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Stable long-distance propagation and on-off switching of colliding soliton sequences
with dissipative interaction
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We study propagation and on-off switching of two colliding soliton sequences in the presence of second-order
dispersion, Kerr nonlinearity, linear loss, cubic gain, and quintic loss. Employing a Lotka-Volterra (LV) model
for dynamics of soliton amplitudes along with simulations with two perturbed coupled nonlinear Schrödinger
(NLS) equations, we show that stable long-distance propagation can be achieved for a wide range of the gain-loss
coefficients, including values that are outside of the perturbative regime. Furthermore, we demonstrate robust
on-off and off-on switching of one of the sequences by an abrupt change in the ratio of cubic gain and quintic loss
coefficients, and extend the results to pulse sequences with periodically alternating phases. Our study significantly
strengthens the recently found relation between collision dynamics of sequences of NLS solitons and population
dynamics in LV models, and indicates that the relation might be further extended to solitary waves of the
cubic-quintic Ginzburg-Landau equation.
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I. INTRODUCTION

The cubic nonlinear Schrödinger (NLS) equation, which
describes wave propagation in the presence of second-order
dispersion and cubic (Kerr) nonlinearity, is one of the most
widely researched nonlinear wave models in physics. It was
successfully employed to describe water wave dynamics [1],
nonlinear waves in plasma [2], Bose-Einstein condensates
(BECs) [3], and pulse propagation in optical waveguides
[4]. The fundamental NLS solitons are the most ubiquitous
solutions of the cubic NLS equation due to their stability and
to the fact that a generic wave pattern typically evolves into a
sequence of fundamental solitons in the presence of anomalous
dispersion and Kerr nonlinearity. In the absence of additional
physical processes (perturbations), the fundamental solitons
propagate without any change in their amplitude, group
velocity, and shape. However, the presence of perturbations
usually breaks this ideal picture, by inducing changes in the
solitons’ amplitude, group velocity, and shape. Dissipative
perturbations due to linear and nonlinear gain or loss are
of particular interest, since they are very common in soliton
systems. In optical waveguides, for example, nonlinear loss
or gain arise due to multiphoton absorption or emission,
respectively [5]. Moreover, nonlinear loss and gain play an
important role in many phenomena described by the complex
Ginzburg-Landau (GL) equation [6], such as convection and
pattern formation in fluids and mode-locked lasers.

Despite its success, the single NLS equation is limited to
describing a scalar physical field and is also unsuitable for
handling generic broadband nonlinear wave systems. If the
physical field is a vector, or if the spectra of the waves in
a broadband wave system are concentrated about multiple
widely separated wavelengths, the single NLS equation should
be replaced by a system of coupled-NLS equations. Indeed,
in recent years, coupled-NLS models have been employed
in studies of a wide range of phenomena in fluid dynamics
[7,8], nonlinear optics [4,9], multiphase BECs [10], and
plasma physics [11]. Coupled-NLS models are particularly
useful in describing broadband wave systems, in which the

waves are organized in sequences (trains) moving with very
different group velocities, such as in crossing seas [8], or in
broadband optical waveguide transmission [4]. Due to the
large group-velocity differences in these systems, collisions
between pulses from different sequences are very frequent,
and thus play a major role in the dynamics.

In the current paper, we study the dynamics of two colliding
sequences of fundamental NLS solitons in the presence of
dissipative perturbations due to linear loss, cubic gain, and
quintic loss (i.e., a GL gain-loss profile). In the absence of
perturbations, the solitons’ amplitudes and group velocities
do not change in the collisions. However, the presence of
dissipative interaction due to cubic gain and quintic loss
induces additional amplitude shifts during the collisions,
whose magnitude depends on the initial amplitudes of the
two colliding solitons. Consequently, amplitude dynamics of
solitons in the two sequences become nonlinearly coupled,
and important questions arise regarding the nature of this
dynamics. In three recent studies we showed that amplitude
dynamics of N sequences of colliding solitons in the presence
of dissipative perturbations might be described by Lotka-
Volterra (LV) models for N species, where the exact form
of the LV model depends on the nature of the perturba-
tions [12–14]. This potential relation between coupled-NLS
equations and LV systems is of great interest, due to the
central role of these seemingly unrelated models in the natural
sciences. While the importance of coupled-NLS equations
was explained in the previous paragraph, LV models are
widely used in environmental sciences to describe population
dynamics [15–17], in chemistry, to study dynamics of chemical
reactions [18], in economics, to explain interaction between
different technologies [19], and in neural networks, to compute
neuron firing rates [20]. Due to the importance of coupled-NLS
and LV models, it is essential to further enhance and extend the
understanding of the relation between them. Moreover, a better
understanding of this relation can be used for stabilizing the
propagation, for controlling and tuning of soliton amplitudes
and group velocities, and even for broadband switching.
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In order to give further motivation for the current study
and to clarify the importance of its results, we provide a
brief critical description of our three earlier studies of the
problem. In Ref. [12], we studied the propagation of colliding
soliton sequences in the presence of delayed Raman response.
We showed that amplitude dynamics of N soliton sequences
is described by an N -dimensional predator-prey model, but
the results were not checked by numerical simulations with
the corresponding coupled-NLS model. Furthermore, the
equilibrium states of the predator-prey model were found to be
centers, i.e., the equilibria were not asymptotically stable. In
order to resolve the problem of asymptotic stability in the
LV model, we turned to investigate collision dynamics of
soliton sequences in the presence of weak linear gain and
cubic loss [13]. We showed that in this case dynamics of
soliton amplitudes might be approximately described by a LV
model for competing species with quadratic interaction terms.
Stability analysis of the equilibrium states of the model yielded
conditions on the physical parameters for stable propagation of
two sequences with equal soliton amplitudes. Numerical simu-
lations with the full coupled-NLS model confirmed stability at
short-to-intermediate distances, but uncovered an instability
at longer distances [13]. The latter finding was attributed to
weak (second-order) radiative instability due to the impact
of linear gain on the two sequences. In order to overcome
this destabilizing effect, we turned to study a different setup,
where the soliton sequences propagate in the presence of weak
linear loss, cubic gain, and quintic loss [14]. We showed that,
in this setup, the LV model for amplitude dynamics contains
quadratic and quartic interaction terms. The presence of linear
loss was expected to suppress the weak radiative instability and
by this to enable stable long-distance propagation. However,
numerical solution of the corresponding perturbed coupled-
NLS model still showed instability at intermediate-to-long
propagation distances [14]. Thus the important problem of
further stabilization of the propagation remained unresolved.
Moreover, due to the instability at intermediate distances, all
the previous studies were unable to explore the possibility of
achieving stable on-off and off-on switching, i.e., the turning
on and off of transmission of one sequence by a fast change
of one or more of the physical parameters. In addition, the
earlier studies were limited in scope to small values of the
dissipative coefficients and to uniform initial distribution of
soliton amplitudes and phases in each sequence.

In the current paper we address these important deficiencies
of the earlier studies. Considering propagation of two colliding
soliton sequences in the presence of a GL gain-loss profile,
we observe stable long-distance transmission over a wide
range of the gain-loss coefficients, including values that are
outside of the perturbative regime. The stable transmission is
enabled by the presence of linear loss, a sufficiently large initial
intersoliton separation, and the absence of significant initial
position shift between the two soliton sequences. Moreover,
we show that robust on-off and off-on switching of one soliton
sequence can be realized by an abrupt change in the ratio
of the cubic gain and quintic loss coefficients. In addition,
we extend the results to soliton sequences with periodically
alternating phases. Our findings significantly enhance the
surprising relation between propagation of colliding NLS
soliton sequences and population dynamics in LV models. The

results also indicate that the relation might be further extended
to sequences of solitons of the cubic-quintic GL equation.

The rest of the paper is organized as follows. In Sec. II, we
present the coupled-NLS model for the propagation along with
the reduced LV model for amplitude dynamics. We also discuss
the predictions of the latter model for stability of propagation.
In Sec. III, we present the results of numerical simulations
with the coupled-NLS model for long distance transmission,
as well as for on-off and off-on switching. In addition, we
compare the simulation results with the predictions of the LV
model. Our conclusions are presented in Sec. IV.

II. COUPLED-NLS AND LOTKA-VOLTERRA MODELS

We consider propagation of sequences of soliton pulses
in the presence of second-order dispersion, Kerr nonlinearity,
and a GL gain-loss profile, consisting of linear loss or gain,
cubic gain, and quintic loss. We denote the physical field of
the j th sequence by ψj . In the context of propagation of light
through optical waveguides, for example, ψj is proportional
to the envelope of the electric field of the j th sequence. In the
absence of gain and loss, the propagation of the j th soliton
sequence is described by the cubic NLS equation,

i∂zψj + ∂2
t ψj + 2|ψj |2ψj = 0, (1)

where we adopt the waveguide optics notation, in which
z is propagation distance and t is time. The fundamental
soliton solution of the NLS equation with group velocity 2βj

is ψsj (t,z) = ηj exp(iχj )sech(xj ), where xj = ηj (t − yj −
2βjz), χj = αj + βj (t − yj ) + (η2

j − β2
j )z, and ηj , yj , and αj

are the soliton amplitude, position, and phase, respectively.
We focus attention on the dynamics of two sequences of

fundamental NLS solitons propagating with group velocities
2βj , where j = 1,2. Assuming a large group velocity differ-
ence |β1 − β2| � 1, the solitons undergo a large number of
fast intersequence collisions. We now take into account the
effects of linear gain-loss, cubic gain, and quintic loss as well
as intersequence interaction due to Kerr nonlinearity. Thus the
propagation is described by the following system of perturbed
coupled-NLS equations:

i∂zψj + ∂2
t ψj + 2|ψj |2ψj + 4|ψk|2ψj

= igjψj/2 + iε3|ψj |2ψj + 2iε3|ψk|2ψj

− iε5|ψj |4ψj − 3iε5|ψk|4ψj − 6iε5|ψk|2|ψj |2ψj , (2)

where j = 1,2, k = 1,2, gj is the linear gain-loss coefficient
for the j th sequence, and ε3 and ε5 are the cubic gain and
quintic loss coefficients, respectively. The term 4|ψk|2ψj

in Eq. (2) describes intersequence interaction due to Kerr
nonlinearity, while igjψj/2, iε3|ψj |2ψj , and −iε5|ψj |4ψj

correspond to intrasequence effects due to linear gain-loss,
cubic gain, and quintic loss, respectively. In addition, the
term 2iε3|ψk|2ψj represents intersequence effects due to cubic
gain, while −3iε5|ψk|4ψj and −6iε5|ψk|2|ψj |2ψj describe
dissipative intersequence interaction due to quintic loss.

In Ref. [14], we showed that, under certain assumptions,
amplitude dynamics of solitons in the two sequences can
be approximately described by a LV model for two species
with quadratic and quartic interaction terms. The derivation
of the LV model was based on the following assumptions.
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(1) The temporal separation T between adjacent solitons
in each sequence is a large constant: T � 1. In addition,
the amplitudes are equal for all solitons from the same
sequence, but are not necessarily equal for solitons from
different sequences. (2) The pulses circulate in a closed
loop, e.g., in an optical waveguide ring. (3) As T � 1, the
pulses in each sequence are temporally well separated. As
a result, intrasequence interaction is exponentially small and
is neglected. (4) High-order effects due to collision-induced
frequency shift and emission of radiation are also neglected.

Since the soliton sequences are periodic, the amplitudes
of all pulses in a given sequence undergo the same dynamic
evolution. Taking into account collision-induced and single-
pulse amplitude changes, we obtain the following equation for
the rate of change of the amplitude of the solitons in the j th
sequence ηj [14]:

dηj

dz
= ηj

[
gj + 4

3
ε3η

2
j − 16

15
ε5η

4
j + 8

T
ε3ηk

− 8

T
ε5ηk

(
2η2

j + η2
k

)]
, (3)

where j = 1,2. Note that Eq. (3) can be described as a LV
model for two species with quadratic cooperation terms and
quartic competition terms.

The results described in the previous paragraph indicate
that there is a relation between collision-induced dynamics
of soliton sequences in nonlinear waveguides with a GL
gain-loss profile and dynamics of population size of species
with nonlinear competition and cooperation. Alternatively,
one may speak about a connection between the perturbed
coupled-NLS model (2) and the LV model (3). This relation
along with knowledge about properties of LV models can be
used to develop ways for controlling the dynamics of the
colliding solitons. A straightforward way for achieving this
goal is by tuning of the linear gain-loss coefficients gj . In
optical waveguide systems, for example, this can be realized
by adjusting the linear amplifier gain.

As a particular example, we consider the important case
where the values of the gj coefficients are chosen such
that the LV model (3) has a steady state (η,η) with equal
amplitudes for both sequences. This case is of special interest,
since in optical waveguide systems it is usually easier to
control the transmission when the amplitudes of all pulses are
equal. Requiring that (η,η) is a steady state, we obtain gj =
4ε5η(−κη/3 + 4η3/15 − 2κ/T + 6η2/T ), where κ = ε3/ε5

and ε5 �= 0. Substituting this relation into Eq. (3), we arrive at
the following LV model for amplitude dynamics:

dηj

dz
= ε5ηj

{
4κ

3

(
η2

j − η2
) − 16

15

(
η4

j − η4
) + 8κ

T
(ηk − η)

− 8

T

[
ηk

(
2η2

j + η2
k

) − 3η3
]}

. (4)

We note that (η,η) and (0,0) are equilibrium points of Eq. (4)
for any positive values of η, κ , and T .

Let us discuss the predictions of the LV model (4)
regarding stability of propagation of the two soliton sequences.
For concreteness, we choose η = 1, and require that the
equilibrium points at (1,1) and (0,0) are stable nodes (sinks).
The stability requirement on (0,0), which is important for

suppression of weak instability due to radiation emission, leads
to gj < 0 for j = 1,2, i.e., the solitons are subject to net linear
loss. The above stability requirements yield the following con-
ditions on T and κ [14]: (4T + 90)/(5T + 30) < κ < (8T +
135)/(5T + 15) for 3 < T < 60/17, and (4T + 90)/(5T +
30) < κ < (8T − 15)/(5T − 15) for T � 60/17 [21].

III. NUMERICAL SIMULATIONS WITH THE
COUPLED-NLS MODEL

As explained above, the LV model (4) provides an approxi-
mate description for collision-induced dynamics of circulating
soliton sequences. The propagation is fully described by the
coupled-NLS system (2) with periodic boundary conditions.
A key question about the collision-induced dynamics concerns
the possibility to suppress the instability observed in numerical
simulations in Ref. [14]. Here we address this important
question. More specifically, we show that the instability can be
effectively mitigated by using a larger temporal separation
value T , compared with the one used in [14], and by
eliminating the initial intersequence position shift, which was
introduced in [14] to avoid incomplete collisions. Thus, the
numerical simulations setup in the current paper consists of
the coupled-NLS model (2) with periodic boundary conditions
and an initial condition in the form of two periodic sequences
of 2J + 1 overlapping solitons with amplitudes ηj (0) and
zero phase:

ψj (t,0)=
J∑

k=−J

ηj (0) exp[iβj (t − kT )]

cosh[ηj (0)(t − kT )]
, (5)

where j = 1,2. The temporal separation T is taken as
T = 20, compared with T = 10 that was used in Ref. [14].
Four different values of ε5 are used: ε5 = 0.01, ε5 = 0.06,
ε5 = 0.1, and ε5 = 0.5, compared with ε5 = 0.01 that was
considered in Ref. [14]. Note that a value of ε5 = 0.5 is outside
of the parameter range, where the perturbative approach
leading to the LV model (3) is expected to be valid. The other
physical parameters in the simulations are taken as κ = 1.5,
η = 1, β1 = 0, β2 = 40, and J = 2.

The z dependence of η1 obtained by numerical solution of
Eq. (2) with initial amplitudes η1(0) = 1.25 and η2(0) = 0.7 is
shown in Fig. 1(a) for ε5 = 0.01, ε5 = 0.06, and ε5 = 0.1, and
in Fig. 1(b) for ε5 = 0.5. The predictions of the LV model (4)
are also presented. The agreement between the coupled-NLS
simulations and the predictions of the LV model are excellent.
Moreover, in all four cases η1(z) tends to the equilibrium
value of η = 1 and the approach to η = 1 is faster as ε5

increases. Similar results are obtained for η2(z) and for other
initial amplitude values in the vicinity of the equilibrium point
(1,1). Note that the distances over which stable propagation
is observed are larger by a factor of 6.67 compared with the
distances in Ref. [13], and by a factor of 2 or more compared
with the distances in Ref. [14]. The fact that the predictions of
the LV model hold even for ε5 values as large as 0.5, i.e., outside
of the perturbative regime, is quite surprising. Furthermore, as
shown in the inset of Fig. 1(b), the shape of the two soliton
trains is retained during the propagation despite the magnitude
of ε5 and the large number of collisions.

023845-3



DEBANANDA CHAKRABORTY, AVNER PELEG, AND JAE-HUN JUNG PHYSICAL REVIEW A 88, 023845 (2013)

FIG. 1. (Color online) (a) z dependence of η1 for various ε5 values
and T = 20, κ = 1.5, η1(0) = 1.25, and η2(0) = 0.7. The solid black,
dotted blue, and dashed red lines correspond to η1(z) values obtained
by numerical solution of the coupled-NLS model (2) with ε5 = 0.01,
ε5 = 0.06, and ε5 = 0.1, respectively. The dashed-dotted green, short
dashed purple, and short dashed-dotted orange lines represent η1(z)
values predicted by the LV model (4) with ε5 = 0.01, ε5 = 0.06, and
ε5 = 0.1. (b) The z dependence of η1 and η2 for ε5 = 0.5 and the
same values of T , κ , η1(0), and η2(0) as in (a). The solid red and
dashed blue lines represent η1(z) and η2(z) as obtained by numerical
solution of Eq. (2), while the dashed and short dashed black lines
correspond to η1(z) and η2(z) values as obtained by the LV model
(4). The inset shows the final pulse patterns |ψ1(t,zf )| (solid red) and
|ψ2(t,zf )| (dashed blue) obtained in the coupled-NLS simulation.

The observation of long-distance propagation of the two
soliton sequences opens the way for studying broadband on-off
and off-on switching, i.e., the turning on and off of one of
the propagating pulse sequences. The two switching scenarios
are based on bifurcations of the steady state (1,1) of the LV
model. More specifically, in on-off switching, the value of the
parameter κ is abruptly increased at the switching distance zs

from κi < κc to κf > κc, where κc = (8T − 15)/(5T − 15),
such that the steady state (1,1) becomes unstable, while another
steady state (ηs,0) is stable. As a result, soliton amplitudes in
sequences 2 and 1 tend to 1 for z < zs , but tend to 0 and
ηs , respectively, for z > zs . This means that transmission of
sequence 2 is effectively turned off at zs . Off-on switching is
realized in a similar manner, by decreasing the value of κ at
the switching distance zs from κi > κc to κf < κc such that the
steady state (1,1) becomes stable. Consequently, for z < zs ,
the amplitudes of solitons in sequences 1 and 2 tend to ηs and

FIG. 2. (Color online) z dependence of soliton amplitudes in on-
off switching (a), and in off-on switching (b) with zs = 175 and
parameter values as described in the text. The red circles and blue
squares represent η1(z) and η2(z) values obtained with the coupled-
NLS model (2), while the solid and dashed black lines correspond to
η1(z) and η2(z) values obtained with the LV model (4).

0, respectively, but for z > zs , both amplitudes tend to 1. Thus,
in this case, transmission of sequence 2 is turned on at zs .

In order to check if these switching scenarios can be realized
with sequences of colliding solitons, we numerically solve
Eq. (2) with initial pulse patterns of the form (5), where
T = 20, η1(0) = 1.05, and η2(0) = 0.9. Since T = 20, the
critical κ value is κc = 29/17. As an example, the switching
distance is taken as zs = 175. In on-off switching, ε5 = 0.1,
and κ is increased from 1.5 to 2.0 at zs . In off-on switching, we
use ε5 = 0.01 and κ = 2.0 for z � 175, and ε5 = 0.1 and κ =
1.5 for z > 175. The results of the simulations for ηj (z) are
shown in Figs. 2(a) and 2(b) for on-off and off-on switching,
respectively. Also shown is the prediction of the LV model (4).
The overall agreement between the coupled-NLS simulations
and the predictions of the LV model is very good for both
switching scenarios. The only exception is for small values of
η2(z) in on-off switching, where the LV model underestimates
the value obtained with the coupled-NLS model. This is due to
the fact that, in this regime, the linear loss term is comparable
to or larger than the Kerr nonlinearity term, leading to the
breakdown of the perturbative description. Despite this fact,
the amplitudes of the solitons in sequence 2 do tend to zero, and
thus the on-off switching is fully realized. Based on the good
agreement between coupled-NLS simulations and predictions
of the LV model, we conclude that on-off and off-on switching
can be realized for the two sequences of colliding solitons. It
should be noted that stable off-on switching can be achieved
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FIG. 3. (Color online) z dependence of pulse amplitudes for
soliton sequences with alternating initial phases and parameter values
T = 20, κ = 1.5, ε5 = 0.01, η1(0) = 1.05, and η2(0) = 0.9. (a) ηj vs
z for αjk(0) = 0 and αjk+1(0) = π . (b) ηj vs z for αjk(0) = 0 and
αjk+1(0) = π/2. The solid red and dashed blue lines represent η1(z)
and η2(z) values obtained with the coupled-NLS model (2), while
the solid and dashed black lines correspond to η1(z) and η2(z) values
obtained with the LV model (4).

only when η2(zs) is larger than some threshold value ηth. For
the parameter values used in our simulations, ηth = 0.65. Thus,
in order to implement off-on switching with the current setup
of two soliton sequences, the value of the decision level distin-
guishing between 0 and 1 states should be set larger than ηth.

All the propagation setups discussed so far are limited, in
the sense that all amplitudes and phases within each soliton
sequence are equal. It is therefore important to extend the
results to more general setups. Possible extension can be
achieved by launching soliton sequences with periodically
alternating phases. Indeed, the LV model (4) is independent
of the soliton phases and, as a result, amplitude dynamics
for sequences with periodically alternating phases is expected
to be the same as the dynamics for soliton sequences with
a uniform phase pattern. On the other hand, it is known

that intrasequence soliton interaction strongly depends on the
relative phase difference between the solitons. The interplay
between this interaction and other effects, such as loss or
radiation emission might induce instabilities, which would
lead to the breakdown of the LV model description. For this
reason, it is important to check whether the predictions of the
LV model (4) do apply for soliton sequences with periodically
alternating phases. For this purpose, we numerically solve
Eq. (2) with pulse sequences consisting of two solitons
each with initial amplitudes η1(0) = 1.05 (sequence 1) and
η2(0) = 0.9 (sequence 2). Two sets of initial phases are
used: αj1(0) = 0 and αj2(0) = π [set (a)] and αj1(0) = 0 and
αj2(0) = π/2 [set (b)]. The other physical parameter values are
taken as T = 20, κ = 1.5, and ε5 = 0.01. The results of the
numerical simulations for ηj (z) are shown in Fig. 3 along with
the predictions of the LV model. As can be seen, for both sets
of initial phases the agreement between full-scale simulations
and the predictions of the LV model is excellent over the entire
propagation distance. Furthermore, the soliton amplitudes tend
to the equilibrium value η = 1, i.e., the propagation is indeed
linearly stable. Thus our numerical simulations demonstrate
that the predictions of the LV model (4) can be applied to
generic setups with periodic phase patterns.

IV. CONCLUSIONS

In summary, we investigated long-distance propagation as
well as on-off and off-on switching of two colliding soliton
sequences in the presence of second-order dispersion, Kerr
nonlinearity, and a GL gain-loss profile. Using coupled-NLS
simulations and a reduced LV model, we showed that stable
long-distance propagation is possible for a wide range of
the gain-loss coefficients, including values that are outside
of the perturbative regime. The stable propagation is enabled
by the presence of linear loss, the choice of a sufficiently
large initial interpulse separation within each sequence, and
the absence of significant initial time delay between the two
sequences. Furthermore, we found that robust on-off and
off-on switching of one of the propagating sequences can be
achieved by an abrupt change in the ratio of cubic gain and
quintic loss coefficients. Additionally, we demonstrated that
the results can be extended to pulse sequences with periodi-
cally alternating phases. Our study significantly enhances the
recently found relation between collision-induced dynamics
of sequences of NLS solitons and evolution of population
sizes in LV models. Moreover, it indicates that the relation
might be further extended to sequences of solitary waves
of the cubic-quintic GL equation, at least in some regions
of parameter space. Finally, our results might find useful
applications in nonlinear waveguides with saturable absorption
for stable energy equalization and broadband switching.
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