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Pattern orientation due to longitudinal fields in a cavity with Kerr media
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When describing field propagation in a ring cavity, longitudinal fields are usually neglected. Although small,
the longitudinal component is always present in finite width beams. An equation describing field propagation
in Kerr media and inside a ring cavity filled with such medium is derived. Coupling among longitudinal and
transverse fields but also other usually neglected terms are considered. Numerical integration results show that
coupling with longitudinal field can orientate the resulting pattern along the polarization direction.
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I. INTRODUCTION

Pattern formation in nonlinear media has been widely
studied from the theoretical and numerical point of view [1].
A usually studied model consists of a ring cavity filled with
Kerr media [2], subject to linearly polarized plane incoming
fields. This system, in the mean-field approximation, can be
described by the Lugiato-Lefever equation [3].

When analyzing pattern formation, translational but also
rotational symmetry are expected. It is usually assumed
that the system does not have a preferred direction, and
a spontaneous pattern formation, with random orientation,
breaks that symmetry. In optical systems, hexagonal patterns
are usually found.

Physical fields have a finite width; thus translational
symmetry is broken in experiments. Also, since the divergence
of the displacement should be zero for materials with no
free charges, there has to be a small, usually neglected,
longitudinal field. Nonlinear polarization couples this field
to transverse field [4], in a way similar to what happens
for elliptically polarized fields in Kerr media [5]. As we
shall see, this coupling may break rotational symmetry of the
system.

There are some numerical results for Gaussian beams in
Kerr media, but there are very few studies about longitudinal
fields in nonlinear media. In [6], propagation equations are
derived, and in [7] filamentation is studied. In all such
cases beam waist is assumed to be small, which results in
relatively large longitudinal fields. Here, we are interested in
pattern forming systems, where broad beam waists and small
longitudinal fields are expected.

The purpose of this paper is to numerically study whether
broken symmetries may affect pattern formation in a ring
cavity and to what extent results derived for plane waves are
valid when finite beam widths are considered.

The article is organized as follows. In Sec. II, we introduce
the problem under study. In Sec. III, we comment on results
for linear media. In Sec. IV, we outline the derivation of
an evolution equation in Kerr media, taking into account
longitudinal fields; in Sec. V, we introduce an equation
describing field propagation in a ring cavity; in Sec. VI, we
numerically integrate that equation; in Sec. VII, we comment
on our results and in Sec. VIII we draw our conclusions.
An outline of lengthy calculations is performed in the
Appendixes.

II. STATEMENT OF THE PROBLEM

We will assume that a quasimonochromatic electric field �E
propagates in a Kerr medium along the z direction, with no
y component. The field can be written as a solution to the
linear monochromatic problem multiplied by a slowly varying
envelope E :

�E = �E(�r,t)ei(k0z−ω0t) + c.c., (1)

where ω0 is the angular frequency; k0 = k(ω)|ω=ω0 is the wave
number, with k(ω)

.= ω
c

√
ε̃r (ω), ε̃r is the relative permittivity,

and c is the speed of light in vacuum. Since the divergence of
the displacement is zero, there should be a longitudinal field,
Ez, which may be approximated by

Ez,approx = i

k0
∂xEx, (2)

where ∂q
.= ∂

∂q
. If Ex is a smooth function of ρ

.=
√

x2 + y2,
whose width is approximately r0, then an estimate of the
longitudinal field amplitude is |Ez,approx| ∼ (r0k0)−1|Ex |.

In pattern forming systems, beam waists tend to be much
larger that field wavelength, so that Ez should be a small
quantity. Suppose thatEx has rotational symmetry, for instance,
it has a Gaussian profile, Ex = E0e

−ρ2/r2
0 . Since ∂x = (x/ρ)∂ρ ,

then, Ez,approx does not have rotational symmetry. Also, for
plane incoming fields, when a pattern is formed, there are
places in the transverse plane where electric-field intensity is
greater than their vicinity, thus, through Eq. (2), longitudinal
fields should be formed.

III. RESULTS FOR FINITE WIDTH BEAMS
IN LINEAR MEDIA

For a single frequency Gaussian beam in linear medium,
solutions to Maxwell equations in terms of a series expansion
have already been derived [8–12]. Its first term is Ex(�r,t) =
Eparaxe

i(k0z−ωt) + c.c., where Eparax is the Gaussian beam under
paraxial approximation. It is a solution of

(2ik0∂z + ∇2
⊥)Ex = 0, (3)

with Gaussian shape at z = 0. Its explicit form can be found
in [13]. The first longitudinal term can be calculated with (2).
Higher-order terms are solutions of equations similar to (3)
and are zero at z = 0.
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FIG. 1. Intensity of the x and z components of the electric
field as a function of the transverse coordinates x/r0 and y/r0,
for a monochromatic Gaussian beam in a linear medium with
r0k0 = 2400π . Results correspond to a distance of �z = 2000π/k0

from the least waist plane and were derived using the angular
spectrum representation. Left: |Ex |2. Right: |Ez|2. White is used for
lower intensities and black is used for higher intensities. The largest
intensity of the longitudinal field is about 1.3 × 10−8 times the peak
value of transverse field.

For monochromatic fields in linear media, assuming that the
field propagates in only one direction, and knowing Ex on the
plane z = 0, we may calculate Ex exactly in any other place,
for instance, by means of the angular spectrum representation.
Also, since the divergence of the electric field is zero, we may
calculate Ez exactly. The exact solution and series solution
have been compared in [8]. It can be seen that the series
solution works well for distances up to zt = √

2k2
0r

3
0 . Since

we will be studying broad waist situations, series solutions
should be adequate.

In Fig. 1, we have numerically calculated transverse and
longitudinal components of a monochromatic Gaussian field
in a linear medium, by means of the angular spectrum
representation. It can be seen that the z component of the
field does not have rotational symmetry. We have performed
similar calculations for super Gaussian fields and found similar
results.

If we had considered circular or elliptical polarization,
Ez,approx would have been given by Ez,approx = i

k0
(∂xEx + ∂yEy),

instead of (2). For instance, for a circularly polarized Gaussian
beam, Ez would consist in two lobes like the ones in Fig. 1
rotating at frequency ω0. Thus no orientational effect would
be expected. In the rest of the article we will limit ourselves to
the linearly polarized case.

IV. WAVE PROPAGATION IN KERR MEDIA

Starting from Maxwell’s equations, it is straightforward to
obtain a (nonlinear) wave equation, which can be written as

∇2
⊥ �E + ∂2

z
�E − ∇(∇ · �E) = μ0∂

2
t ( �PL + �PNL), (4)

where ∇2
⊥ is the transverse Laplacian, ∇2

⊥ = ∂x∂x + ∂y∂y ;
�PL is the linear polarization and �PNL is the nonlinear

polarization. In nonlinear media with no free charges, although
the divergence of the displacement is zero, the divergence of
the electric field is not necessarily zero: Gauss equation can
be written as

ε0∇ · �E = −∇ · ( �PL + �PNL). (5)

Polarization may be dispersive, and can be properly related to
the electric field in the frequency domain, or like convolutions
in time domain; see [14, sec. 2d]. Assuming that the medium
is isotropic and centrosymmetric, and has a Kerr-like nonlin-
earity, the ith component of linear polarization may be written
as

P̃L,i(ω) = ε0[ε̃r (ω) − 1]Ẽi(ω). (6)

Nonlinear polarization may be written as

P̃NL,i(ω0) = ε0

4π2

∫ ∫ ∫
χ̃

(3)
ijkl(ω1,ω2,ω3)Ẽj (ω1)Ẽk(ω2)Ẽl(ω3)

× δ(ω0 − ω1 − ω2 − ω3)dω1dω2dω3 + · · · , (7)

where summation over repeated indices is assumed. Diverse
symmetry relationships greatly reduce the number of inde-
pendent elements of χ

(3)
ijkl to 2 [14]. Under the slowly varying

envelope approximation (SVEA), nonlinear polarization can
be written as �PNL = �PNLei(k0z−ω0t) + c.c., with [14]

PNL,x = 3ε0χ̃
(3)

[
|Ex |2Ex + AE|Ez|2Ex + BE

2
E2

z Ex

]
, (8)

where Q is the complex conjugate of Q; χ̃ (3) is the Fourier
transform of the nonlinear susceptibility χ (3)

xxxx , evaluated at
(ω0,ω0,−ω0); AE and BE are related to the coupling among
fields in perpendicular directions, and fulfill the following
relation: AE + BE/2 = 1.

Field evolution may be found solving (4) and (5) with a
polarization given by (6) and (7). We propose a solution to
those equations like (1), with |∂zEx/z| � k0Ex/z and |∂tEx/z| �
ω0Ex/z. Field amplitudes Ex and Ez are expressed as series
solutions based on the multiple scales analysis [15], where
terms and coordinates are organized in powers of a small
parameter α. Explicitly, electric field is written as �E =
�E (0) + α �E (1) + α2 �E (2) + · · ·, and depends on slow coordinates,
Xi = αix, Yi = αiy, Zi = αiz, and Ti = αit , where i � 1.

In order to find an equation which, after neglecting
nonlinear terms and dispersion, reduces to (3), we assume
that the transverse Laplacian, the z and time derivatives over
Ex , and the most relevant nonlinear terms in (4) are of order
α2. This condition is achieved if fields do not depend on Z1

nor T1.
Evolution equations are found solving (4) and (5) at each

order of α. Up to order α2, no new terms are included, so the
approximation of (4), valid to that order, is (the derivation is
commented on in the Appendixes)

∂Ex

∂z
+ k′ ∂Ex

∂t
	 i

2k0
∇2

⊥Ex + iω2
0

2k0c2
3χ̃ (3)|Ex |2Ex, (9)

with k′ .= ∂ω[ω
c

√
ε̃r (ω)]|ω=ω0 . This result is the well-known

nonlinear Schrödinger equation (NLSE), usually used for
describing field propagation in nonlinear media [14].

Longitudinal field couples to the transverse field through
nonlinear polarization [see Eq. (8)], and that contribution
should be of order α4. At order α3, ∇ · �E 
= 0. Thus the
approximation (2) is no longer valid, and evolution equations
for Ex and Ez have to be obtained separately. However, an
evolution equation can be found, where Ez is replaced by
functions of Ex ; see the Appendixes.
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The equivalent to (9), valid to order α4, is

2ik0(∂z + k
′
∂t )Ex = −[∇2

⊥ + ∂2
z − (k

′2 + k0k
′′
)∂2

t

]
Ex

−ω2
0μ0PNL,x − 3i

[
2
(
∂ω1k

2
(3)|0

) ∣∣E2
x

∣∣∂tEx

+ (
∂ω3k

2
(3)|0

)
E2

x ∂tEx

](4)

+ [∂x∇ · ( �Eei(k0z−ω0t))](4), (10)

where [Q](n) is an approximation of Q correct up to order
αn; k′′ .= ∂2

ω[ω
c

√
ε̃r (ω)]|ω=ω0 ; the symbol “|0” means that the

derivative of k2
(3) is evaluated at (ω0,ω0,−ω0), and k(3) is the

same as in [15]: k2
(3)(ω1,ω2,ω3)

.= k2
0 (ω1+ω2+ω3)χ̃ (3)

xxxx (ω1,ω2,ω3)
ε̃r (ω1+ω2+ω3) .

The second derivative with respect to time in Eq. (10)
is related to group-velocity dispersion effects; the second
derivative with respect to z is a nonparaxial correction that
can be rewritten in an easier way. The term PNL,x accounts
for the usually considered nonlinear term but also includes
the symmetry breaking coupling to the longitudinal field
[see Eq. (8)]. The following term includes small functions
related to frequency dispersion effects acting on nonlinear
terms (see Appendixes). The last term in Eq. (10) comes
from the nonvanishing electric-field divergence. It includes
another nonsymmetric contribution and can be calculated
straightforward from (5); see Appendixes.

In order to obtain an equation useful for numerical
computation, we may perform a change of variables towards
coordinates traveling with the wave: ξ = z, τ = t + k′z. We
also need to get rid of z (or ξ ) first and second derivatives on
the right side of Eq. (10). This can be achieved using Eq. (9),
which is valid to order α2, and the z derivative of that equation,
repeatedly (see Appendixes). Finally, we get

∂ξEx = i

2k0
∇2

⊥Ex + iω2
0

2k0c2
3χ̃ (3)|Ex |2Ex

− i
k′′

2
∂2
τ Ex + i(NN + NL + NT ). (11)

Expressions for new terms (NN , NL, and NT ) can be found in
the Appendixes.

Terms that should break rotational symmetry, related to the
coupling with longitudinal field and ∇ · �E (which is equal to
−∇ · �PNL/[ε0ε̃r (ω0)]), are included in N̂N . Simple inspection
shows that asymmetric terms contribute to (i.e., have the same
sign as) the nonlinear polarization, and are aligned to the field
polarization. However, their effect is rather small.

Terms like ∂τEx and −∇2
⊥Ex are included in N̂L: they have

rotational symmetry if Ex has that symmetry, but become
asymmetric for asymmetric fields. Their asymmetric part
should contribute to the expected orientation effect.

Time derivatives of nonlinear terms are included in N̂T .
They are related to dispersive effects and are similar to the
ones derived for ultrashort plane-wave pulses [16]. Here we are
interested in short linewidth pulses and thus dispersive effects
should be small. Fifth- or higher-order nonlinear effects are
neglected.

An expression similar to Eq. (10) was derived in [7], where
beam filamentation was studied in a semi-infinite medium.
There, single frequency fields were studied; thus no time
derivatives were considered.

FIG. 2. Ring cavity scheme.

V. FIELD PROPAGATION IN THE CAVITY

We study a system like the one described in Fig. 2. It consists
of a ring cavity filled with a Kerr medium. The input field
has amplitude Ein, the entrance mirror is partly transparent,
with reflection coefficient ri (which is assumed to be close
to 1) and transmission coefficient ti . All other mirrors are
perfect. Nonlinear material and surrounding media have the
same refractive index. Round-trip length is L, the round-trip
detuning is θ , and round-trip time is τr = k′LM + k′

S(L− LM ),
where LM � L is the nonlinear material length and k′

S is the
inverse of group velocity in the surrounding medium.

We take into account wave propagation both in the nonlinear
and the linear medium, of length L − LM . For the sake of
simplicity, we assume that linear medium refractive index
and group velocity are the same as in the nonlinear medium
(when the field tends to zero), and we neglect group-velocity
dispersion in linear media. Applying the classical method for
obtaining equations in a ring cavity [15], and normalizing the
quantities, we get

∂A

∂t ′
= Ain − (1 + i�)A + i∇′2

⊥A + iγe|A2|A − iG∂2
t ′A + Ô,

(12)
where γe is the electric nonlinearity sign (it is 1 for focusing
and −1 for defocusing materials), and � = − θri

(1−ri )
.

Fields have been normalized:

A = Ex

C
, Ain = ti

(1 − ri)

Ein

C
, (13)

where C = Ec

√
2ε̃r (ω0)(1−ri )

3Lk0ri
, and Ec is a characteristic field

amplitude such that χ̃ (3)E2
c = γe. Transverse coordinates and

time were normalized, x ′ = x/l, y ′ = y/l, and t ′ = t (1−ri )
τr

,

where l =
√

Lri

2k0(1−ri )
.

If Ô were zero, we would recover a broadly used model for
pattern formation analysis in passive and active systems [1],
and which may also be used for describing other systems
like Fabry-Pérot cavities [2]. Within that model, there is
no bistability for �γe <

√
3. Perturbations of the steady

homogeneous solution, with transverse wave numbers �q , decay
exponentially unless (� + q2) >

√
3 and 3γe|A2| − 2(� +

q2) �
√

(� + q2)2 − 3. For instance, for γe = 1 and � = 1,
the lowest unstable intensity is |A2| = 1, and the critical
transverse wave numbers fulfill |q|2 = 1. This means that
a set of wave numbers forming a circle in the transverse
wave-number space becomes simultaneously unstable. So,
there should be no preferred direction for the pattern forming
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instability. The circle of unstable wave numbers finally turns
into a hexagon with random orientation.

New terms can be written as Ô = ÔN + ÔL + ÔT , which
are the normalized versions of NL, NN , and NT . An expression
for new terms is

ÔT = −[2KT 1|A2|∂tA + KT 2A
2∂tA],

ÔN = iKNγe

[(
1 + BE

2

)
A2∂2

x ′Ā +
(

1 + BE

2

)
(14)

× |A|2∂2
x ′A + (4 + BE)A|∂x ′A|2 + (∂x ′A)2Ā

]
,

and

ÔL = −iKN

4
[((L/LM )|A|2 + γe∇′2

⊥ )|A|2A
+ (2γe|A|2 + ∇′2

⊥ + 2iri∂t ′ )∇′2
⊥A − A2∇2

⊥Ā]

+ γeKL∂t ′ (|A2|A),

with constants

KL = k′
0(1 − ri)

τrk0
, KN = 2(1 − ri)

k0riL
,

(15)
KT i = ε̃r (ω0)(1 − ri)

τrk
2
0

∂ωi
k2

(3)|0/|χ̃ (3)|,

and

G = riLMk′′(1 − ri)

2τ 2
r

. (16)

We have neglected losses both in linear and nonlinear medium.
It can be shown that small losses may be taken into account and
the same equation can be found with a different normalization;
see [14].

In order to estimate the values new constants may take,
we consider a wave number in the optical region (k0 =
2π/500 nm), a semitransparent mirror with ri = 0.95, and
a round-trip length of roughly L = 20 cm. If the material is
away from resonances, from Drude model, we may estimate
k′

0 ∼ k0/ω0 and k′′
0 ∼ k0/ω

2
0. Having in mind that L ∼ cτr , it

is reasonable to estimate KN and KL to be roughly 10−6–10−7.
A similar value for G would be correct in cavities filled with a
nonlinear medium, and smaller values would be right for partly
filled cavities. In order to estimate values for ∂ωi

k2
(3), we may

consider a model for nonlinear effects. For instance, the classi-
cal anharmonic-oscillator model [4] is adequate for electronic
nonlinearities. Within the model, it is assumed that electrons
are placed in symmetric potential wells, whose shape is slightly
different from a parabola. Following the derivations in [4], and
using previously mentioned values for other constants, we may
estimate that KT 1 and KT 2 are of the same order as KL.

We may also estimate l 	 0.4 mm and C2 	 4ε̃r (ω0)
3 ×

10−8E2
c , so the refraction index may change in about 10−8

due to nonlinear effects.

VI. NUMERICAL INTEGRATION RESULTS

A. General results

Equation (12) was numerically integrated [17], with � = 1
and γe = 1. We chose AE = BE = 2/3, which is the predicted
value for electronic nonlinearities [4, p. 211]. We took

G= KL = LN = KT 1 = KT 2 = 10−7 unless otherwise stated.
A Gaussian incoming field was also proposed:

Ain = Ain0e
−ρ ′2/ρ ′2

0 . (17)

For plane incoming waves (ρ ′
0 = ∞), if we choose � = 1

and γe = 1, neglecting terms of order α3 or higher, it is widely
known that there is a critical value |Ain0|2 .= Iin = 1 [in that
situation, the steady homogeneous solution corresponds to the
already mentioned case |A|2 = 1; see Eq. (12)] [1,3]. Above
that value, a hexagonal pattern shows up, whose transverse
wavelength is 2π . We have performed numerical integrations
for plane incoming fields taking into account terms of order
α4 [Eq. (12)]. We have not found any noticeable difference for
the final stage.

For large values of ρ ′
0 (ρ ′

0 > 80, measured in terms of l),
numerical integration results show a hexagonal pattern with
no preferential orientation, and wavelength close to 2π . For
lower values of ρ ′

0 (roughly ρ ′
0 � 60), hexagonal patterns were

also found, most of them were oriented like the lobes of Ez.
In Fig. 3, numerical integration results are shown for ρ ′

0 = 40.
Notice that under the above assumptions, this is a broad waist
(roughly 1.5 cm). It can be seen that, if we rotate the coordinate
system by an angle ϕ, then the solution (i.e., the pattern that
shows up) also rotates. In order to measure the rotation angle
of the pattern, we define ϕP as the complementary of the
angle formed by the brightest point in the far field (the far
field is related to the Fourier transform of the pattern) and
the x axis. We found that ϕP closely matches ϕ. The same
results were found with super Gaussian fields of order 2,
Ain = Ain0e

−(ρ ′2/ρ ′2
0 )2

, with radius ρ ′ = 50.
Other integration results are shown in Fig. 4: for small

waists, ρ ′
0 = 15; the pattern shape depends on KN : for KN =

10−7 a hexagonal pattern, similar to those shown in Figs. 4(b1)
and 4(b2), is formed, but for KN = 10−6 a different hexagonal
pattern is formed [see Figs. 4(a1) and 4(a2)]. For some values
of ρ ′

0, for instance, ρ ′
0 = 28, the pattern does not always have

the right orientation: notice that in Fig. 4(b2), the pattern is
rotated 90◦ from expected orientation. Increasing the value of
KN (taking KN � 10−4), we recover the correct orientation.
Finally, for ρ ′

0 = 60, patterns orientate as expected, and it can
be seen that the pattern is larger in the direction perpendicular
to field polarization; see Figs. 4(c1) and 4(c2).

We also found that critical intensity for which pattern
shows up increases as ρ ′

0 decreases. For instance, for ρ ′
0 = 15,

an intensity Iin = 1.12 is needed. Increasing incoming inten-
sity further may cause defects; some of them resemble the
pentagons and heptagons in [18].

B. Noise

It may be argued that since longitudinal fields are small,
their effects may wash out the orientation effects. Noise in
lasers is usually measured in terms of the relative intensity
noise (RIN): 〈 δP

P̄
〉 	

√
2
∫ ω2

ω1
S(ω)dω, where P is the average

power (proportional to the integral of |Ain|2 over the transverse
surface), δP is the power fluctuation, ω1,2 > 0 are the
frequencies we are considering, and S(ω) is the power spectral
density (roughly, square of the module of the Fourier transform
of the relative power). Ten times the logarithm of S(ω) may

023843-4



PATTERN ORIENTATION DUE TO LONGITUDINAL . . . PHYSICAL REVIEW A 88, 023843 (2013)

FIG. 3. Patterns formed for ρ0 = 40, Iin = 1.035, and t ′ = 680. In each window 1/4 of the integration area is shown (notice that x and y

range from −32l to 32l). In (a) terms of order α4 are neglected. In all other cases, we take G = KN = KL = KT 1 = KT 2 = 10−7. The system
is rotated with respect to the integration region by an angle ϕ, and the angle formed by the pattern, ϕP , is measured. In (b), ϕ = 0◦ and ϕP = 3◦;
in (c), ϕ = 15◦ and ϕP = 15◦22′; in (d), ϕ = 30◦ and ϕP = 27◦37′; in (e), ϕ = 45◦ and ϕP = 47◦44′; in (f), ϕ = 90◦ and ϕP = 27◦ (which
is equivalent, since we are studying regular hexagons, to ϕP = 87◦). A short line showing polarization direction was added to the upper right
corner of each window.

take values as low as −160 dB/Hz in low linewidth lasers
(100 KHz or less) [19]. If we take ω2 − ω1 of the order of the
linewidth, values for δP

P
as low as 10−5–10−6 can be obtanied.

In order to account for input laser noise, we have run
numerical simulations of Eq. (12), but now with Ain =
Ain0e

−ρ ′2/ρ ′2
0 [1 + f (x,y,t)], where f (x,y,t) is a complex—in

order to simulate phase inhomogeneities—random distribution
with zero mean, bounded by a small number e: [|Re(f )| < e/2
and |Im(f )| < e/2]. We used the parameters of Fig. 3(d),
and intended to reproduce its results. We calculated the rate
of numerical integrations in which the pattern orientates as
expected. Based on the results of the previous subsection, we
say that the pattern “orientates as expected” if |ϕ − ϕP | < 6◦.
Notice that, since we are taking two 6◦ ranges, and the orienta-
tion angle is reduced to the 0◦–60◦ range, if pattern orientation
were random, we would find that 1/5 of the simulations
orientate as expected; hence, if there is a measurable effect,
greater rates should be measured.

First, we ran some simulations with homogeneous noise,
i.e., where f (x ′,y ′) = f (0,0), We found that five out
of five simulations oriented as expected for e = 10−6,

10−5,10−4,10−3,10−2, and e = 10−1. In these cases, 〈 δP

P̄
〉 = e.

We have also considered the most anisotropic noise
we could simulate: f (x,y,t) being complex, zero mean,
spatially uncorrelated random function. This was numerically

achieved defining f as a set of 512 × 512 complex random
numbers, which were chosen in every integration step. Every
random number was chosen independently of the rest of
them.

For the anisotropic case, we ran eight simulations for each of
the following values of e: e = 10−5 (found eight cases oriented
as expected), e = 10−3 (found six cases oriented as expected),
e = 10−2.5 (found six cases oriented as expected), e = 10−2

(found four cases oriented as expected), and e = 10−1.5 (found
two cases oriented as expected). In this case, since the noise at
two different points may have opposite sign, noise was lower.
The measured noise was 〈 δP

P̄
〉 � 0.006e.

VII. DISCUSSION

From Eq. (11), or (12) and (14), it can be seen that new
terms contribute to the nonlinear polarization, so that critical
intensity should decrease. This effect should be small and
was not noticed in the plane-wave case. For other cases, in
order to obtain a pattern, we need the value of the peak
intensity, |Ain0|2, to be greater than the value for plane waves,
which can be easily understood if we notice that Ain decays
with ρ.

We considered the small effect of longitudinal fields in
a widely studied model. We have found that the inclusion
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FIG. 4. Numerical integration results for different values of ρ ′
0. In (a1) and (a2), ρ ′

0 = 15 and KN = 10−6. In all other cases, KN = 10−7,
and 1/4 of the total area is shown. In (b1) and (b2) ρ ′

0 = 28. In (c1) and (c2) ρ ′
0 = 60. Polarization angles are as follows: for (a1), (b1), and (c1)

ϕ = 0◦; in (a2) ϕ = 15◦; in (b2) ϕ = 45◦; in (c2) ϕ = 30◦. Pattern angles closely match polarization angles, except in (b2), where the pattern
orientates perpendicular to polarization direction.

of terms usualy neglected in the Lugiato-Lefever equation
may have measurable consequences for transversely bounded
beams. If there is no noise or if the noise is isotropic,
pattern orientation is determined by field polarization. For
anisotropic noise, pattern orientation is not determined but
rather influenced by field polarization, even for relatively high
noise. It would be interesting to study more realistic noise
functions. Also, it would be interesting to study other input
beams such as higher-order super-Gaussian beams, or top-hat
beams, which provide a flat intensity region but have a very
steep change in beam profile, and thus greater longitudinal
fields.

There are many interesting phenomena related to beam
propagation in Kerr media with or without cavities, like beam
focusing [20], soliton formation [21], and light bullets [22].
Different possible applications have been proposed for Kerr-
like materials, such as optical signal processing [23], all optical
logical operators [24,25], cavities [26], and microcavities [27]
used as switches and optical memories, and layers used as pulse
shapers [28]. Modifications of NLSE accounting for different
effects, like ultrashort temporal pulses or inhomogeneous
media, have already been derived. However, longitudinal fields
have been usually neglected in the analysis, even where widths
are much smaller than the ones presented here, and thus greater
longitudinal field effects should be expected. The results
presented here should stimulate a closer look at orientation
effects on those systems.

VIII. CONCLUSIONS

We have derived an equation for electromagnetic wave
propagation in Kerr media. Transversely bounded fields and
longitudinal fields have been taken into account. A mean-field
equation describing field evolution in a cavity filled with
such material was also derived. This equation was used to
numerically integrate pattern forming situations in the cavity.
An estimate of typical values for which these effects should
be noticeable was presented.

For plane incident fields, taking into account longitudinal
fields and other small terms did not generate any noticeable
difference. For broad waist Gaussian beams, we found that
critical intensity, pattern shape, and periodicity coincide
with the already predicted values for incident plane waves.
For smaller waists, the same patterns are formed, but their
orientation can be controlled by the direction of electric-field
polarization. Thus longitudinal fields, although small, may
have measurable effects in nonlinear media. For very small
beams, or for intensity greater that the critical values, we
may find patterns with defects. The inclusion of noise in our
analysis makes the orientation effect weaker, although some
orientation effect prevails for typical values of noise intensity
in, for example, low linewidth lasers.

In summary, the longitudinal component of the field can
break rotational symmetry of the system, and broken symmetry
is manifested in the orientation of the resulting patterns.

023843-6



PATTERN ORIENTATION DUE TO LONGITUDINAL . . . PHYSICAL REVIEW A 88, 023843 (2013)

ACKNOWLEDGMENTS

D.M. wants to thank Miguel Hoyuelos for useful
suggestions. This work was partially supported by Consejo
Nacional de Investigaciones Cientı́ficas y Técnicas (CON-
ICET, Argentina, PIP 0041 2010-2012). Part of this work was
completed at INIFTA (UNLP-CONICET), through the “Beca
postdoctoral Premio Fundacin Bunge y Born” fellowship
granted to D.M.

APPENDIX A: OBTAINING AN EQUATION
VALID TO ORDER α4

The procedure for finding evolution equations is as usual.
Starting from Eq. (4), we decompose each term into a fast
oscillating wave and a slowly varying envelope. Then each
slowly varying term and its derivative is expressed as a power
series in α.

Under SVEA, we may write

−μ0∂
2
t

�PL 	
(

k2
0
�E + 2ik0k

′ ∂ �E
∂t

+ [−k
′2 − k0k

′′
]
∂2 �E
∂t2

)

× ei(k0z−ω0t) + c.c. (A1)

Time derivatives of nonlinear polarization can be written in a
similar way:

μ0∂
2
t

�PNL = �Iei(k0z−ω0t) + c.c., (A2)

Ix = −ω2
0μ0PNL,x + i

[
2
(
∂ω1k

2
(3)|0

) |E2
x |∂tEx

+ (
∂ω3k

2
(3)|0

)
E2

x ∂tEx

] + · · · . (A3)

Similar results are found for Iz after exchanging x ↔ z. They
can be obtained from (8) and (A2).

Following the multiple scales analysis, the derivative of a
quantity Q over a variable q can be written as

∂Q

∂q
=

(
∂

∂q0
+ α

∂

∂q1
+ α2 ∂

∂q2
+ · · ·

)
(Q(0) + αQ(1) + · · ·),

(A4)
Derivation of Eqs. (9) and (10) can be done writing each
term of Eqs. (4) and (5) as in the right side of Eq. (A4),
finding expressions for each power of α. These expressions
are solved and grouped again, like in the left-hand side of
(A4). Equation (4) has already been worked this way up to
order α2, for instance, in [15]. Here we extend the results to
order α4 in a straightforward way, and then eliminate the ∂Z1

and ∂T 1 derivatives.
At odds with other works, here we also consider Gauss

equation (5). At order α, we get ∂X1E (0)
x + ik0E (1)

z = 0. At

order α2, it reads ∂X2E (0)
x + ∂X1E (1)

x + ik0E (2)
z = 0. This means

that we can eliminate ∇ · �E components in (9). These
equations also allow us to get rid of Ez, since we may replace
Ez by i

k0
∂xEx + [O](3), where [O](3) is of order α3 or higher,

and, if we apply operations of order α2, like ∂x∂x or ∂t , it does
not bring any new term up to order α4. At order α4, we may
write

[∂x∇ · ( �Eei(k0z−ω0t))](4)

= − 1

ε̃r (ω0)ε0

(
∂2
X1

[PNL,x](2) + ik0∂X1 [PNL,z]
(3)). (A5)

All these derivatives can be calculated using the definition of
the nonlinear polarization (7).

APPENDIX B: COORDINATE TRANSFORMATION

Derivation of Eq. (11) is rather straightforward. The
following step is to write it in a useful form: we need to
eliminate derivatives over t and z in favor of derivatives over
ξ and τ . Then we need to get rid of small terms containing ∂ξ .
We should recall that Eq. (9) can be rewritten as

[∂ξEx](2) = i

2k0
[∇2

⊥Ex](2) + i

2k0
ω2

0μ0[PNL,x](2) + [O](3),

(B1)

where [O](3) are slowly varying terms of order α3 or higher.
Now if we are interested in calculating terms like [∂x∂x∂ξEx](4),
since all considered terms are slowly dependent on x, |∂xF | �
∂X1F | � |αF |; thus ∂x∂x∂ξO is of order α(5) or higher and can
be safely neglected. Similar results hold for [∂t∂ξEx](4).

Using this property repeatedly, we get (11), where

NN = 3χ̃ (3)

2ε̃r (ω0)k0
{k2[|Ex |2Ex] + [(AE + BE)E2

x ∂xx Ēx

+ (AE + BE)|Ex |2∂xxEx + (4AE + 3BE)∂xEx∂x ĒxEx

+ (∂xEx)2Ēx]}, (B2)

NT = 3i

2k0
[2∂ω1k

(3)2∂tEx |E2
x | + ∂ω3k

(3)2E2
x ∂tEx], (B3)

and

NL = −ik′

2k2
0

∂τ

(
∇2

⊥Ex + 3k2
0 χ̃

(3)
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|Ex |2Ex

)
− 1

2k0
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⊥∇2
⊥Ex/4k2

+3χ̃ (3)
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0
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⊥(|Ex |2Ex) + 3χ̃ (3)
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⊥Ex− E2
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0 |Ex |4[2χ̃ (3)/ε̃r (ω0) − χ̃ (3)/ε̃r (ω0)]Ex

}
.
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