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We have provided a complete description of light propagation at an oblique angle of incidence in disordered
one-dimensional (1D) ultrathin magnetophotonic crystals with an arbitrary number of sheets. We have shown that
in the long-wavelength limit, when the parameter dεL,R

λ
is much less than unity (εL,R is the relative permittivity for

left- and right-polarized light, d is the thickness of the sheet, and λ is the wavelength), the photon transport problem
in a 1D magnetophotonic crystal is identical to Anderson’s two-channel model. In our discussion we include mode
conversion and derive exact and closed analytical expressions for all scattering matrix elements. We have calcu-
lated the Faraday and Kerr rotational angles for a periodic system. Our formulas predict correctly the main trends
of magneto-optic effects in 1D systems. We also derived analytical expressions for photon localization lengths, in
a weak disordered regime, for s and p modes and for circular polarized light. We demonstrate that the presence of
coupling modes enhances ξs and reduces ξp with respect to the values ξs(0) and ξp(0) obtained when the coupling
modes are absent. Presented analytical expressions for localization lengths are in good agreement with numerical
calculations, exact up to order δ2 (δ being the disorder strength), and valid up to angles of incidence of 1.56 rad.
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I. INTRODUCTION

One-dimensional magnetophotonic crystals (1D MPCs) are
very attractive systems not only for practical applications
[1–4], but also for theoretical and numerical studies [5–16].
The advantage of 1D systems is that they can be solved an-
alytically within some approximations. The behavior of elec-
tromagnetic waves (EMWs) in magnetic multilayers (mostly
with periodic profile) has been studied [5–16]. In Refs. [5,6],
using a transfer matrix method, an enhancement of the
magneto-optic effects at the band edges of 1D photonic crystals
was found, while in Ref. [7] the authors demonstrated an
alteration of the band structure in two-dimensional MPCs. The
authors of Ref. [8] studied, using a general group-theoretical
method, a magnetic layer sandwiched between a pair of
identical periodic nonmagnetic stacks (Bragg reflectors), and
periodic layered structures composed of alternate magnetic and
dielectric layers. It has been shown that the band structure of
photonic crystals composed of materials with natural magneto-
optic activity can be modified by external static magnetic
or electric fields [9,10]. Fewer papers have been devoted to
propagation of EMWs in disordered MPCs [17–20]. Recently,
the effect of disorder on the transmittance of MPCs has been
discussed in Ref. [17] in a short-wavelength approximation,
where the localization is strong. In this approximation the mul-
tipass reflections are neglected so that the total transmission
coefficient is approximated by the product of the single-layer
transmission coefficients.

At present, most numerical simulations are available as
one of the effective tools to analyze the behavior of an
electromagnetic wave in magnetic multilayer systems, without
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any restriction on the number of individual layers or on the
angle of incidence of the optical wave. The general approach
which serves as a basis for numerical and qualitative analysis
of propagation of EMWs in 1D MPCs is the 4 × 4 transfer
matrix [3]. In the framework of transfer matrices, in each
MPC layer, there are four waves propagating independently of
each other in two opposite directions, and any attempt to get
closed analytical expressions for the reflection or transmission
amplitudes in 1D MPCs with a finite number of layers, based
on the 4 × 4 matrix approach, is practically impossible.

One reason is that the products of the individual transfer
matrices do not commute, and one needs to calculate the
product of all transfer matrices which exponentially increases
with their number. This is the main difficulty of the transfer
matrix method, which has been present in many studies of
the localization length in 1D disordered systems (see, e.g.,
Refs. [21,22]).

Another reason is that, because of the anisotropy of the
medium, mode coupling appears at the interface, and even for
the special case of a periodic layered medium, closed forms for
the reflection and transmission amplitudes are too complicated
to derive [3].

To simplify the calculations and avoid any mode coupling
in 1D MPCs, the transmission and reflection magneto-optic
effects in a periodic magnetic multilayer were described
using the formalism originally developed for an isotropic
multilayer [11]. The simplifications are made possible thanks
to the restriction to the normal light incidence and assuming
the absence of mode conversion. In this particular case the
product of transfer matrices M can be replaced just by a
block diagonal matrix with the off-diagonal blocks being zero
matrices [11]. Then, making use of the properties of Chebyshev
polynomials, in Ref. [11] the analytical representations for the
transfer matrix M of a periodic multilayer with arbitrary modes
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were provided. However, ignoring the mode conversion is an
essential simplification, and this is the main reason why the
approximate expressions well reproduce the results of the exact
numerical calculations in a very narrow range of magnetic film
thicknesses and depend on the wavelength and polarization
state of the incident radiation (see Ref. [11] for more details).

Another type of simplification of transfer matrix M in
magnetic multilayer systems, which still describes the process
correctly, can be reached by using the ultrathin film approxima-
tion [13–15], assuming that a layer thickness is much smaller
than the radiation wavelength (in the nth layer medium).
In this approach, the off-diagonal elements of the individual
transfer matrix M (n) are different from zeros, in contrast to
the model discussed in Ref. [11]. Based on Bloch’s theorem
and the explicit expression of a single transfer matrix M (n),
the energy spectra of infinite periodic structures were studied
in 1D and 2D systems in Refs. [13–15]; however, probably
because of technical difficulties inherent to the transfer matrix
method, the disordered multilayer systems were left out of
their discussions.

In the present paper we develop a different approach to
study the behavior of EMWs in disordered 1D PMCs, based on
the ultrathin film approximation combined with the character-
istic determinant (CD) method, originally introduced to study
the quantum transport of electrons in quasi-one-dimensional
(Q1D) disordered systems [23,24]. The CD method allows
one a sufficiently complete description of electron behavior
mapped into a 1D problem with modified matrix elements
and without actually determining the eigenfunctions of the
electron.

In our discussion we will remove the limitations on the
normal incident light and on the absence of mode conversion,
which was an essential assumption in Ref. [11]. We will
assume that s and p modes are coupled to each other
via a magnetically induced anisotropy [see below, Eq. (1)]
and, we will relate the EMW propagation problem to the
Anderson localization of electrons in Q1D systems with two
channels. The mapping of the light propagation in a 1D PMC
disordered system to quantum transport of electrons in the
Q1D strip model is done in three steps. First, one introduces
the conventional description of the electron’s scattering matrix
elements in terms of characteristic determinants. In the second
step, the characteristic determinants are written in terms of
individual light scattering parameters, using the equivalence
of electrons and electromagnetic waves. Finally, using the
scattering matrix elements (20) and (21), we properly describe
the asymptotic behavior of an EMW in 1D MPCs. The last
step was based on the fact that the parameter |γ | ≡ 4π2d2εLεR

λ2

is much less than unity [εL,R is the relative permittivity for left-
and right-polarized light, d is the thickness of sheet, and λ is
the wavelength; see below, Eq. (17)] in the whole range of the
wavelength (approximately from 600 to 1300 nm) where the
magneto-optic parameters have been studied experimentally
(see, e.g., Refs. [11,12,25] and references therein).

Thus, the existence of such a small parameter γ indicates
that the propagation of light in 1D MPCs and charge transport
in a Q1D disordered two-channel system become equivalent.
The last step will have to be justified, but the advantage of this
step should be obvious: the whole theory of EMW scattering
reduces to the problem of calculating the determinants. We

will come back to this point below in more detail, but note that
the results of our simulation support the analytical expressions
based on this assumption (see Sec. V).

Thereby, throughout the paper we will assume that the
inequality |γn| � 1 is satisfied for all the real parameters that
characterize each of the MPC’s sheets (see, e.g., Refs. [15,25]).
Taking into account this condition, we will calculate the
localization length of an EMW in 1D MPC systems in the
weakly disordered systems for s-, p-, and circularly polarized
waves. The approach will allow us to calculate analytically the
scattering matrix elements for EMWs in 1D disordered MPCs
without actually determining the eigenfunctions of the light. It
will be shown that the elements of reflection and transmission
amplitudes may be presented in the form of a ratio of two de-
terminants where both the numerator and the denominator are
polynomials of N th degree (N is the number of MPC sheets).

The work is organized as follows. In Sec. II we formulate the
problem. In Sec. III we consider the technically simple case of
the periodic structure, and appropriate analytical expressions
for scattering matrix elements and for Faraday and Kerr angles
of rotations are derived. Disordered systems are studied in
Sec. IV where we calculate the localization lengths for s and
p modes, as well as for circularly polarized light. Numerical
results are presented in Sec. V. They are in excellent agreement
with our analytical expressions for scattering matrix elements
and localization lengths. Finally, the main conclusions are
summarized in Sec. VI. In the Appendix we show the explicit
expressions for the transmission amplitude, T (2)

ss , for the case
of two different sheets calculated directly: (i) multiplying the
individual transfer matrices, Eq. (1), by hand and (ii) from the
determinant expression [see Eq. (21)].

II. 1D ARRAY OF N INFINITESIMAL
MAGNETOACTIVE SHEETS

Let us consider a 1D array of N MPC layers with spatial
period a, as shown in Fig. 1. Incident light with a wave number
k enters from the left at an angle θ with respect to the x axis.
We choose the plane y0z coinciding with the boundary of
two media, and the plane z0x coinciding with the plane of
the incident wave. Each slab is assumed to have vacuum on
either side and has a thickness d and relative permittivities
εL and εR for left- and right-polarized light, respectively. The

FIG. 1. A one-dimensional array of N infinitesimal magnetoac-
tive sheets with spatial period a. Light enters from the left at an angle θ

with respect to the x axis and with wave number k. Each MS is charac-
terized by the parameters mL = εLd and mR = εRd where the thick-
nesses d → 0 and the relative permittivities εL and εR tend to infinity.
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general procedure to study the propagation and the Anderson
localization of p- and s-polarized electromagnetic waves
incident obliquely on such a 1D array of N magnetoactive
sheets is to solve the wave equation for the complex amplitude
of vector �E (or �H ) for the nth layer with given relative
permittivity tensor εn

i,j . Since the tangential components of the
electric and magnetic fields on the boundary are continuous,
one can evaluate 4 × 4 the dynamical matrix M (n), which
matches electric field amplitudes from the left side of the
boundary to the right side. By multiplication of the 4 × 4
individual transfer matrices M (n), we will arrive at the final
matrix M = ∏N

n=1 M (n), which takes into account the multiple
reflection and represents the given structure with the particular
disorder configuration.

However, as was mentioned in the Introduction, in principle
it is impossible to get the analytical exact expressions for
the scattering matrix elements in a 1D disordered MPC
multilayer with an arbitrary number N of slabs, based on
M = ∏N

n=1 M (n). This must be done either numerically (see,
e.g., Refs. [5,6]) or we need to find a significantly simplified
algorithm which allows one to calculate the matrix M without
affecting the peculiar features of MPCs. For the present
purpose we develop a method based on the ultrathin film
approximation [13–15] combined with the characteristic deter-
minant method [23,24]. In the approximation of infinitesimal
sheets we let the thickness d of the magneto-optic layer tend to
zero, εL → ∞, and εR → ∞, in such a way that the products
εLd = mL = const and εRd = mR = const. In this limiting
case the expression for the 4 × 4 transfer matrix of the nth
single magneto-optic active layer, which relates the electric
and magnetic fields of incident light on the left and right sides,
can be written as [3,15]

M (n) =

⎛
⎜⎜⎝

1 + ixn +ixn zn zn

−ixn 1 − ixn −zn −zn

−zn −zn 1 + iyn +iyn

zn zn −iyn 1 − iyn

⎞
⎟⎟⎠ , (1)

where k and kx are defined in the optically inactive medium.
The rest of the parameters are defined as follows: xn =
mn

2
k2

kx
; yn = mn

2 kx ; zn = 	n
k
4 ; 2mn = (mL)n + (mR)n = const;

	n = (mL)n − (mR)n = const. The latter two parameters with
dimensions of length, mn and 	n, are the averaged optical
property and its magnetically induced anisotropy of a single
nth sheet [11] and characterize the 1D MPC system in
the limit of infinitesimal thickness. The inhomogeneous
dielectric tensor εi,j varies only in the x direction: it is
unity everywhere except the planes that are located at x = na

[n = 0,1, . . . ,(N − 1)]. From Eq. (1) it follows, as one must
expect, that if the parameter of magneto-optic activity 	 is
equal to zero, then the transfer matrix M (n) reduces to a block
diagonal matrix and one can separate s and p polarizations.
If 	 is not equal to zero, then we are dealing with the hybrid
mode and a simple separation of s and p modes becomes

impossible. In the sense of coupling modes a 1D MPC is
similar in spirit to two different models for a disordered quasi-
one-dimensional wire where the coupling constant mixes all
the modes and the Shrödinger equation for a discrete lattice
becomes a set of infinitely coupled algebraic equations [26,27].
The models are (i) a set of N two-dimensional Dirac δ

potentials Vl with signs and strengths determined randomly:
V (x,y) = ∑N

l=1 Vlδ(x − xl)δ(y − yl); and (ii) a Q1D dis-
ordered lattice of size N × M described by the standard
tight-binding Hamiltonian with modes M and on-site disor-
der: H = ∑N

j=1

∑M
l=1 |j,l〉εj,l〈j,l| − t

∑
j,l

∑
δ=±1{|j,l〉〈j +

δ,l| + |j,l〉〈j,l + δ|} (εj,l is the strength of the random
potential at site (j,l) and t is the hopping matrix element).
The Dyson equation for the two models was solved exactly,
without any restriction on the numbers of impurities (N ) and
modes (M) [23,24]. The CD approach leads to the description
of the scattering matrix elements in terms of determinants of
rank N × N that are built up of the transmission and reflection
coefficients of the individual scatterer.

We shall not repeat here the calculations presented in
Refs. [23,24], but state the final expressions for an electron’s
scattering elements in an M multichannel system. For reflec-
tion R(N)

nm and transmission T (N)
nm amplitudes for an electron,

incident from the left, we have

R(N)
nm = (−1)N

1

det
(
D

(N)
i,j

)
1

×

∣∣∣∣∣∣∣∣∣∣∣

0 r (1)
nm · · · r (N)

nm eikxn|xN−x1|

1 · · · · · · · · ·
...

...
(
D

(N)
i,j

)
m

eikxm|xN−x1| ...

∣∣∣∣∣∣∣∣∣∣∣
(2)

and

T (N)
nm = (−1)N

eikxm(xN −x1)

det
(
D

(N)
i,j

)
1

×

∣∣∣∣∣∣∣∣∣∣∣

δnm r (1)
nm · · · r (N)

nm eikxn|xN−x1|

1 · · · · · · · · ·
...

...
(
D

(N)
i,j

)
m

e−ikxm|xN−x1| ...

∣∣∣∣∣∣∣∣∣∣∣
, (3)

respectively. The index n (m) indicates the nth (mth) channel.
kxn is the wave vector in the nth channel and is defined as
(h̄ = 2m0 = 1)

kxn = +
√

E − n2π2

W 2
(4)

for the two-dimensional Dirac δ potentials with hard wall
conditions in the y direction (E is the Fermi energy, n is
the subband index, and W is the width of the system in the y

direction). For the TB model kxn is defined as

E =
{

2t cos kxn + 2t cos πn
M+1 , n = 1,2, . . . ,M, hard wall conditions,

2t cos kxn + 2t cos 2πn
M

, n = 0,1, . . . ,M − 1, periodic boundary conditions.
(5)
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If the electron is incident along the mth channel, then r (l)
nm is

the reflection amplitude from the nth channel for the isolated
potential Vl (or εj,l) in the absence of the remaining (N − 1)
potentials [23,24,27]. The numerators of R(N)

nm and T (N)
nm are

obtained from the quantity det (D(N)
i,j )m by augmenting it on

the left and on the top. The matrix elements of the denominator
(D(N)

i,j )m, which contains information about the number of
modes M [1 � i,j � N ; 1 � m � M], are

(
D

(N)
i,j

)
m

= −δij + (1 − δij )
M∑

p=1

r
(i)
1pr

(j )
pm

r
(i)
1m

eikp |xj −xi |. (6)

Notice that, for both mentioned models, r (l)
nm satisfies the

condition

r (l)
mmr (l)

nn − r (l)
mnr

(l)
nm = 0 (7)

and is completely independent of the boundary conditions (see
Refs. [23,24,27]).

As we will see below, this condition plays a key role in
this study and allows one to map the problem of the EMW
propagation in 1D MPCs onto a Q1D strip model with two
channels, assuming that the same type of condition is also true
for the photon’s reflection amplitudes from a single sheet.

Therefore, before considering the full set of N MPC sheets
presented in Fig. 1, it is worth verifying the relation (7). To this
end, let us first study a single sheet and find the transmission
and reflection amplitudes for s and p modes. Let us define
the electric field transmission and reflection amplitudes for s

modes (with electric field vector �E perpendicular to the plane
of incidence) in the matrix form⎛

⎜⎜⎜⎝
t (n)
ss

0

t (n)
sp

0

⎞
⎟⎟⎟⎠ = M (n)

⎛
⎜⎜⎜⎝

1

r (n)
ss

0

r (n)
sp

⎞
⎟⎟⎟⎠ , (8)

where M (n) is given by (1).
The physical meaning of the scattering matrix elements t (n)

nm

and r (n)
nm (n,m = s,p) is clear: t (n)

nm is the transmission amplitude
of the light through the single sheet from the channel n to
the channel m, r (n)

nm is the reflection amplitude from the nth
channel, if the photon is incident along the mth channel. The
transmission, t (n)

nm, and reflection, r (n)
nm, amplitudes are expressed

in terms of matrix elements of M (n) as follows:

t (n)
ss = 1 − iyn

An

, (9)

t (n)
sp = − zn

An

, (10)

r (n)
ss = ixn − γn

An

, (11)

r (n)
sp = − zn

An

, (12)

where

An = 1 − ixn − iyn + γn

with γn ≡ z2
n − xnyn = −4π2(mL)n(mR)n/λ2. In a similar

way we calculate the parameters t (n)
pp , t (n)

ps , r (n)
pp , and r (n)

ps for

p-polarized light, when the electric vector �E lies in the plane

of incidence:

t (n)
pp = 1 − ixn

An

, (13)

t (n)
ps = zn

An

, (14)

r (n)
pp = iyn − γn

An

, (15)

r (n)
ps = zn

An

. (16)

It is easy to check that the conservation law takes effect for s

(p) waves:

t (n)
ss t (n)

ss

∗ + r (n)
ss r (n)

ss

∗ + t (n)
sp t (n)

sp

∗ + rspr (n)
sp

∗ = 1.

As for the condition (7), we have

r (n)
ss r (n)

pp − r (n)
sp r (n)

ps = γn

An

. (17)

One can see that, in contrast to the case of tight-binding and
delta potential models [see Eq. (7)], the right-hand side of
the above equation is not zero. However, as it was mentioned
above, in the long-wavelength approximation the parameter
|γn| is very small. Hence, in this approximation the right-hand
side of Eq. (17) will be replaced by zero and will justify the
application of the CD formalism to the propagation of EMWs
in 1D MPC disordered systems. It is important to note that the
condition | γn

An
| � 1 does not lead to ignoring the coupling of s

and p modes. As we will see later (see Sec. V), in the relatively
large wavelength limit where most of the experiments were
done, the mentioned inequality is satisfied (see for example
Refs. [5,6,15,25]).

Keeping in mind the mentioned inequality, the denominator
of (2) and (3), for s and p modes, can be rewritten as

(
D

(N)
i,j

)
s
= −δij + (1 − δij )

[
r (j )
ss + r (i)

sp r
(j )
ps

r
(i)
ss

]
eikx |xj −xi |. (18)

Naturally, the scattering matrix elements (2) and (3) can alter-
natively be calculated using also the following denominator:

(
D

(N)
i,j

)
p

= −δij + (1 − δij )

[
r (j )
pp + r (i)

ss r
(j )
sp

r
(i)
sp

]
eikx |xj −xi |. (19)

The final answer for scattering matrix elements is insensitive
to these changes. We remind the reader that in Eqs. (18) and
(19) r

(j )
nm (n,m = s,p) are reflection amplitudes from a single

sheet and are given by Eqs. (11), (12), (15), and (16).
The final expressions for the total reflection and transmis-

sion amplitudes R(N)
nm and T (N)

nm (n,m = s,p) which we are
going to use throughout the paper are

R(N)
nm = (−1)N

1

det
(
D

(N)
i,j

)
s

×

∣∣∣∣∣∣∣∣∣∣∣

0 r (1)
nm · · · r (N)

nm eikx |xN −x1|

1 · · · · · · · · ·
...

... (D(N)
i,j )s

eikx |xN−x1| ...

∣∣∣∣∣∣∣∣∣∣∣
, (20)
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T (N)
nm = (−1)N

eikx (xN −x1)

det
(
D

(N)
i,j

)
s

×

∣∣∣∣∣∣∣∣∣∣∣

δnm r (1)
nm · · · r (N)

nm eikx |xN−x1|

1 · · · · · · · · ·
...

... (D(N)
i,j )s

e−ikx |xN −x1| ...

∣∣∣∣∣∣∣∣∣∣∣
. (21)

We would like to recall that the photon’s scattering matrix
elements (20) and (21) are exact, valid for an arbitrary
disordered profile without any restriction on the number of
sheets, provided that |γn| � 1.

Modeling of the optical response of a 1D MPC disordered
system in terms of the proposed characteristic determinant
formalism has a few advantages: First, for a small number
of sheets the determinant can be calculated easily (see the
Appendix). Second, the addition of one MPC sheet in the
system with N sheets corresponds to the addition of one
new row and new column in D(N). This means that in some
particular cases (e.g., periodic and quasiperiodic structures)
one can write a recurrence relationship for a determinant D(N)

(see Sec. III). Finally, using the general method of expanding a
determinant in terms of its complementary minors in the weak
disorder regime, one can calculate the localization lengths for
s and p modes (see Sec. IV).

III. PERIODIC SYSTEM

Unfortunately, there is no technique for calculating the
scattering matrix elements, Eqs. (20) and (21), in the general
case of N disordered sheets (one needs to evaluate large N × N

matrices with arbitrary elements). However, the periodic
structure, due to its simplicity, enables us to resolve the
problem and get closed analytical expressions for scattering
matrix elements. This will be done in this section. In the next
section (“Disordered system”) we calculate the localization
lengths based on the approximate expressions (45) and (46).

First, let us evaluate the denominator of expressions (20)
and (21). After tedious but straightforward calculations one
can show that the determinant DN , Eq. (18) [or (19)] can
be presented in tridiagonal Toeplitz form, where the only
nonzero elements are the diagonal elements nn, and the
nearest-neighbor elements n ± 1. Hence, determinant DN

satisfies the following recurrence relationship:

DN = 2eikxa cos βaDN−1 − e2ikxaDN−2, (22)

where DN−1 (DN−2) is the determinant in the form (18) with
the N th [and also the (N − 1)th] row and column omitted. The
initial conditions in the previous recurrence relations are

D−1 = 0, D0 = 1, D1 ≡ A1 = 1 − i
m

(
k2 + k2

x

)
2kx

. (23)

Here β plays the role of quasimomentum and is defined by
the dispersion relation

cos βa = Re

{
e−ikxa

(
1 − i

m
(
k2 + k2

x

)
2kx

)}

= cos kxa − m
(
k2 + k2

x

)
2kx

sin kxa. (24)

This transcendental equation for the photonic band structure
for a 1D MPC is analogous to the solution of the Kronig-
Penney model in the electronic structure problem, provided
that the inequality |γ /A| � 1 takes place in the periodic
system. When the modulus of the right-hand side of Eq. (24)
turns out to be greater than 1, β has to be taken as imaginary.
This situation corresponds to a forbidden gap in the frequency
spectrum of an infinite system. It is worth noting that Eq. (24)
does not coincide with the expression expected from the exact
dispersion relation [15], based on an expansion over a small
parameter of the magnetically induced anisotropy 	 [see
Eq. (1)]. Equation (24) mixes the two modes channels, and
thereby can serve as the dispersion relation for both p and s

modes simultaneously.
To find a solution of Eq. (22), note that DN can be presented

in the form DN = c1U
N
1 + c2U

N
2 , where U1 and U2 are the

solutions of the equation

U 2 − 2eikxa cos βaU + e2ikxa = 0. (25)

c1 and c2 are assumed to satisfy the initial conditions D0 =
c1 + c2 = 1 and D1 = c1U1 + c2U2 = 1 − i

m(k2+k2
x )

2kx
. Solving

Eq. (25) and taking into account the initial conditions for c1

and c2, we obtain for DN the following expression:

DN = eiNkxa

{
cos Nβa

+ i Im

[
e−ikxa

(
1 − i

m
(
k2 + k2

x

)
2kx

)]
sin Nβa

sin βa

}
. (26)

Expression (26) indicates that the denominator of scattering
matrix elements DN is (−1)leiNkxa , for all N when the
interference term sin Nβa/sin βa = 0. The former occurs at
Nβa = πl and produces N − 1 oscillations in each spectral
band associated with the total system length Na. Note that
above described behavior of DN is similar to the one obtained
in 1D periodic systems with nonmagnetic sheets (see for
example, Refs. [28,29]).

A. Scattering matrix elements

1. s polarization

As mentioned, the numerator of T (N)
nm , Eq. (21), is obtained

from the same determinant (19) by augmenting it on the left and
on the top. This fact and the periodicity enables us to calculate
the numerator of T (N)

ss . Presenting the latter as a determinant
of a tridiagonal matrix and using similar recurrence relations
found for DN [see Eq. (22)], one can get for the numerator a

closed solution in the form k2
x

k2+k2
x
(DN + k2

k2
x
). Hence

T (N)
ss = eikx (N−1)a k2

x

k2 + k2
x

(
DN + k2

k2
x

)
D−1

N . (27)

In a similar way one can show that

T (N)
sp = −ieikx (N−1)a kxk

k2 + k2
x

	

2m
(DN − 1)D−1

N , (28)

R(N)
ss = −im

k2

2kx

sin Nβa

sin βa
ei(N−1)kxa

1

DN

, (29)
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and finally

R(N)
sp = 	

k

4

sin Nβa

sin βa
ei(N−1)kxa

1

DN

. (30)

2. p polarization

The numerator of T (N)
pp can be found in a similar way. Hence,

the final answers for scattering matrix elements for p modes
are

T (N)
pp = eikx (N−1)a k2

k2 + k2
x

(
DN + k2

x

k2

)
1

DN

, (31)

R(N)
pp = −im

kx

2

sin Nβa

sin βa
ei(N−1)kxa

1

DN

, (32)

T (N)
ps = −T N

sp , (33)

R(N)
ps = −RN

sp. (34)

B. Conservation law

Via Eqs. (27)–(30) it is straightforward to check that, for the
scattering matrix elements of s modes, intensity conservation
takes place:∣∣T (N)

ss

∣∣2 + ∣∣T (N)
sp

∣∣2 + ∣∣R(N)
ss

∣∣2 + ∣∣R(N)
sp

∣∣2

= 1 − 8mLmR

(mL + mR)2

k2
xk

2(
k2
x + k2

)2

(
1 − Re DN

|DN |2
)

, (35)

with

|DN |2 = DND∗
N =

[
1 +

(
m

(
k2 + k2

x

)
2kx

)2 sin2 Nβa

sin2 βa

]
. (36)

Expression (35) is practically equal to 1 for a wide range of
parameters. A similar equation holds for the p modes.

C. Magneto-optic effects

For an incident wave linearly polarized parallel to the y axis
the expressions for Faraday and Kerr rotational angles are as
follows.

(1) s polarization:

tan θT
s = −T (N)

sp

T
(N)
ss

= i
k

kx

(mL − mR)(DN − 1)

(mL + mR)
(
DN + k2

k2
x

) , (37)

tan θR
s = −R(N)

sp

R
(N)
ss

= i
kx

k

mL − mR

mL + mR

. (38)

(2) p polarization:

tan θT
p = −T (N)

ps

T
(N)
pp

= −i
kx

k

(mL − mR)(DN − 1)

(mL + mR)
(
DN + k2

x

k2

) , (39)

tan θR
p = −R(N)

ps

T
(N)
pp

= −i
k

kx

mL − mR

mL + mR

. (40)

As it is seen from Eqs. (38) and (40), the θR
s and

θR
p are independent of the number N of sheets and are

purely imaginary. The latter means that, in the frame of our
approximation, i.e., when |γ | � 1 takes place, there is no
rotation of the electric field vector �E with respect to the

FIG. 2. (Color online) (a) Real part of the Faraday rotation angle
θR
s and (b) derivative of the real part of θT

s versus the frequency
ω. The 1D array consists of five magnetoactive sheets with spatial
period a = 529 nm and θ = 1 rad. The parameters of each MPC
are mL = 21.32 nm and mR = 0.50 nm. Dashed lines correspond to
theoretical expressions [Eqs. (38)] while the solid curves stand for
our numerical calculations via the transfer matrix method.

initial direction, and for both s and p modes the reflected
light is elliptically polarized. This result has been confirmed
by our numerical calculations, which indicate that indeed
the real parts of θR

s and θR
p are very small compared to

the imaginary parts [see Fig. 2(a), where we have presented
only the results for θR

s ]. However, according to the numerical
calculations, the lower panel shows oscillatory behavior of
the Kerr rotation (Re θR

s ), when ω approaches the points
Nβa = πl. The regions with jump discontinuity (N − 1 times
in each allowed band) lie precisely on ω, happen on a very
short scale, and, at these ω, θR

s = ±π/2. Note that, at these
values of ω, DN is (−1)leiNkxa and the reflection coefficients
become very small. This type of relation between large Kerr
rotation enhancement and a large reduction of the reflection
coefficients was experimentally observed in Refs. [6,25]. We
would like to stress that, within our assumption |γ | � 1, θR

s

and θR
p are completely independent of the number of the sheets

N in a 1D periodic MPC system. The reason is that in this
approximation the zeros of R(N)

ps and R(N)
ss coincide with each

other [see Eqs. (29) and (30)]. However, as follows from the
transfer matrix calculations, there is a very small separation
between the zeros of order of 10−7 or ∼γ 2. Clearly, our
analytical approximation is not accurate enough to predict the
exact numerical result of order of 10−7, but on the other hand
our approximation is good enough to guarantee a sufficient
accuracy for fitting all the numerical results presented in
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this paper (see Figs. 2–7). However, these small shifts lead
to oscillatory patterns of the θR

s . Note that our numerical
calculations also show that, in case of disordered systems, the
real and imaginary parts of the Kerr rotational angles are of the
same order of magnitude. This fact can serve as a precursor
of light localization similar to the backscattering peak in the
reflected wave [30].

The ratio of the ellipse semi-axes for s modes is determined
by the relation (bs < as)

bs

as

= tanh Im θR
s =

∣∣∣∣kx

k

mL − mR

mL + mR

∣∣∣∣, (41)

while for p modes it is

bp

ap

= tanh Im θR
p =

∣∣∣∣ k

kx

mL − mR

mL + mR

∣∣∣∣. (42)

In Ref. [31] the angle of rotation of the polarization and
the ellipticity of the light in an external magnetic field are
calculated in terms of the density of states and transmission.
It was shown that the complex angle of Faraday rotation
θT in a 1D random layered structure is a self-averaging
quantity; i.e., the distribution function of the values of θT

is logarithmically normal about its geometric mean 〈ln θT 〉,
while its value fluctuates from sample to sample. Moreover, it
was shown that θT can be expressed through the localization
length and density of states for the left- and right-polarized
waves [31]. In other words the measurement of the angle of
rotation from the frequency gives information on the density
of states in random media. The experimental verification of
this type of direct connection can be found, for example, in
Ref. [16], where a strong enhancement of the Faraday rotation
at the edges of the photonic band gap was measured in 1D
magnetophotonic crystals. We indeed see in Fig. 2(b) that the
derivative of the real part of θT

s versus the frequency ω is an
oscillating function of ω (N − 1 times in each allowed band);
the amplitudes of the oscillating parts in each allowed band

increase with frequency and finally in each forbidden gap dθT
s

dω

drop markedly. In Ref. [16] it was reported that the Faraday
rotation angle in finite MPCs appears to be a nonlinear function
of the total thickness of magnetic material in the stack, that can
be interpreted as the nonlinear Verdet law. This is in agreement
with theoretical expectation discussed in Ref. [31]. One can
also come to that conclusion [30] calculating the Faraday
rotation angle in a diffusive regime in a three-dimensional
disordered slab. Thus, it is clear that in a multilayer system the
Faraday rotational angle is not a simple function of the total
thickness; the net effect is connected with multiple reflections
from each interface, which greatly influences the rotation.

IV. DISORDERED SYSTEMS

In this section we present analytical calculations of the
Anderson localization of light propagating through random
1D MPCs system with weak uncorrelated Gaussian disorder.
We will demonstrate that, for increasing angle of incidence θ ,
the localization length of p waves has a tendency to increase, in
contrast to what occurs for the localization length of s modes.
The latter decreases with increasing angle of incidence and
tends to zero at θ → π/2.

In order to achieve this particular goal let us introduce the
disorder by considering the magnetoactive sheet parameters
mL and mR , being random with uniform distribution:

mL = mL0 + δμL (43)

and

mR = mR0 + δμR, (44)

where μL and μR are zero-mean independent random numbers
within the interval [−0.5,0.5]. mL0 and mR0 correspond to the
unperturbed MPC parameters while δ stands for the amplitude
of the disorder.

In the next standard step we will restrict ourselves to the
limit of weak disorder and evaluate the scattering matrix ele-
ments of 1D MPC systems, Eqs. (20) and (21), to linear order
in the random parameters mL and mR . Using the mentioned
explicit forms, it can be shown that the transmission, T (N)

nm , and
reflection, R(N)

nm , amplitudes are given by

T (N)
ss ≈ eikx (xN −x1)

(
1 +

N∑
l=1

r (l)
ss

)

= eikx (xN −x1) 1 + i
∑N

l=1 yl

1 + i
∑N

l=1(xl + yl)
, (45)

T (N)
sp ≈ eikx (xN−x1)

N∑
l=1

r (l)
ps . (46)

After ensemble-averaging the above partial transmission and
reflection coefficients over the random parameters μL and μR ,
we obtain, successively,

〈∣∣T (N)
ss

∣∣2〉 = 1 − Nk2

8

(
1 + k2

2k2
x

)[
δ2

6
+ N (mL0 + mR0)2

]
,

(47)

〈∣∣T (N)
sp

∣∣2〉 = 〈∣∣R(N)
sp

∣∣2〉 ≡ Nk2

16

[
δ2

6
+ N (mL0 − mR0)2

]
, (48)

〈∣∣R(N)
ss

∣∣2〉 = Nk4

16k2
x

[
δ2

6
+ N (mL0 + mR0)2

]
. (49)

To derive Eqs. (47)–(49) we note that the phases in T (N)
nm

are irrelevant. In other words, the configuration of sheets
is not important for uncorrelated potential in the linear
approximation of the perturbation theory, and one might expect
to get similar expressions in a quasiperiodic 1D PMC.

It is straightforward to check, based on Eqs. (47)–(49), that
the sum of all of them (within N2γ � 1 approximation) is
equal to 1 − N2γ /2 and the intensity conservation takes place
with high accuracy.

A. Localization length

The inverse localization length ξj (j = s,p) as a function
of the system size L = (N − 1)a can be defined as

a

ξj

= − lim
N→∞

1

2N

〈
ln

(∣∣T (N)
jj

∣∣2 + ∣∣T (N)
sp

∣∣2)〉
, (50)

where the angular brackets 〈· · ·〉 represent averaging over the
disorder.
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Now, replacing 〈ln(|T (N)
jj |2 + |T (N)

sp |2)〉 by ln〈(|T (N)
jj |2 +

|T (N)
sp |2)〉 and assuming that for weak disorder the transmission

coefficients are close to 1 and thus the reflection coefficients
are close to zero, we can expand the right-hand side of
Eq. (50). Next, using the explicit expressions for T (N)

nm [see
Eqs. (45) and (46)] and after averaging over the random
parameters (mL)l and (mR)l distributed uniformly [Eqs. (43)
and (44)] and keeping the terms to order �2, we arrive at the
following expression for the inverse of the localization length
(for simplicity, we set m0L = m0R = 0 below):

a

ξs

= δ2k2

192

(
1 + k2

k2
x

)
≡ π2

48

(
1 + 1

cos2 θ

)
δ̄2

λ̄2
, (51)

and

a

ξp

= δ2k2

192

(
1 + k2

x

k2

)
≡ π2

48
(1 + cos2 θ )

δ̄2

λ̄2
. (52)

In the above expressions we present kx = k cos θ = 2π
λ

cos θ

and introduce the normalized parameters λ̄ and δ̄ to the spatial
period a: λ̄ = λ

a
, δ̄ = δ

a
. These standard results, when ξs,p ∼

λ2, are rather general for the light localization length in 1D
systems. However, the prefactors are different and are strongly
dependent on microscopic details of the random potential (see,
e.g., Ref. [2]).

Note that in the absence of magneto-optic activity, i.e.,
when there is no coupling in between the modes (	 = 0),
Eqs. (51) and (52) reduce to the localization lengths for
a 1D uncoupled model, aξ−1

s (0) = π2 δ̄2

24λ̄2 cos2 θ
and aξ−1

p (0) =
π2 δ̄2 cos2 θ

24λ̄2 , respectively. It is easy to see that the presence of
coupling modes enhances the ξs and reduces ξp with respect
to the values ξs(0) and ξp(0) obtained when the coupling
modes are absent, assuming that the incident angle is not
zero. It is worth noticing that, in a random system of isotropic
magnetodielectric layers when characteristic impedance does
not change throughout the system, the inverse localization
length grows with the angle of incidence and does not depend
on the polarization of the incident wave [32].

Concluding this section, let us note that the localization
length for the circularly polarized light can be expressed as

a

ξsp

= − lim
N→∞

1

4N

〈
ln

(∣∣T (N)
ss

∣∣2 + ∣∣T (N)
sp

∣∣2

+ ∣∣T (N)
pp

∣∣2 + ∣∣T (N)
ps

∣∣2)〉
= δ2

768k2
x

(
k2 + k2

x

)2

≡ π2

192

(
1 + cos2 θ

cos θ

)2
δ̄2

λ̄2
. (53)

V. NUMERICAL RESULTS

Up to now, we have presented analytical expressions for
the scattering matrix elements and for the localization lengths.
The numerical analysis will be useful also to test the theoretical
prediction given in the previous sections.

Before we proceed further let us first estimate the pa-
rameter γ , using the data from Refs. [11,12] where the

magneto-optic response in periodic systems containing ultra-
thin cobalt magnetic films was discussed. The diagonal and
off-diagonal elements of the dielectric tensor are, according
to Refs. [11,12], ε(Co)

xx = −12.5035 − i18.4639 and ε(Co)
xy =

−0.7410 + i0.2077, respectively. The Co layer thicknesses
are chosen in the range 0.4–2.0 nm to preserve a perpendicular
magnetic anisotropy. The wavelength λ of the laser, where
magneto-optic response can be determined with optimum
sensitivity, was chosen to be 632.8 nm. Taking into account
that the right (left) circular polarization state is given by
ε

(Co)
R,L = ε(Co)

xx ± iε(Co)
xy and assuming the absence of electron

damping, we get |ε(Co)
R | = 12.7 and |ε(Co)

L | = 12.3. Having in

mind these numbers, we find |γ | = 4π2ε
(Co)
R ε

(Co)
L d2

λ2 ≈ 2.5 × 10−3

(d = 0.4 nm) and |γ | ≈ 0.06 (d = 2 nm), respectively. As one
can see, the parameter γ even in the visible range of light is
much less than unity, and thus the characteristic determinant-
approach treatment of the photon transport problem in 1D mag-
netophotonic crystals discussed in our paper is fully justified.

Thus, the above estimation does credit to the characteristic
determinant (CD) approach and serves as a good starting
point to compare the theoretical results with numerical
simulations. First, we present some numerical calculations of
the transmission coefficient for s modes, |T (N)

ss |2 + |T (N)
sp |2 =

|T (N)
s |2, as well as their corresponding reflection coefficient

|R(N)
ss |2 + |R(N)

sp |2 = |R(N)
s |2, of finite one-dimensional arrays

with identical magnetoactive sheets (see again Fig. 1). These
calculations will be performed via the transfer matrix (TM)
method and CD approach for two different values of the
magneto-optic parameter 	. Similarly, a numerical analysis
of the coefficients |T (N)

pp |2 + |T (N)
ps |2 = |T (N)

p |2 and |R(N)
pp |2 +

|R(N)
ps |2 = |R(N)

p |2 for p modes will be carried out.
In Fig. 3 we show the transmission and reflection coeffi-

cients of an array with five identical magnetoactive sheets and
spatial period a = 529 nm versus the frequency of the incident
light ω. The angle of incidence is 1 rad and the parameters of
each sheet mL = 0.55 nm and mR = 0.50 nm. In this situation,
the magneto-optic parameter 	 = 0.05 nm or, equivalently,
four orders of magnitude less than the period a. One notices
that both CD and TM methods yield similar results for the
reflection coefficients |R(N)

s |2 and |R(N)
p |2 in the allowed bands

and gaps for all frequencies ω. The discrepancies between
TM and CD can be observed in Figs. 3(a) and 3(c) for the
transmission coefficients |T (N)

s |2 and |T (N)
p |2, respectively.

Nevertheless, the relative error is roughly 1% for higher
frequencies. Moreover, the conservation law for s and p

modes, Eq. (35), can be easily checked after simple inspection
of Fig. 3. Let us now consider the opposite situation, that is,
when the magneto-optic parameter 	 reaches large values. The
authors of Ref. [15] used values of 	 = 0.2a for their numeri-
cal calculations of two-dimensional magnetophotonic crystals.
In this context, in Fig. 4 we have represented the transmission
and reflection coefficients for the same one-dimensional array
as in Fig. 3, but now the magnetoactive sheet parameters have
been chosen to be mL = 113.74 nm and mR = 0.50 nm. Cor-
respondingly, the magneto-optic parameter is 	 = 113.24 nm,
that is, 0.21 times the array period a. In this case we can also
appreciate a good agreement between both approaches, which
confirms the characteristic determinant as a good theoretical
approximation suitable for studying 1D magnetoactive arrays.

023842-8



LIGHT TRANSPORT IN ONE-DIMENSIONAL ARRAYS OF . . . PHYSICAL REVIEW A 88, 023842 (2013)

FIG. 3. (Color online) Transmission and reflection coefficients for s modes (left column) and p modes (right column) versus the frequency
of the incident light ω. The 1D array consists of five magnetoactive sheets with spatial period a = 529 nm and θ = 1 rad. The parameters of
each MPC are mL = 0.55 nm and mR = 0.50 nm. Dashed lines correspond to theoretical expressions [Eqs. (27)–(32)].

We have also performed numerical calculations for the
localization lengths ξs , ξp, and ξsp as a function of the incident
wavelength λ and compared them to the theoretical results [see

Eqs. (51)–(53)]. Let us now describe our numerical method
which was used in order to find the localization length for each
polarization mode. For each length L, we calculate the sum

FIG. 4. (Color online) Transmission and reflection coefficients for s modes (left column) and p modes (right column) versus the frequency
of the incident light ω. The 1D array is the same as in Fig. 3 but now the magnetoactive sheet parameters have been chosen to be mL = 113.74 nm
and mR = 0.50 nm. Dashed lines correspond to theoretical expressions [Eqs. (27)–(32)].
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FIG. 5. (Color online) Numerical results for the localization lengths ξs , ξp , and ξsp versus the incident wavelength λ as described in the
main text. Dashed lines correspond to theoretical expressions [Eqs. (51)–(53)].

|T (N)
ss |2 + |T (N)

sp |2 (|T (N)
pp |2 + |T (N)

ps |2) via the transfer matrix
method and average its logarithm over 800 disorder con-
figurations, using magnetoactive sheet independent random
parameters mL and mR , defined by Eqs. (43) and (44). Then
we numerically obtain the localization length ξs (ξp) via a lin-
ear regression of ln(|T (N)

ss |2 + |T (N)
sp |2) [ln(|T (N)

ss |2 + |T (N)
sp |2)].

We choose six values of the total length L to perform
these linear regressions. The localization lengths ξs and ξp

are then evaluated as a function of the disorder parameter
δ, the wavelength of the incident light λ, and the angle of
incidence θ, and are compared to our theoretical results,
Eqs. (51) and (52), respectively. Similarly, the localization
length for circularly polarized light ξsp is calculated in terms of
the sum |T (N)

ss |2 + |T (N)
sp |2 + |T (N)

pp |2 + |T (N)
ps |2 [see Eq. (53)].

We remind that in Eqs. (51)–(53) we set m0L = m0R = 0,

while in our numerical studies the mentioned parameters are
not zero. Despite this difference, for all chosen parameters
of m0L and m0R , as shown below, the coincidence between
our theoretical and the experimental results is very good. The
physical reason for this reasonably good agreement is that the
disorder parameter δ (in units of the spatial period a) is much
larger than m0L and m0R .

Our numerical results for ξs , ξp, and ξsp versus the incident
wavelength λ are plotted in Fig. 5. The spatial period of all
1D arrays with length L has been chosen to be a = 529 nm
while the unperturbed parameters of each magnetoactive sheet
mL0 = 21.42 nm and mR0 = 0.50 nm. In the left column, we
have set the disorder parameter δ = a and have varied the
angle of incidence θ . Dashed lines correspond to theoretical
expressions [Eqs. (51)–(53)]. It can be noticed that these
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FIG. 6. (Color online) Localization length ξs versus the incident
wavelength λ at incident angles near π/2 rad. Dashed lines correspond
to the theoretical expression Eq. (51). The 1D array parameters are
the same as in Fig. 4(a).

theoretical results fit relatively well the numerical calculations
for long wavelengths and a wide range of incident angles θ .
The conventional quadratic behavior of ξ with the incident
wavelength, ξ ∼ λ2, is recovered [4,31,33,34], in contrast
with recent research which shows a suppression of Anderson
localization of light in 1D disordered metamaterials [18–20].
However, the main discrepancies between numerical and
theoretical calculations occur at grazing incidences where
θ ∼ π/2 rad, as can be seen in the inset of Fig. 5(b) for ξp.
Moreover, these p modes are more delocalized at increasing
angles θ . We will return to this point later. Having a close
look at Fig. 5(c), one observes that the localization length for
circularly polarized light ξsp has a slow dependence on θ up to
incident angles of roughly 1 rad, as shown in the corresponding
inset. In the right column, the angle of incidence has been fixed
to 1 rad and the disorder parameter δ has been changed. Again,
a great conformance between numerical and theoretical results
can be found at long wavelengths. After a close inspection of
Eq. (51) for the localization length ξs one can conclude that the
s modes become completely localized at grazing incidences,
that is, when θ → π/2. In order to obtain the limit of validity
of our theoretical results for ξs at high angles θ , in Fig. 6
we represent the localization length ξs versus the incident
wavelength λ for the same parameters as in Fig. 5(a). Dashed
lines correspond to the theoretical expression Eq. (51). Notice
a good agreement up to angles of incidence of 1.56 rad. It
can be also observed that ξs is practically independent of λ at
incidences near π/2 rad, a direct consequence of the strong
localization at grazing angles.

VI. CONCLUSION

We have provided a complete description of light prop-
agation at an oblique angle of incidence in disordered 1D
ultrathin MPCs with an arbitrary number of sheets. We
have developed an approach based on the ultrathin film
approximation combined with the characteristic determinant
method, originally introduced to study the quantum transport
of electrons in quasi-one-dimensional disordered systems. In
our discussion we included mode conversion and removed the
limitations of the normal incident light. Under the condition
γ /A � 1, we relate the EMW propagation problem to the
Anderson localization of electrons in Q1D systems with two

channels. In order to give a more complete analysis of the
behavior of EMWs we discuss first the periodic 1D system.
We derive exact and closed analytical expressions for all
scattering matrix elements which are in excellent agreement
with our numerical calculations based on the transfer matrix
method. This agreement does credit to the characteristic
determinant method and allows to use the determinant method
for characterizing the behavior of EMWs in more complex
cases, where the exact solution is not available.

We have also studied the magneto-optical Faraday and
Kerr effects and calculated analytically the Faraday and Kerr
rotational angles for a periodic system. Our formulas predict
correctly the main trends of magneto-optic effects in a 1D
system. Particularly, we have shown a strong enhancement of
the Faraday rotation at the edges of the photonic band gap
in 1D magnetophotonic crystals when the interference term
is sufficiently large because of forward- and back-scattered
electromagnetic waves. We have also demonstrated that the
derivative of the real part of the Faraday rotation respect
to the energy of incident photons is closely related to the
density of states for the left- and right-polarized waves [31].
Equation (37) indicates that the Faraday angle in the finite
MPCs appears to be a nonlinear function of the total thickness
of magnetic material in the stack, that can be interpreted as
the nonlinear Verdet law. This is in agreement with theoretical
expectation discussed in Refs. [30,31] and observed in many
experimental papers (see, for example, [16,35,36]).

We also derived analytical expressions for photon local-
ization lengths, in a weak disordered regime, for s and p

modes and for circular polarized light. Presented analytical
expressions for localization lengths are in good agreement
with numerical calculations, exact up to order δ2 (δ being
the disorder strength), and valid up to angles of incidence of
1.56 rad. The conventional quadratic behavior of localization
length with the incident wavelength λ, i.e., ξs,p ∼ λ2, is re-
covered. However, the prefactors are different and are strongly
dependent on microscopic details of the random potential (see,
e.g., Ref. [2]). We show that the presence of coupling modes
enhances the ξs and reduces ξp with respect to the values ξs(0)
and ξp(0) obtained when the coupling modes are absent.

FIG. 7. (Color online) The analytical result for |T (2)
ss |2 [Eqs. (A1)

and (A4)], based on the transfer matrix and the characteristic determi-
nant methods, respectively. The 1D array consists of two magnetoac-
tive sheets separated by 529 nm and an angle of incidence of 1 rad. The
parameters for the first MS are mL1 = 0.55 nm and mR1 = 0.50 nm,
while for the second one mL2 = 21.64 nm and mR2 = 0.83 nm.
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APPENDIX: CHARACTERISTIC DETERMINANT VERSUS
TRANSFER MATRIX

For the case of two sheets, multiplying the individual
transfer matrices, Eq. (1), by hands yields the following T (2)

ss :

(
T (2)

ss

)
TM = eikxa

(
1 + r (1)

ss

)(
1 + r (2)

ss

) − (
r (1)
pp + γ1

A1

)(
r (2)
pp + γ2

A2

)
e2ikxa + r (1)

sp r (2)
ps − r (1)

sp r (2)
ps e2ikxa

1 − e2ikxa
[
2r

(2)
ps r

(1)
sp + r

(1)
pp r

(2)
pp + r

(1)
ss r

(2)
ss

] + γ1

A1

γ2

A2
e4ikxa

. (A1)

On the other hand, using the explicit expression for T (N)
nm [see Eq. (21)], one can rewrite the expression for the amplitude

of transmission in terms of a single infinitesimal-thickness magneto-optic active layer reflection amplitude, r (l)
nm (l = 1,2 and

m,n = s,p) in the following form:

(
T (2)

nm

)
CD = eikxa

det(D2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

δnm r (1)
nm r (2)

nmeikxa

1 −1
(
r (2)
ss + r

(1)
sp r

(2)
ps

r
(1)
ss

)
eikxa

e−ikxa
(
r (1)
ss + r

(2)
sp r

(1)
ps

r
(2)
ss

)
eikxa −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (A2)

where det(D2), according to Eq. (18), is

det(D2) =
∣∣∣∣∣∣
−1

(
r (2)
ss + r

(1)
sp r

(2)
ps

r
(1)
ss

)
eikxa(

r (1)
ss + r

(2)
sp r

(1)
ps

r
(2)
ss

)
eikxa −1

∣∣∣∣∣∣ . (A3)

Evaluating the above determinants, we will arrive the approximate expression

(
T (2)

ss

)
CD ≈ eikxa

(
1 + r (1)

ss

)(
1 + r (2)

ss

) − r (1)
pp r (2)

ppe2ikxa + r (1)
sp r (2)

ps − r (1)
sp r (2)

ps e2ikxa

1 − e2ikxa
[
2r

(2)
ps r

(1)
sp + r

(1)
pp r

(2)
pp + r

(1)
ss r

(2)
ss

] . (A4)

Figure 7 compares two analytical results for T (2)
ss . Equation (A1) is based on the transfer matrix method while the analogous

expression, Eq. (A4), is calculated using the characteristic determinant method. The very good agreement between transfer matrix
and characteristic determinant calculations shows that the determinant approach can properly describe light interference effects
due to multiple scattering in the 1D MPCs in the γn

An
� 1 approximation. Accordingly, the determinant method may be explicitly

used for a small N to get analytical expression for scattering matrix elements.
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