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Optomechanical backaction-evading measurement without parametric instability
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We review a scheme for performing a backaction-evading measurement of one mechanical quadrature in an
optomechanical setup. The experimental application of this scheme has been limited by parametric instabilities
caused in general by a slight dependence of the mechanical frequency on the electromagnetic energy in the
cavity. We find that a simple modification to the optical drive can effectively eliminate the parametric instability
even at high intracavity power, allowing realistic devices to achieve sub-zero-point uncertainties in the measured
quadrature.
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I. INTRODUCTION

In combination with the backaction-evading techniques
described below, squeezed states offer the potential for im-
portant applications in optomechanical precision force sensing
[1], in particular achieving sensitivity with resolution below the
zero-point fluctuations xzp of the mechanical component of the
sensor. Unfortunately, due to the typical thermal environment
of a mechanical system, it is difficult to produce direct
squeezing below the zero-point level in a mechanical oscillator.
It is similarly challenging to ascertain its position to that level
of accuracy in a single strong measurement. One possible
solution is to continuously observe the position in, e.g., an
optomechanical setup [2], using light transmitted through a
Fabry-Pérot cavity to probe the motion of an oscillating end
mirror or using an equivalent microwave circuit with me-
chanically modulated frequency. Such a measurement process
gradually reduces �x. However, this leads to a problem as
the oscillator rotates through phase space. Because measuring
x̂ increases the uncertainty of p̂ and every quarter cycle x̂

and p̂ are exchanged, the maximum squeezing is limited to
roughly that which could be produced in only one-fourth of
the oscillator period, even if technical noise is neglected.
Hence, the potential squeezing is limited by measurement
backaction.

A backaction-evading measurement of the position of a
membrane in a cavity optomechanical system was proposed
as early as 1980 in Refs. [3,4], which suggested driving the
resonator with an input field resonant with the cavity frequency
ωc, but modulated at the mirror frequency �m. In Fourier space,
the field has oscillatory components at ωc ± �m; hence, this
scheme is often known as two-tone backaction evasion. By
modulating the light field frequency at �m the measurement
effectively turns on and off as the system oscillates. This
protocol thereby measures neither position nor momentum
individually, but rather, one of the mechanical quadratures.
Thus, while the measurement backaction still exists, it feeds
only into the unmeasured quadrature and evades the measured
one, leaving in principle no lower limit on the uncertainty one
quadrature might reach.

A detailed quantum-mechanical analysis is presented in
Ref. [5], and a generalized version exploiting interference
between additional tones is proposed in Ref. [6]. The technique
was originally explored for use in gravity wave detectors [7],

including an early approximation to stroboscopic position
measurement [8], but these experiments using massive oscil-
lators were not designed to reach sensitivities near their zero-
point levels. More recently, experiments have been carried
out in the quantum regime. These have reached sensitivities
of 4xzp [9], 2.5xzp [10], and 1.4xzp [11], but, thus far, no
experiment has achieved sub-zero-point position sensitivity.

While two-tone backaction evasion is an elegant solution,
experimental reality intervenes to place a rather restrictive limit
on such a scheme. Because the envelope of the driving field
oscillates at the mechanical frequency, the intracavity power
oscillates at twice the mechanical frequency. Through indirect
effects, this leads to the frequency of the mechanical oscillator
becoming slightly modulated, with the modulation oscillating
at twice the natural frequency. Such a frequency modulation
produces a parametric instability, which will drive the system
and greatly reduce the amount of squeezing possible. To
accomplish the backaction-evading measurement, high optical
power and low mechanical dissipation are both critical, yet
these factors both worsen the parametric instability.

The variety of ways in which this instability can arise is
staggering. In the experiments mentioned above, it originated
respectively from nonlinear terms in the optomechanical
coupling [9], cavity heating causing a thermal shift in the
frequency of the mechanical element [10], and two-level
systems in surface oxides acting as nonlinear dielectrics
[11]. Thus, the common limitation of these experiments is
a connection between mechanical frequency and the cavity
energy, δ�m ∝ E. In the two-tone scheme, this connection
seems to lead inevitably to parametric instability.

However, it is in principle possible to work around this
particular limitation. There are two critical features needed
to avoid the parametric instability while performing the
backaction-evading measurement:

(1) The power in the cavity must not oscillate at twice the
mechanical frequency.

(2) The probe light must couple only to a single quadrature
of motion.
The first of these requirements prevents the instability, as
we will discuss in more detail in the next section. The
latter requirement prevents measurement backaction from
affecting the measured quadrature. Small deviations from
this requirement will reduce the ultimate sensitivity of the
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measurement, but do not preclude sensitivities below the
zero-point level, as shown in Ref. [5].

We will verify in this paper that these two criteria may be
pursued somewhat independently of each other. In the next
section, we show that the ideal envelope for the intracavity
field is a square wave, which satisfies the first criterion above.
While experimental constraints prevent the realization of a
perfect square wave, we show that it is sufficient to add a
single additional drive tone. The rest of the paper is devoted
to proving that the second criterion will also be satisfied. We
review in Sec. III the optomechanical system used for the
measurement, including a general optical driving term and
outlining the main steps in extending the results of Ref. [12]
for such a drive. Using reasonable simplifications, in Sec. IV
we then derive a general master equation for the conditional
evolution of the mechanics under continuous observation and
show in Sec. V that for the desired purpose, it can be reduced
to the master equation of Ref. [5], thereby completing the
demonstration of the consistency of the two criteria. Finally,
Sec. VI is a summary and outlook.

II. FIELD ENVELOPE

We model a generic cavity optomechanical system as a
single-mode optical or electrical resonator with resonant mode
frequency ωc whose radiation pressure drives a harmonically
confined end mirror or capacitor plate with natural oscillation
frequency �m. The cavity is driven on-resonance but modu-
lated with a field envelope α(t). In the microwave domain,
this cavity field is often achieved through the application of
multiple tones in order to avoid the low-frequency phase noise
of available sources.

We proceed by first asking what specific drive scheme can
be used to avoid the mechanical parametric instability. To
recap, this instability is due to a generic coupling arising
through a variety of mechanisms between the mechanical
frequency and the electromagnetic energy in the cavity which
oscillates proportional to |α(t)|2. If only two tones are used to
drive the system at ωc ± �m, the cavity power then oscillates
at 2�m. Via device-dependent mechanisms, this induces a shift
in the mechanical frequency,

�′
m(t) = �m + δ�m cos 2�mt. (1)

In a well-made device, the shift δ�m will be much less
than �m, though the quality factor Q will also be high.
Hence the mechanical damping will be weak. The onset
of parametric instability begins when the criterion for the
fractional frequency shift

δ�m

�m

>
1

Q
(2)

is satisfied [13]. Similar parametric resonances occur if the
mechanical frequency oscillates at subharmonics of 2�m, but
our scheme avoids these. Furthermore, the required fractional
frequency shift is of order Q−1/n for the nth subharmonic,
rendering all but the first instability irrelevant for our purposes.
However, even in carefully engineered devices, the limit in
Eq. (2) is reached at low pump power, reducing the maximum
possible accuracy of the backaction-evading measurement to
above the zero-point level [11].

We will show in the following sections that the measure-
ment of the membrane motion can be performed in such
a way that it is dominated by the two tones at ωc ± �m.
Therefore, we are more or less free to add additional fields
to the cavity, as long as they are not near those frequencies,
without affecting the measurement-based squeezing. We can in
that way cancel out the oscillations of the energy in the cavity
at 2�m. Of course, this will add oscillations at higher harmon-
ics, but parametric resonance only occurs at subharmonics
of 2�m [13].

Consider specifically a field envelope, i.e., the electromag-
netic field in a frame rotating at ωc, with a single added drive
tone at 3�m,

α(t) ∝ cos �mt + μei(3�mt+�). (3)

The energy E in the cavity is proportional to |α|2,

E(t) ∝ 1
2 + μ2 + A2 cos(2�mt + �2) + μ cos(4�mt + �),

(4)

with

A2 =
√

1

4
+ μ cos � + μ2,

(5)

�2 = arctan
2μ sin �

1 + 2μ cos �
.

Thus, by adding the additional 3�m-detuned tone with μ =
1/2 and � = π , the energy oscillating at 2�m is completely
redirected via interference into the dc and 4�m terms. For small
deviations from ideality, i.e., μ = 1/2 + δμ and � = π + δ�,
the relative amplitude of the energy oscillation at 2�m is

A2 =
√

(δμ)2 + (δ�)2

4
, (6)

which still represents a significant reduction in the 2�m Fourier
component. In the next section, we will discuss the drive
needed to produce the cavity field of Eq. (3). If desired, one
could continue to eliminate the higher harmonics of the energy
oscillation by adding additional phase-locked sources detuned
from the cavity by ±(2n + 1)�m, for increasing integer n. If
we extend the series in Eq. (3), use tones of equal strength
at each pair of red- and blue-detuned sidebands (i.e., cosines
rather than complex exponentials) so that α(t) is real, and
repeat the cancellation procedure of Eq. (4) for these higher
harmonics, we find that α(t) converges to a square-wave
envelope. Solving for such field envelopes requires finding
roots of higher order polynomials for higher harmonics, so
it must be done numerically. We plot several such solutions
in Fig. 1. It is also intuitively easy to verify that the square
wave has the desired properties: it is a function that oscillates
at the same fundamental frequency as the mechanics, thereby
permitting the measurement of a single quadrature, but, when
squared, it is simply a constant. Thus, the energy in the
cavity remains constant, and there is no resulting oscillatory
mechanical frequency shift at any harmonic of the mechanical
motion. In terms of the field itself rather than the envelope,
this corresponds to a π phase shift every half mechanical
period. However, adding numerous phase-locked tones may
be technically difficult, and so we examine the effectiveness
of a single added 3�m-detuned tone. The energy in the
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FIG. 1. The field envelope α(t) needed to cancel higher harmonic
oscillations in the intracavity energy |α(t)|2, using (a) 1, (b) 2, (c) 4,
and (d) 16 additional drive tones.

cavity, and hence the mechanical frequency, now has a Fourier
component, aside from the dc term, at 4�m. It is, hypothetically
speaking, still possible to excite a parametric instability in
this case; however, the required fractional frequency shift in
the mechanics to excite a parametric instability is of order
unity, i.e., the mechanical frequency would have to vary
wildly during the course of the experiment [13]. Such large
frequency shifts are simply not seen in these devices; instead,
the fractional shifts are of order less than a percent [9–11].
To contrast, the fractional frequency shift required to excite
a parametric instability is only 1

Q
when the oscillations in

frequency occur at 2�m. A shift of this magnitude is seen
experimentally, such as in Ref. [11], where the observed
frequency shift of ∼50 Hz agrees quite well with the predicted
onset of parametric instability. Based on these observations,
we therefore find that a single additional tone is sufficient to
eliminate the instability.

III. MODEL

Having now satisfied the first key criterion listed in the
Introduction we turn to the demonstration that under realistic
conditions, the probe light couples predominantly to a single
quadrature of motion. Our starting point is the generic
optomechanical Hamiltonian, see, e.g., Ref. [5],

H = h̄(ωc − Gx̂)[â†â − 〈â†â〉(t)] + h̄�mĉ†ĉ

+ ih̄
√

κ[b∗
in(t)â − bin(t)â†], (7)

that describes the dynamics of a single-mode Fabry-Pérot
resonator with an oscillating, harmonically bound end mirror
driven by radiation pressure. Here â is the annihilation operator
of the cavity mode and κ its decay rate, bin is the amplitude
of the (classical) driving field, and x̂ = xzp(ĉ + ĉ†) is the
displacement of the mirror resulting from radiation pressure.
G is the single-photon optomechanical coupling. Finally x2

zp
is the position variance of the membrane in its ground state.

We assume that the drive is resonant with the cavity but
periodically modulated at the mechanical frequency,

bin(t) = e−iωct

∞∑

=−∞

β
e
i�m
t . (8)

This differs from the scheme of Refs. [3,5] in which only
β±1 
= 0. We further assume that the mechanical element
is thermally damped at a rate γ due to its contact with
a reservoir of temperature T . Thus its equilibrium thermal
phonon occupancy is given by the Bose-Einstein distribution,

n̄ = 1

exp(h̄�m/kBT ) − 1
. (9)

However, we assume that kBT � h̄ωc so that we can neglect
thermal photons.

The effects of thermal coupling and the cavity decay are
encapsulated by the master equation for the composite density
matrix ρ of the oscillator-field system,

dρ

dt
= i

h̄
[ρ,H ] + κ

2
D[â]ρ + γ

2
[(n̄ + 1)D[ĉ]ρ + n̄D[ĉ†]ρ],

(10)

where the dissipation super-operator D is defined as

D[ô]ρ = 2ôρô† − ô†ôρ − ρô†ô. (11)

We also work in the good cavity limit, specifically assuming a
separation of scales

γ � κ � �m � ωc. (12)

The only inequality in Eq. (12) that is not trivially satisfied
in the typical experimental environment is κ � �m. In the
optical domain, even cavities with very high finesse have
κ of order ∼10 MHz due to the high frequency of light.
Working in the microwave regime eases this requirement
somewhat; typical parameters in a microwave device are ωc =
2π × 5.3 GHz, �m = 2π × 3.7 MHz, κ = 2π × 260 kHz,
and γ = 2π × 50 Hz [11].

We now simplify the master equation by moving into the
rotating frame for both the optical mode and the mechanical
oscillator, and then displacing â by a classical mean value
α(t)—ultimately, the field envelope of the previous section—
where the time dependence here is due to the modulated
nature of the drive. Mathematically, this is equivalent to
applying several unitary transformations to the density matrix
in succession

ρ ′ = WV UρU †V †W †, (13)

where

U = exp(i�mĉ†ĉt), V = exp(iωcâ
†ât),

(14)
W = exp[α(t)â† − α∗(t)â].

Though W (t) does not typically commute with W (t ′), this fact
ultimately contributes only an irrelevant net global phase to
the evolution. Identifying 〈â†â〉 = |α|2 and noting that in the
rotating frame the mean intracavity field satisfies

dα/dt + κα/2 = √
κbin eiωct . (15)

023838-3



STEVEN K. STEINKE, K. C. SCHWAB, AND PIERRE MEYSTRE PHYSICAL REVIEW A 88, 023838 (2013)

we find readily

α(t) =
∞∑


=−∞
α
 ei�m
t , α
 =

√
κβ


i�m
 + κ/2
. (16)

We can combine these formulas with the results of the previous
section to provide the exact form of the needed drive for
the 3�m-detuned tone. Specifically, if the first red and blue
�m-detuned sidebands are pumped with amplitude and phase
given by

β±1 =
(

κ

2
± i�m

)
B, (17)

then the third sideband should be pumped with amplitude and
phase

β3 = −
(

κ

2
+ 3i�m

)
B. (18)

After the above unitary transformations and substitutions,
the Hamiltonian governing the evolution of the system in the
primed frame is

H ′ = g(ĉe−i�mt + ĉ†ei�mt )[α(t)â† + α∗(t)â + â†â], (19)

where g = Gxzp. The dissipative terms remain unchanged,
except for the replacement of ρ with ρ ′. In subsequent
calculations, we neglect the quadratic â†â term in the
Hamiltonian (19), because it is of order unity in size. On the
other hand, the linear terms are multiplied by the classical mean
field, α(t), which is the square root of the mean intracavity
photon number, typically 106 or more for backaction-evading
experiments, so these will dominate the evolution dynamics.

IV. OPTOMECHANICAL MASTER EQUATION

We now turn to the issue of measurement of the system. Our
derivation follows the approach of Ref. [12], generalized to a
local oscillator with a time-dependent amplitude or phase. By
using a homodyne detection scheme, it is possible to make a
measurement of one quadrature of the cavity field. The output
field from the cavity is

b̂out = bin + √
κâ, (20)

and the field reaching the detector is Blo + b̂out, where Blo is
the additional local oscillator. We can fold all the classical
contributions together into a “net” local oscillator strength
given in the rotating frame by

Bnet = (Blo + bin)eiωct /
√

κ − α(t) ≡ B(t)eiφ(t), (21)

where φ is the relative phase between the local oscillator
and the output field. Note that if Blo is sufficiently large, the
additional terms are negligible. For a detector of efficiency η

the detected photocurrent I (i.e., the measurement record) is
given by

I dt = (B2 + B〈âe−iφ + â†eiφ〉)ηκ dt + B
√

ηκ dW, (22)

where W (t) is a Wiener process. That is, ξ (t) = dW/dt is
Gaussian white noise and (dW )2 = dt . The dynamical effects
of this measurement on the density matrix can be computed and

yield the conditional stochastic master equation (SME) [12]

dρc

dt
= i

h̄
[ρc,H

′] + κ

2
D[â]ρc

+ γ

2
[(n̄ + 1)D[ĉ]ρc + n̄D[ĉ†]ρc]

+ (âρe−iφ + ρâ†eiφ − 〈âe−iφ + â†eiφ〉ρ)
√

ηκξ (t).

(23)

V. REDUCED MASTER EQUATION AND MEASUREMENT

To proceed, we now adiabatically eliminate the light field.
This can be achieved by working in the weak-coupling limit.
Specifically, we assume that the optomechanical interaction
strength, approximately given by g|α(t)〈ĉ〉|, is much less
than the cavity decay rate κ . This has multifold advantages:
First, we can accurately make the rotating-wave approximation
(RWA), thereby removing the explicit time dependence of the
interaction Hamiltonian and simplifying it to the form given
below in Eqs. (24) and (29). Second, we find rate equations
for those components of the density matrix needed to trace
out the light field and derive an effective master equation for
the mechanical subsystem alone. Those terms not involved in
the trace, i.e., the off-diagonal terms, are taken to adiabatically
follow the other terms due to the dominance of the decay rate κ .
Because similar calculations have been reported thoroughly
elsewhere, including in Ref. [12], we do not reproduce all
intermediate details here.

Our first step is to make the RWA, after which we are left
with the interaction

H ′ = g(Ĉ†
1â + Ĉ1â

†), (24)

where

Ĉ1 = α1ĉ + α−1ĉ
†, (25)

and

[Ĉ1,Ĉ
†
1] = |α1|2 − |α−1|2. (26)

If the red and blue sidebands of the field detuned at ±�m

are balanced in intensity, α1 = Aeiθ = α∗
−1, with A real, and

Ĉ1 simplifies to a constant times the Hermitian mechanical
quadrature operator

Q̂ = 1√
2

(eiθ ĉ + e−iθ ĉ†). (27)

Namely,

Ĉ1 = A
√

2Q̂, (28)

and the Hamiltonian ultimately reduces to

H ′ = gA
√

2(â + â†)Q̂. (29)

The next step is to define the small parameter

ε = gA

κ
. (30)

Because of the dominant effect of dissipation on the dynamics
of the intracavity light field it always remains near its
equilibrium, absent the optomechanical interaction. In the
displaced frame, this is the ground state. Therefore, we can
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expand the density matrix in the (displaced) optical Fock basis
as

ρ = ρ00|0〉〈0| + ε(ρ01|0〉〈1| + H.c.)

+ ε2ρ11|1〉〈1| + ε2(ρ02|0〉〈2| + H.c.) + O(ε3). (31)

The adiabatic elimination proceeds by substituting Eq. (31)
into the stochastic master equation (23). We can then obtain
a dimensionless version of the SME by rescaling time and
the Wiener increment, dτ = κ dt and dw = √

κ dW . Note
that dw/dτ is still Gaussian white noise because (dw)2 = dτ .
Adiabatically eliminating the off-diagonal terms and truncat-
ing after order ε2 yields the relations

ρ02 = 2iρ01Q̂, ρ01 = 2i
√

2ρ00Q̂, (32)

and the equations of motion for the diagonal terms are (again,
to order ε2)

dρ00 = γ

2κ
[(n̄ + 1)D[ĉ]ρ00 + n̄D[ĉ†]ρ00] dτ

+ ε2[i
√

2(ρ01Q̂ − Q̂ρ
†
01) + ρ11]dτ

+ [ρ01e
iφ + ρ

†
01e

−iφ − ρ00tr(ρ01e
iφ + ρ

†
01e

−iφ)]ε dw,

dρ11 = γ

2κ
[(n̄ + 1)D[ĉ]ρ11 + n̄D[ĉ†]ρ11]dτ

− [i
√

2(Q̂ρ01 − ρ
†
01Q̂) + ρ11]dτ, (33)

where the trace in Eq. (33) is over the mechanical degree of
freedom. Though ρ11 is a small term (of order ε2), its inclusion
simplifies the computation of the final master equation for the
mechanics.

Tracing over the optical degree of freedom is equivalent to
finding an expression for d(ρ00 + ε2ρ11), which is done easily
by substitution of Eq. (32) into Eqs. (33). After substituting
back in t and W , this yields the stochastic master equation for
the conditional density matrix of the mechanical subsystem,

dρm

dt
= −k[Q̂,[Q̂,ρm]]

+ i
√

2ηk(eiφρmQ̂ − e−iφQ̂ρm − 2i sin φ〈Q̂〉ρm)ξ (t)

+ γ

2
[(n̄ + 1)D[ĉ]ρm + n̄D[ĉ†]ρm], (34)

where k = 4g2A2/κ .
The relative phase of α1 and α−1 defines which quadrature

of motion is measured, and without loss of generality we
can take θ = 0 so that Q̂ = X̂. We represent the orthogonal
quadrature by Ŷ . On the other hand, Eq. (34) makes explicit the
importance of the relative phase φ between the local oscillator
used for detection and the classical driving field. If they are
π/2 out of phase, then maximum measurement strength is
achieved. By contrast, if they are in phase (φ = 0), then the
measurement acts as a stochastic unitary drive of the system,
i.e., a random force displacing the mechanics. In this case,
the light quadrature being measured is â + â†, which amounts
to replacing that term in the Hamiltonian with a fluctuating,
semiclassical value.

We now take φ = π/2. This step is included for com-
pleteness, because it allows us to reproduce the master
equation and then the key results on conditional squeezing of

Ref. [5],

dρm

dt
= −k[X̂,[X̂,ρm]] −

√
2ηk(ρmX̂ + X̂ρm − 2〈X̂〉)ξ (t)

+ γ

2
[(n̄ + 1)D[c]ρ + n̄D[c†]ρ]. (35)

The equations for the conditioned mean values, variances,
and covariance (C = 〈X̂Ŷ + Ŷ X̂〉/2 − 〈X̂〉〈Ŷ 〉) are readily
derived under a Gaussian state ansatz:

d

dt
〈X̂〉 = −γ

2
〈X〉 −

√
KVXξ, (36)

d

dt
〈Ŷ 〉 = −γ

2
〈Y 〉 −

√
KCξ, (37)

dVX

dt
= −KV 2

X − γ

(
VX − n̄ − 1

2

)
, (38)

dVY

dt
= −KC2 + 2k − γ

(
VY − n̄ − 1

2

)
, (39)

dC

dt
= −KVXC − γC, (40)

where we have introduced the scaled measurement strength
K = 8ηk. These variances approach steady-state values. Of
particular interest is the variance of X̂

VX =
√

γ

2K

(
2n̄ + 1 + γ

2K

)
− γ

2K
, (41)

which approaches 0 for sufficiently large K or small γ ; the
uncertainty relations are maintained by a concomitant increase
in VY . As mentioned above, these results agree exactly with
those of Ref. [5], despite the modification to the optical
drive. The physical reason these distinct schemes produce
the same results is fairly straightforward. The added light
harmonics couple weakly and oscillate three times faster
than the mechanical frequency, so the force they exert on
the mechanical element will average out to zero over each
mechanical period. Because our modified system produces all
the same results from this point, we will omit the extensive
additional calculations on the use of feedback to promote
conditional squeezing into unconditioned, or “real,” squeezing.

Summarizing, then, we have shown that provided that the
RWA can be invoked [i.e., the good cavity limit of Eq. (12) is
satisfied], only the contribution of the first sideband, 
 = ±1,
contributes significantly to the homodyne detection signal,
demonstrating that the probe field couples predominantly
to a single quadrature of motion. With this, both criteria
discussed in the Introduction are satisfied, demonstrating the
viability of the proposed scheme for eliminating the parametric
instability.

VI. CONCLUSIONS

We have thus extended the proposal to perform optome-
chanical backaction-evading measurements to the case of a
multitone drive scheme. Specifically, by simply adding a
third tone detuned from the cavity by 3�m with appropriate
amplitude and phase, we push the oscillations in cavity energy
to higher harmonics of the mechanical frequency, which
in turn do not contribute to the parametric instability. We
then reproduced, in the appropriate good-cavity but weakly
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coupled regime (gA � κ � �m), the desired backaction-
evading measurement of a single mechanical quadrature.
Because these instabilities appear in such diverse experimental
settings, we hope this modification will prove useful in reach-
ing sub-zero-point position sensitivities deep in the quantum
regime. Indeed, preliminary experimental results from our
collaboration show squeezing in a microwave optomechanical
device below the zero-point level; we will confirm and refine
these results in the coming months.

There is still room to extend the calculations presented
above. For instance, it may be instructive to include the
frequency-modulating terms explicitly in the Hamiltonian,
Hparametric ∝ a†ac†c. In addition, we can go beyond the
rotating-wave approximation to examine the backaction con-
tributed by the rapidly oscillating terms in the Hamiltonian.

While small, this contribution is nonzero, and could eventually
impose a lower limit once other technical obstacles are
overcome. Finally, measurements of the output field other
than homodyne detection should be considered to increase
the applicability of the scheme even further.
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