning �. We find that there are two
cooling regions close to � = −ωM and around � = ωM/2
where the phonon number is significantly reduced relative to
the thermal phonon number nth and two unstable regions [16].
The contributions of the second and third terms in Eq. (6) are
shown separately. Notably, the second term in Eq. (6) is the
limiting term for the phonon number n at most detunings �,
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FIG. 2. (Color online) (a) Mean phonon number n obtained
from the quantum noise approach (green dot-dashed line) from
Eq. (6) (blue dashed line) and the exact solution (solid black
line) for Ã = 0, ωM/κ = 3, � = ωM/2, nth = 100, and ωM/γ =
3 × 105. (b) Mean phonon number n from Eq. (6) as a function of
detuning � (solid black line). The green dot-dashed (red dashed)
line shows the second (third) term of Eq. (6). Parameters are
Ã = 0, ωM/κ = 3, B̃|ā| = 0.2, nth = 100, and ωM/γ = 107. In (c),
we show a closeup of (b) at � ≈ ωM/2 and include the quantum
noise result (blue dashed line) and the exact solution (orange dotted
line). Hatched areas indicate unstable regions.

except close to � = �opt where it goes to zero. In this case,
the third term in Eq. (6) becomes important and provides the
quantum limit of cooling, whereas, it can be safely neglected
elsewhere. Figure 2(c) is focusing on � ≈ �opt. It shows
that our approximate expression (6) leads to a much better
agreement with the exact solution than the quantum noise
approach. In the following, we will focus on the case of
� = �opt where deviations from the quantum noise result are
most significant.

V. MINIMAL MEAN PHONON NUMBER

For the purely dispersive coupling B̃ = 0, in the limit
κ � γ̃ , we obtain the well-known result n = γ nth/γ̃ +
x2

0SFF (−ωM )/γ̃ = (γ nth + 	↑)/(γ + 	↓ − 	↑) from Eq. (6).
This leads to a minimal phonon number nmin = 	↑/(	↓ −
	↑) = κ2/(16ω2

M ) for � ≈ −ωM and Ã → ∞. In this case,
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ground-state cooling is only possible in the resolved-sideband
limit ωM � κ [8,9].

In the case of the purely dissipative coupling Ã = 0, Eq. (7)
features a minimal phonon number,

nmin =
√

γ nth

4κ

(
κ2

ω2
M

+ 9

)
− γ

16κ

(
κ2

ω2
M

+ 9

)
, (8)

at B̃2|ā|2 =
√

γ nth(κ2/ω2
M + 9)/κ − γ (κ2/ω2

M + 9)/(4κ).
Remarkably, in the good-cavity limit ωM � κ, nmin becomes
independent of the sideband parameter ωM/κ and approaches
a finite value nmin =

√
9γ nth/(4κ) − 9γ /(16κ).

In systems featuring both dispersive and dissipative cou-
plings, i.e., Ã 
= 0 and B̃ 
= 0, at � = �opt and in the limit
κ � γ̃ , Eq. (6) again simplifies to Eq. (7). Remarkably, the
second term of Eq. (6) is independent of the dispersive coupling
strength Ã, and the minimal phonon number nmin only depends
on the coupling strength Ã via the damping rate γ̃ .

Minimizing Eq. (7) over the coupling strength Ã leads
to Ãκ = −3B̃ωM/2. In this case, the optimal dissipative
detuning � = ωM/2 + κÃ/B̃ coincides with the optimal
detuning for dispersive cooling � = −ωM . Within the quan-
tum noise approach, this means taking advantage of a
vanishing amplification rate 	↑ = 0 at a detuning where
dispersive coupling can increase the cooling rate 	↓ and,
thus, γ̃ . The minimal phonon number for this optimal mixed
coupling is at B̃2|ā|2 =

√
nthγ (κ2/ω2

M )/κ − γ (κ2/ω2
M )/(4κ)

and is

nmin =
√

γ nth

4κ

κ2

ω2
M

− γ

16κ

κ2

ω2
M

. (9)

In contrast to the case of Ã = 0, i.e., Eq. (8), the mini-
mal phonon number nmin in Eq. (9) vanishes in the limit
ωM � κ .

Note that this requires dispersive coupling Ã and dissipative
coupling B̃ to have opposite signs. Whereas the sign of the
coupling strength does not enter for purely dispersive or
purely dissipative coupling, the relative sign matters in the
presence of both couplings. According to our definitions of
Ã and B̃, opposite signs imply that the cavity resonance
frequency ωc and the cavity linewidth κ both increase (or
decrease) with increasing displacement of the mechanical
oscillator x.

In Fig. 3, we plot the minimal phonon number nmin for
dispersive, dissipative, and mixed couplings as a function of
the sideband parameter ωM/κ . We see that, in the case of purely
dissipative coupling Ã = 0, the minimal phonon number nmin

approaches a finite value for ωM � κ . In contrast, nmin for
the purely dispersive coupling B̃ = 0 goes to zero in the
limit ωM/κ → ∞. We also show the exact solution and find
that our approximations capture the qualitative behavior very
well. Figure 3 also shows that ideally mixed coupling can
overcome the cooling limit for systems with purely dissipative
coupling.

In closing, we note that opposite signs of dispersive and
dissipative couplings will also allow for cooling on-resonance.
If Ãκ = −B̃ωM/2, the optimal detuning simplifies to �opt =
ωM/2 + κÃ/B̃ = 0. This would be particularly beneficial in
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FIG. 3. (Color online) Minimal phonon number nmin as a function
of the sideband parameter ωM/κ obtained from Eq. (8) (black dashed
line) and the exact result (black solid line) for Ã = 0 and � = ωM/2;
the thin solid black line indicates the limit of nmin for ωM/κ → ∞.
The dot-dashed green line gives the quantum noise result for purely
dispersive coupling (at � = −ωM, Ã → ∞), and the green solid line
shows the exact result, optimized for the dispersive coupling strength
Ã|ā| (B̃ = 0). The red dotted line shows the minimal phonon number
for ideally mixed coupling at � = ωM/2 + κÃ/B̃, Eq. (9). Other
parameters are nth = 100 and κ/γ = 105.

the resolved-sideband limit ωM � κ where, off-resonance,
most of the input power is reflected off the cavity.
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APPENDIX: DIFFERENT DISSIPATIVE COUPLINGS

Dissipative coupling arises if the cavity linewidth κ is
modulated by the mechanical displacement x, i.e., κ = κ(x).
In the main text, we have discussed the maximally overcoupled
case where there is only a single loss channel for photons, so all
losses are due to the channel where the coherent drive enters.

In general, several loss channels for photons can be present
in an optomechanical system. We write the total cavity
damping κ = κext + κ0 as the sum of an external loss rate
κext associated with the channel where the drive enters and κ0

that contains the losses through all other channels. Including
the additional loss channel leads to an additional input mode
â0

in distinct from the input mode âext
in associated with the drive,

i.e., 〈â0
in〉 = 0 but 〈âext

in 〉 = āin. It is this difference that finally
results in different expressions for the force F̂ below.

It is crucial to distinguish between the case,

κ = κext(x) + κ0, (A1)

where the cavity linewidth associated with the drive port is
modulated by the displacement and the case

κ = κext + κ0(x), (A2)

where the internal losses depend on the displacement.
Case 1. The first case (A1) is a generalization of the

treatment in the main text where we used κ = κext(x), i.e.,
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κ0 = 0. If κ0 
= 0, B̃κext = dκext(x)
dx

x0 leads to the force,

F̂ x0 = Ãκ(ā∗d̂ + ād̂†) + iB̃
√

κext
[
ā∗d̂ext

in − (
d̂ext

in

)†
ā
]

− B̃

2

[
−iā∗

(
i� + κ

2

)
d̂ − iā

(
i� − κ

2

)
d̂†

]
, (A3)

where d̂ext
in (d̂ext

in )† are the fluctuations of the input mode and
the second line of Eq. (A3) is due to the coherent drive entering
through the same port. This leads to the force spectrum [23],

SFF (ω) = B̃2|ā|2
4x2

0

κext(ω + 2� − 2Ãκ/B̃)2

(κ/2)2 + (ω + �)2

+ B̃2|ā|2
4x2

0

κ0[(� − 2Ãκ/B̃)2 + κ2/4]

(κ/2)2 + (ω + �)2
. (A4)

As discussed in Ref. [23], the optimal detuning �opt no longer
leads to an exact zero of the force spectrum SFF (ω) due to the
second term of Eq. (A4). Depending on the ratio of κext and
κ0, the quantum noise interference becomes less perfect, and
ultimately, if κ0 � κext, the force spectrum is a Lorentzian.

Case 2. In the second case (A2) where κ = κext + κ0(x),
the force differs significantly from Eq. (A3). Since the input
mode associated with κ0(x) describes only fluctuations of a
zero-temperature bath, the force is given by

F̂ x0 = Ãκ(ā∗d̂ + ād̂†) + iB̃
√

κ0
[
ā∗d̂0

in − (
d̂0

in

)†
ā
]
. (A5)

Notably, a term corresponding to the second line of Eq. (A3)
is missing since this loss channel is not associated with
a drive. Thus, for the purely dissipative coupling Ã = 0,
there is only one contribution to the force and no quantum
noise interference. The force spectrum simplifies to SFF (ω) =
κ0B̃

2|ā|2/(4x2
0 ), i.e., it becomes completely flat as a function

of frequency.
In the presence of both types of couplings, the dispersive

coupling term provides a cavity-mediated force, whereas,
dissipative coupling leads to a force directly proportional to
the optical bath mode d̂0

in, and these two contributions can
interfere. Using B̃κ0 = dκ0(x)

dx
x0, the force spectrum is given

by

SFF (ω) = B̃2|ā|2
4x2

0

κ0[(ω + � − 2Ãκ/B̃)2 + κ2/4]

(κ/2)2 + (ω + �)2

+ B̃2|ā|2
4x2

0

κext(2Ãκ/B̃)2

(κ/2)2 + (ω + �)2
, (A6)

i.e., it has a Fano line shape that, in contrast to the first case,
becomes a Lorentzian if κext � κ0. Also in contrast to the first
case, no perfect destructive interference is possible, i.e., the
force spectrum SFF (ω) has no exact zero. The optimal detuning
from the first case no longer has a special meaning in this
context and does not lead to a vanishing term of SFF (−ωM ).

Finally, note that the relative sign of dispersive and
dissipative couplings, i.e., of Ã and B̃, becomes relevant again.
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