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Compression of femtosecond petawatt laser pulses in a plasma under the conditions
of wake-wave excitation
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We propose the concept of a plasma compressor capable of producing extremely short relativistic laser pulse,
which is based on the studies of self-focusing of high-power laser pulses under the wake-wave excitation
conditions. It is shown that, in the optimal regime, the compression of laser pulses up to a duration of one
optical cycle is possible. We study the influence of hose instability on the process of pulse self-compression
and have found that this instability is not important for a wide set of initial conditions. The matter is that the
length of pulse distortion in both transverse and longitudinal directions is larger than the length of the pulse self-
compression. Hose instability gives only negligible decrease of compression degree and weak deformation of pulse
profile.
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I. INTRODUCTION

Development of methods for generation of optical pulses
being a few optical cycles long is one of the most important
research directions in the field of coherent and nonlinear optics.
Optical pulses with durations shorter than 10 fs are required in
a wide range of both basic and applied research, specifically,
from spectroscopy with high time resolution, which allows
one to study high-speed processes [1], to laser methods of
particle acceleration [2]. The possibility of using extremely
short pulses for generation of terahertz video pulses [3] and
attosecond pulses [4,5] in the vacuum-UV and soft-x-ray
ranges is actively discussed.

A decrease in the duration, i.e., compression of ultrashort
laser pulses, is achieved by using special methods. Two main
stages can be discerned in the compression process, namely,
spectrum widening and pulse compression proper. Modern
compression methods use spectrum widening at the first stage.
Different nonlinear mechanisms of spectrum widening are
used to solve this problem. In order to increase the spectral
width of a pulse, the pulse is transmitted through a nonlinear
medium whose refractive index changes on exposure to the
electric field of a light wave. Specifically, for high-power
laser pulses, it was proposed to use a hollow dielectric
capillary filled with a gaseous medium under the conditions of
predominant Kerr [6] or ionization [7,8] nonlinearity. Note that
the use of the capillary in this case is aimed at solving the key
problem of the interaction between laser pulses with media,
namely, the increase in the interaction length, since the length
of the efficient nonlinear interaction in free space is limited
by diffraction divergence of the laser beam. A set of prisms
or diffraction gratings is generally used for the compression
proper. Another efficient way to generate extremely short
pulses is to use controlled-dispersion mirrors.

In recent years, various schemes of self-compression of
laser pulses in wave-guiding systems, which also use the Kerr
[9] and ionization [10,11] nonlinearities, have been discussed
intensively. Specifically, the possibility to generate extremely
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short pulses at a multi-mJ energy level was demonstrated
in [11].

It’s the use of the filamentation process in free space that
increases the spectral width of a laser pulse at a milli-joule
power level. Filaments are nonlinear structures, which exist
due to the balance of focusing related to the Kerr nonlinearity
and diffraction and defocusing related to the ionization nonlin-
earity. The filament structure of the ionized region is capable
of ensuring a fairly long path for the interaction of a laser
pulse with media. Pulse compression is observed when a single
filament is present, which is formed in a gas under a relatively
high pressure at the power of the pulse, which is only slightly
higher than the critical self-focusing power [12]. However, as
the detailed analysis performed in [13,14] shows, the energy
efficiency of this method, i.e., the share of the initial energy in
the compressed part of the laser pulse at the output from the
nonlinear medium, is not high and amounts to several percent.

In this paper, we will consider self-compression of laser
pulses with relativistically strong amplitudes. For such pulses,
the inertia of the nonlinear response is related to the excitation
of a plasma wake wave. Shortening of a pulse with a length
being approximately equal to the plasma wavelength was dis-
cussed in [15], where the pulse compression by several times
was demonstrated. In this paper, we will consider a mechanism
of pulse shortening, which is related basically to the dynamic
of radiation self-focusing under the conditions of excitation of
the plasma wake wave with the period being much larger than
the duration of the laser pulse. We propose a theoretical model
which shows the relation between pulse self-compression and
its nonstationary self-action. This model predicts that, under
optimal conditions, the pulse can be compressed significantly.
Numerical simulations for such conditions show that initial
pulses can be compressed by about 10 times.

The paper is structured as follows. Section II defines a
system of equations which describes the evolution of wideband
laser radiation under the conditions of plasma wake-wave
excitation. Section III present analysis of the pulse spectrum
modification. Section IV studies a promising mechanism of
laser-pulse shortening. Last Sec. V presents the results of
studying the stability of the self-compression regime in the
case of relativistically strong pulses.
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II. PROBLEM FORMULATION AND INITIAL EQUATIONS

The wave equation for the vector potential A has the fol-
lowing form for an electromagnetic wave packet propagating
along z axis:

∂2 A
∂z2

+ �⊥A − 1

c2

∂2 A
∂t2

= −4π

c
j⊥, (1)

where �⊥ = ∂2/∂r2 + 1/r∂/∂r and j⊥ is the transverse
current. One can use quasi-one-dimensional hydrodynam-
ics to derive an equation for j⊥(A) in the case of laser
pulses with the typical transverse scale being much larger
than the plasma wavelength c/ωpl (ωpl =

√
4πNe2/m is

the plasma frequency). For circularly polarized radiation
A = (x0 + i y0)A, we have

∂n

∂t
+ ∂

∂z

np√
1 + p2 + a2

= 0, (2a)

∂p

∂t
= ∂

∂z
(φ −

√
1 + p2 + a2), (2b)

∂2φ

∂z2
= ω2

pl

ω2
0

(n − 1). (2c)

Here, n is the electron density normalized by the density N

in the absence of an electromagnetic field; the momentum
p is normalized by mc, a = eA/mc2, φ = e�/mc2 is the
normalized scalar potential, t = ω0told, z = zoldω0/c, and ω0

is the carrier frequency.
The one-dimensional description of the excitation dynamics

of the wake field by means of Eq. (2) is justified for the wave
fields with the characteristic transverse scale L⊥ being much
longer than the length c/ωpl of the plasma wave. Moreover,
we consider laser pulses with the longitudinal scale (duration)
L|| being shorter than the plasma wavelength (L|| < c/ωpl).

Let us derive the condition of absence of the bubble
regime. One can estimate the transverse shift of the electron
x⊥ using the equation for the electron motion d p⊥/dt ∼
−e2/mc2∇⊥|A|2. It yields the shift x⊥ � a2L2

||/L⊥. This shift
will be small in comparison with the pulse radius if a �
L⊥/L||, which is the applicability condition for our approach.
This condition can be easily satisfied for ultrashort laser pulses
L|| � L⊥. Hence the electron dynamics will take place mostly
in the longitudinal direction since the time of transit through
the pulse in the longitudinal direction is short as compared with
one in the transverse direction. As a result, we can consider
laser self-action under conditions of quasi-one-dimensional
plasma-wave excitation [16] [Eqs. (13)–(23)] [i.e., neglect
transverse plasma flows] in contrast with the bubble regime.

We can assume that nonlinear media response (2) depends
on τ = t − z/c for rare plasma where group velocity is almost
equal to the speed of light c. Using integrals of equation (2)
for localized distributions of density, momentum, and field,

n + np/
√

1 + p2 + a2 = 1, p +
√

1 + p2 + a2 = 1 + φ,

we obtain expressions for n and p:

n = 1

2

(
1 + 1 + a2

(1 + φ)2

)
, (3a)

p = (1 + φ)2 − 1 − a2

2(1 + φ)
. (3b)

Finally, we obtain the expression for j⊥(A),

4π

c
j⊥ = 4πNe

an√
1 + p2 + a2

= ω2
pl

c2

A

1 + φ
, (4)

and an equation for scalar potential,

∂2φ

∂τ 2
= ω2

pl

2ω2
0

[
1 + a2

(1 + φ)2
− 1

]
. (5)

For further detailed analysis we will use the method of
reducing the wave equation to that with a mixed derivative,
which works well for ultrashort pulses. Since the plasma is
transparent ω2

pl � ω2
0, we reduce the wave equation to the

approximate one, which neglects the wave reflection. That
is, it assumes the smoothness of plasma variations on the
wavelength scale and the smallness of the transverse beam
scale of the field over the longitudinal one (paraxial case).
This approach was used to study the propagation of wave
fields having the spectrum width approximately equal to the
central frequency in the linear and nonlinear media [11,17,18].

As a result, we obtain the following system of dimen-
sionless equations for the axisymmetric ultrashort circularly
polarized laser-pulse dynamics in the process of nonstationary
excitation of the wake wave:

∂2a

∂z̃∂τ
+ βa

1 + φ
= ∂2a

∂r̃2
+ 1

r̃

∂a

∂r̃
, (6a)

∂2φ

∂τ 2
= ω2

pl

2ω2
0

[
1 + a2

(1 + φ)2
− 1

]
, (6b)

where τ = ω0(t − z/c) is the time in the accompanied system
of coordinates, z̃ = cz/2ω0r

2
0 , r̃ = r/r0, and β = (ωpr0/c)2,

and r0 is the initial size of the laser beam. It is a generalization
of the equations, which are conventionally used to study the
processes in the case of quasimonochromatic fields, to the case
of wideband radiation [19–22]. For the sake of simplicity, the
tilde sign is omitted hereinafter.

With our limited computational resources, we have to limit
ourselves to the one-dimensional (1D) axial plasma motion
which cannot give blowout. There is no comparable way to
simulate the 2D (r,z) cold electron plasma movement and
guarantee avoidance of crossing singularities. A test of this
using a particle code (3D PIC or circular 2D) would require
enormously greater resources. Assuming these to become
available, such a system could be used to test the evolution of
a section of a given 1D cold run (probably using a moving-box
simulation). However, for sufficiently wide initial conditions,
radial motions seem a priori unlikely to change the basic
character of results obtained here (where the radial motion
is forbidden).

The system of equations (6) is much more complicated
and describes a greater number of nonlinear effects than
the corresponding equations for the quasimonochromatic
radiation,

i
∂


∂z
+ ω2

pl

ω2
0

∂2


∂τ 2
+ �⊥
 + 
φ

1 + φ
= 0, (7a)

∂2φ

∂τ 2
= 1 + |
|2 − (1 + φ)2

2(1 + φ)2
,

(7b)

023836-2



COMPRESSION OF FEMTOSECOND PETAWATT LASER . . . PHYSICAL REVIEW A 88, 023836 (2013)

where 
 is the slowly changing complex amplitude of the
vector potential. The second term in Eq. (7a) allows for the
frequency dispersion of the background plasma. In this case, as
it follows from the continuity equation for the vector potential,

i
∂|
|2

∂z
= ω2

p

ω2
0

∂

∂τ

(



∂
�

∂τ
− 
� ∂


∂τ

)

+∇⊥(
∇⊥
� − 
�∇⊥
), (8)

the total “energy” (number of quantums) of the laser pulse,

W0 = 2π

∫∫
|
|2r dr dτ, (9)

is retained in the evolution process, i.e., the energy loss due to
the excitation of plasma oscillations is not allowed for. Here
and later, double integrations are performed in infinite ranges.

Note that the corresponding integral for total energy is
absent within the framework of initial system (6), since W0

decreases when the plasma wake wave is excited. When con-
sidering the processes qualitatively, we will refer repeatedly
to Eqs. (7a), (7b), and (9). The matter is that the dynamics
of the self-action of quasimonochromatic radiation has been
studied fairly well. The effects studied within the framework
of Eqs. (7a) and (7b), i.e., self-focusing instability, collapse,
frequency conversion, etc., manifest themselves independently
and in many cases can be quantified separately. Hereinafter,
we will use these results both for setting of the most optimal
initial conditions for numerical calculations, and for discussing
of the obtained data.

III. ANALYSIS OF THE MODIFICATION
OF THE LASER-PULSE SPECTRUM

As mentioned in the Introduction to this paper, a required
condition for the shortening of a laser pulse is the widening
of its spectrum under the conditions of the plasma wake-wave
excitation. Therefore, at the initial stage, it is reasonable to
analyze the modification of the laser-pulse spectrum in the
process of nonstationary self-focusing. To illustrate specific
features of the self-action dynamics for pulses with small
numbers of field periods, let us turn to the numerical solution
of the system of equations (6a) and (6b).

Figure 1 shows a typical intensity dynamics of the field and
spectrum of the optical pulse, whose initial duration τp is less
than the period Tpl = 2π/ωpl (τp � 0.09Tpl) of the plasma
wave. At the input to the nonlinear medium, a pulse with the
following form was set:

a(τ,r) = a0 exp

(
−2 ln 2

τ 2

τ 2
p

− ln 2

2
r2 + iτ

)
. (10)

Since the self-action of the laser pulse is related to the
excitation of the plasma wake wave, the leading edge of the
pulse propagates in the unperturbed plasma (linear medium),
whereas the rest of the pulse propagates in the perturbed
plasma region. As it follows from Fig. 1(a), the front part
of the pulse diffracts, while the self-focusing starts developing
in the rear part of the pulse, and the spectrum is converted to the
long-wave part [see Fig. 1(b)]. If one ignores the ruggedness
of the intensity of the laser pulse I (z,τ,r) = |E|2, where

FIG. 1. (Color online) Dynamics of the circularly polarized optical field with the following initial parameters: τp = 15π , a0 = 1.8, and
κ = τpωpl = 0.555. Here, panel (a) shows the distribution of the pulse intensity |E|2 and panel (b) shows the distribution of the spectral
intensity S(ω) = | ∫ E(τ,r)eiωτ dτ |2. The inset shows the following spectrum distributions: red dash is the initial spectrum on the beam axis,
blue line is the output pulse spectrum on the beam axis, and green (light gray) line is the spectrum averaged over the output pulse beam
(| ∫ S(ω,r)r dr|2).
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E(z,τ,r) = −∂a/∂τ , then, as it follows from Fig. 1(a), the
spatiotemporal distribution of the pulse acquires the form of a
horn opening towards the leading edge of the pulse as a result
of nonstationary self-focusing. It is seen from Fig. 1(b) that,
during the self-action, significant conversion of the spectrum
into the long-wave region takes place. Specifically, as it follows
from the inset in Fig. 1(b), the maximum of the spectrum on
the beam axis is shifted up to two octaves into the red region
of the spectrum.

To study qualitatively the conversion of the optical pulse
spectrum, we will turn to system of equations (7). During the
process of nonstationary self-action at the wake wave, which
is being considered, a down-spectrum frequency shift takes
place. We will use the following relationship to describe this
effect:

〈ω〉 = −1

2

d〈τ 〉
dz

. (11)

It relates the average wave field frequency 〈ω〉,

W0〈ω〉 = 2π

∫∫
ω|
(ω,r⊥)|2r dr dω, (12)

and the center of mass of the packet 〈τ 〉:

W0〈τ 〉 = 2π

∫∫
τ |
|2r dr dτ. (13)

The following relationship for the center of mass of the packet
can be found from Eqs. (7a) and (8):

W0
d2〈τ 〉
dz2

= 4π
ω2

pl

ω2
0

∫∫
|
|2 ∂

∂τ

(
φ

1 + φ

)
r dr dτ. (14)

Hence it follows that during propagation of the pulse, the
wave field center of mass 〈τ 〉 shifts towards the rear part of the
pulse. We will estimate this effect for the case of an ultrashort
pulse (τpωpl � 1) in rarefied plasma (ω2

pl/ω
2
0 � 1) using the

self-similar solutions found in [19] at φ � 1.
In the linear focal region, when the field at the leading edge

of the pulse stays almost invariable, we will use the following
self-similar solutions for 
 and φ:


 = αu(ζ ) exp(ατ + iγ ze2ατ ), φ = v(ζ ) exp(2ατ ), (15)

where ζ = r exp(ατ ), and α and γ are positive constants.
Here, α is determined by the excess of the power over the
critical power of self-focusing. These solutions describe the
pulses having the shape of a horn opening towards the direction
of the motion. The structure of the main self-similar mode is
characterized by the exponential radial decrease in the vector
potential and the power-law decrease (∼ζ−2) in the plasma-
wave potential.

Thus, for a pulse with the duration τp, we obtain from
Eq. (14) that

d2〈τ 〉
dz2

� ω2
pl

ω2
0

2σ

τp

[exp(2ατp) − 1], (16)

where σ = v(ζ = 0) � 1.5. When finding the integral with
respect to the self-similar variable ζ , we assumed that the
distribution of the field in the plasma wave is smoother than
the distribution of the electromagnetic field. For the shift of

the center of mass 〈τ 〉, we find that

〈τ 〉 � ω2
pl

ω2
0

σ

τp

[exp(2ατp) − 1]z2. (17)

From here, it is seen that the frequency shift 〈ω〉 (in terms of
its absolute value) increases in the linear focal region in direct
proportion to z:

〈ω〉 � −ω2
pl

ω2
0

σ

τp

[exp(2ατp) − 1]z, (18)

Out of the linear focal region (z > zf ), the transverse
scale of the field at the leading edge of the pulse increases
proportionally to z, as the pulse propagates. Therefore, to
estimate the shift of the mass center of the wave packet 〈τ 〉,
we will use the different self-similar solutions found in [19]:

|
| = α
zf

z
u(ζ ) exp(ατ ), φ = z2

f

z2
v(ζ ) exp(2ατ ). (19)

Integrating Eq. (14) under the same assumptions, we find the
following formula for 〈τ 〉:

〈τ 〉 � ω2
pl

ω2
0

2σz2
f

τp

[exp(2ατp) − 1]

[
z − zf

zf

− ln
z

zf

]
. (20)

For z > zf , we have

〈τ 〉 � ω2
pl

ω2
0

2σ

τp

[exp(2ατp) − 1]zzf . (21)

It is seen from expression (21) that the frequency shift 〈ω〉
reaches its maximum at z � zf :

|〈ω〉max| � ω2
pl

ω2
0

σzf

τp

[exp(2ατp) − 1]. (22)

Thus the shift 〈τ 〉 of the center of mass increases in
compliance with the linear law in the nonlinear focal region.
Hence one can obtain a more accurate estimation for the
length of the pulse propagation path, along which the plasma
dispersion can be neglected. Shift (21) is small compared with
the pulse duration τp for the path

z � ω2
0

ω2
pl

τ 2
p

2σzf

1

exp(2ατp) − 1
. (23)

All the above relationships should be regarded as es-
timations, until the center of mass 〈τ 〉 shifts to a value
approximately equal to the pulse duration τp . At long paths, the
variation in the shape of the wave field starts to manifest itself.
Qualitatively, it is clear that the central part of the pulse (r � 0)
shifts at a faster rate than the periphery one (r → +∞). As
the center of mass 〈τ 〉 shifts towards the rear part of the pulse,
self-focusing of the wave field happens in this region, where
the radiation intensity is maximal. Further, one should expect
that the characteristic horn-shaped structure of the pulse will
be formed.

To conclude this section, we will present the results of
spectrum modifications for relativistic laser pulses [Eq. (10)]
under the conditions of plasma-wave excitation, which are
based on solving of system of equations (6) numerically.
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FIG. 2. (Color online) Dependences of the average carrier frequency 〈ω〉 [(a), (d)], average spectrum width 〈�ω〉 = 〈�ωout〉/〈�ωin〉 [(b),
(e)], and the relative pulse energy η [(c), (f)] depending on the initial amplitude a0 for two different durations τp = 15π , τp = 10π and plasma
densities κ = τpωpl at the output from the nonlinear medium (at z = 2.5).

Figure 2 shows dependencies of the average carrier frequency,

P 〈ω(z)〉 =
∫∫

ω|a(z,ω,r)|2d2r⊥dω,

P (z) =
∫∫ ∣∣∣∣∂a

∂τ

∣∣∣∣
2

d2r⊥dτ,

and the average spectrum width

[P 〈�ω(z)〉]2 =
∫∫

(ω − 〈ω〉)2|a(z,ω,r)|2d2r⊥dω,

as well as the pulse energy η(z) = P (z)/P (0) on the initial
pulse parameters (a0, τp) and on the plasma density. Since the
process of the plasma wake-wave excitation is not adiabatic,
it results in a decrease of the laser-pulse energy [see Figs. 2(c)
and 2(f)]. It is evident that, with a decrease in the initial
duration of the optical pulse, this effect becomes significant.

Let us consider the modification of the pulse spectrum
separately. As seen in Fig. 2, a significant shift of the laser-
pulse spectrum into the red region takes place [see also the
inset in Fig. 1(b)]. For example, as it follows from the results
of numerical simulation depending on the initial parameters of
the problem, one can expect that the spectrum shift will be up
to 〈ω〉min � 0.65 [see Fig. 2(d)], and the spectrum widening
will reach 〈�ω〉max � 9 [see Fig. 2(b)]. It is seen from Fig. 2
that the value of this shift depends on τp, since the amplitude
|a|2ω of the spectral intensity of the vector potential, which is
the source for the plasma wave [see Eq. (6b)], increases near
ω � ωpl as the initial duration of the laser pulse increases.

Thus, as it follows from the results of numerical simulation,
a significant pulse widening takes place during the process of
the self-action of the laser pulse under the conditions of the
plasma wake-wave excitation. So, one can expect that under
favorable conditions, it will be possible to shorten the pulse
duration down to one optical cycle.

IV. SELF-COMPRESSION OF THE RELATIVISTICALLY
STRONG LASER PULSE

The problems of self-compression of relativistically strong
laser pulses are dealt with in several papers [15]. These
papers consider the shortening of the laser pulses, whose
initial duration is comparable with the period of the plasma
wave. In this case, the self-compression of the laser pulse
is achieved by phasing of the spectral components using
the dispersion of the background plasma, since in the front
part of the pulse, the frequency shifts to the red region of
the spectrum, and in the rear part, to the blue region. The
trailing edge of the pulse overtakes the leading edge during
the pulse propagation since the group-velocity dispersion in
plasma is anomalous. Evidently, this regime of laser radiation
compression is also realized in the one-dimensional case.
However, as mentioned in the Introduction, the main drawback
of this pulse compression scheme is the rigid relationship
between the initial pulse duration and the period of the plasma
wave, which leads to a limitation of the energy in the initial
laser pulse.

This section presents the results related to the self-
compression of relativistically strong laser pulses in a wide
range of parameters (plasma density and pulse energy). As
shown in the previous section, the increase in the interaction
length, which is achieved due to self-channeling of the pulse
in the plasma in the regime of the relativistic nonlinearity
saturation, leads to a significant transformation of the laser-
pulse spectrum. As shown in [23], the self-focusing regime
is stable under the conditions of the plasma-wave excitation,
since in this case, the critical power has the initial sense of the
minimal power, at which the self-focusing of the beam takes
place.

Nonstationary self-action of the laser radiation evidently
results in a decrease in the pulse duration. In the self-similar
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regime (15), the pulse is shortened to the value equal to ∼ 1/α,
i.e., the compression can be noticeable under the conditions of
the significant excess of the power over the critical value.
Let us dwell on this effect in more detail. To study the
variations in the pulse duration qualitatively, we will use the
method of momenta, as mentioned above. For the second-order
momentum 〈(τ − 〈τ 〉)2〉, the following formula can be easily
obtained from Eqs. (7) and (8) with an accuracy up to the
first-order terms with respect to the dispersion parameter
(ω2

p/ω2
0 � 1):

d2〈(τ − 〈τ 〉)2〉
dz2

� − 4π

W0

ω2
pl

ω2
0

∫∫
φ

1 + φ

∂

∂τ
(τ |
|2)r dr dτ.

(24)

Here, W0 is the wave-packet energy [see Eq. (9)], and 〈τ 〉 =
2πW−1

0

∫∫
τ |
|2r dr dτ is the intensity center of the wave

packet. Within the self-similar solution for the field in the
case of quasimonochromatic radiation [19], one can obtain the
formula for the length of media

zc � ω2
0

ω2
pl

2τ 3
0

παμ[exp(2ατ0) − 1]
, (25)

at which the pulse duration becomes zero. Here μ =∫ +∞
0 [(dv/dζ )2ζ 2 + 4v2 + 4v(dv/dζ )]dζ ; τ0 is the initial

pulse duration. It follows from the formula for zc that the
exponential decrease in the self-compression length occurs in
the self-similar regime if the power exceeds the critical value
significantly (ατp � 1).

To verify the obtained qualitative result, we will use
numerical simulation of system (6) studying the compression
of laser pulses with two different types of initial conditions.
In the first calculation series, we will specify such an input
triangular pulse rise, followed by an exponential decrease
α = ln 2/(8π2), which has the shortest path of reaching the
self-similar regime:

a = a0 exp(−r2 ln
√

2 + iτ )

×
{

τ/τp, 0 � τ < τp,

exp[−α(τ − τp)2], τ � τp.
(26)

In the second series, the pulse has the super-Gaussian form:

a = a0 exp[−r2 ln
√

2 + iτ − 32 ln 2(τ/τp)6]. (27)

The results of the numerical simulation are described below.
Figure 3 shows the dynamics of the field intensity for two
different temporal pulse shapes, Eqs. (26) and (27). Also,
there are inplots which show average spectrum width 〈�ω〉
and average frequency 〈ω〉 of the wave field. The relative
pulse energy η is shown on the bottom inplot. Note that the
relative pulse energy is decreased due to wake-wave excitation
at propagation in plasma.

As it follows from Fig. 3(a), the optical pulse is compressed
in both the transverse and longitudinal directions, as it
propagates through nonlinear medium. Additionally, as it
follows from Fig. 3, the maximum compression of the pulse
to two periods of the field takes place at the path z = 0.6875.
The degree of the compression amounted to 3.6. Further, the
pulse starts elongating due to the influence of the background
plasma dispersion.

In the second calculation series, the initial distribution
corresponding to Eq. (27) was specified. It follows from the
results of the numerical simulation that, as the laser pulse
propagates in a nonlinear medium, the temporal structure of
the field is transformed into a structure being close to the
self-similar one, and then significant compression of the laser
pulse occurs [see Fig. 3(b)]. It is seen from the figure that the
pulse was compressed by 11.5 times at the length z = 1.1625,
which corresponds to a pulse with the 1.5 field period, and
this duration is close to the extremely short duration of the
pulse with a given spectrum width being equal to one field
period. As seen from Fig. 3(b), the field intensity is amplified
by 12.8 times, which is related to the field focusing in both the
transverse and longitudinal directions.

The pulse with the super-Gaussian profile [Fig. 3(b)] is
compressed stronger than the triangular pulse. The reason for
that is that there are two stages of pulse compression. At the
first stage, the pulse is compressed when the super-Gaussian
profile of the pulse is transformed to the self-similar profile
(z ∼ 0.4). At the second stage, the pulse is compressed
similarly to the triangular pulse.

It follows from Fig. 4(a) that significant widening of the
laser-pulse spectrum takes place during the process of the
pulse self-compression. The top inset in Fig. 3(b) shows
the averaged characteristics of the spectrum; from there it
is seen that the pulse spectrum shifts by 25%, but widens by
11 times simultaneously. At this its energy is decreased by
about 30% as it is seen from Fig. 3(b). Figure 4(b) presents the
distributions of the laser-pulse intensity at the axis (r = 0) at
the input and output of the nonlinear medium. Along with the
narrow compressed part, “wings” are present in the intensity
distribution. The complete phase compensation allows one to
achieve optimal self-compression of the output pulse, when
its duration is determined only by the spectrum width. The
result of the optimal self-compression can be obtained by the
inverse Fourier transform of the spectrum shown in Fig. 4(b)
(magenta dash). As follows from the figure, a pulse with
a duration being equal to one field period can be obtained
from the spectrum in Fig. 4(a). The compressed pulse can
be categorized as an extremely short one; in this case it is
slightly longer than one field period. The performed numerical
experiments demonstrate sufficiently high efficiency of the
proposed method, both for its energy efficiency (tens of
percents), and, to a certain degree, ease of realization, where
the most tender spot is the determination and right choice of
the length of the nonlinear medium. It is important to note that
self-compression of the pulse over the beam cross section is
almost uniform in our numerical simulation.

As seen from Figs. 3(b) and 4(b), a compressed laser
pulse has a prepulse, which is determined by the nonshifted
part of the field spectrum. Therefore, if one cuts out the
spectral component of the laser pulse starting at the frequency
ωcut = 0.7 [this boundary is shown by the dashed magenta
line in Fig. 4(a)], one can obtain the pulse shown in Fig. 4(b).
However, by eliminating the prepulse, we increase the duration
of the compressed pulse, since we cut out some of the spectral
components. In this case, the pulse duration increased by 1.4
times as a result of the action of the frequency filter.

To conclude this section, the following should be em-
phasized. This mechanism of laser-pulse shortening is
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FIG. 3. (Color online) Dynamics of the intensity of the laser pulse I (z,x,τ ) = |E(z,x,τ )|2 (E = −∂a/∂τ ) for two different types of the
initial conditions: (a) τp = 48π , a0 = 2.4, and τp = 0.07Tpl ; (b) τp = 40π , a0 = 2.0, and τp = 0.4Tpl . The top left-hand panel shows the
dependence of the average width of the laser-pulse spectrum 〈�ω〉; the top right-hand panel shows the average carrier frequency 〈ω〉;
the lower panel shows the relative pulse energy η. The main panel shows the laser-pulse intensities at different z values for the same coordinates.
Here, the light blue (light gray) line at background shows the initial temporal profile of the laser pulse at the beam axis, the red (gray) line at
background shows the current temporal profile of the pulse at the beam axis, the cyan (light gray) line shows the initial distribution of the field
intensity in the transverse direction, and the magenta (gray) line shows the current distribution of the laser pulse in the transverse direction.
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FIG. 4. (Color online) (a) Spectra of the laser pulse: red line is initial spectrum of the field, blue dots is spectrum of the compressed pulse,
and magenta dash is boundary of the frequency-filter action. (b) Temporal profiles of the laser-pulse intensity: red line is compressed pulse at
the length z = 1.1625, magenta dash is spectrum-limited pulse corresponding to the spectrum in panel (a), and blue dots is result of the action
of the frequency filter on the compressed pulse (red line).

fundamentally related to the nonstationary nature of the
self-focusing of the 3D wave packet during plasma wake
excitation with the period longer than the initial duration of
the laser pulse. Such self-compression of laser pulses takes
place under the following conditions: (a) the initial beam
width r0 should exceed the plasma wavelength (r0 > c/ωp)
for a stronger self-focusing effect; (b) the initial pulse duration
should be smaller than the plasma period (τp < 2π/ωp).
The main difference from other problems of laser-plasma
interaction [15,16] is the use of laser beams with widths
being about several hundred of microns. Obviously, it results
in that the laser-pulse self-compression will take place for
laser powers being about several PW or higher. In application
to available laser systems [24], the numerical simulations
show that the laser pulse with duration τp = 53 fs (20
optical cycles), a0 = 0.7, λ = 0.8 μm, and r0 = 120 μm (that
corresponds to power P0 = 1.1 PW) will be compressed to
a 7 fs pulse during its propagation through nonlinear media
with a length of 15.8 cm and the unperturbed plasma density
ne � 7 × 1017 cm−3. Stronger compression is achieved by
using higher powers. For example, a laser with a power of 10
PW will allow one to compress a pulse from a duration of 53 fs
to 4 fs (1.5 optical cycles) along a path of 59 cm [see Fig. 3(b)].

Thus, to implement this laser-pulse self-compression
method, one must have a plasma column several dozens of
centimeters long with the transverse scale of a few hundred
micrometers and electron density of 7 × 1017 cm−3. Several
ways to generate such plasma can be suggested as follows.

(1) The plasma can be produced by electron beam. So, a
similar plasma column 65 cm long, arising as a result of the
lithium vapor ionization by an electric field of the injected
electron beam was used in the SLAC experiment on the
wakefield acceleration of electrons [25].

(2) The plasma can be produced by the same laser
pulse which is planned to be compressed. Since it concerns
shortening of the laser pulse of the petawatt power level, so
the intensity of a laser pulse focused for the size of 300 μm
will account for 3 × 1018 W/cm2, that far exceeds (by several
orders) the ionization threshold of hydrogen 2 × 1014 W/cm2.

(3) Besides, the plasma can be produced via the supple-
mentary subpetawatt ionizing laser pulse advancing the main
relativistic pulse by a few hundred femtoseconds to avoid
the hydrodynamic plasma spread. So long as the ionizing

laser pulse may become refracted one needs to set the initial
intensity and the beam diameter with a considerable reserve.

It must be noted that the process of laser pulses self-
compression at the self-focusing regime is weakly sensitive
to the plasma inhomogeneity. Further we will consider the
influence of one of the strongest instabilities (the hose
instability) on the laser pulses self-compression process.

V. STABILITY OF THE REGIME OF SELF-COMPRESSION
OF THE LASER PULSE

As shown in the previous section, at the optimal initial
parameters of the laser radiation, one can achieve significant
compression of the pulse (by more than an order of magnitude).
In this case, an appropriate question arises about how various
instabilities of the laser beam will influence this process
of the pulse self-compression (filamentation instability, hose
instability [26,27], and so on). It follows from [23,28] that the
development of spatiotemporal (filamentation) instability of
the laser pulse under the conditions of excitation of a plasma
wave with a period exceeding the duration of the laser pulse is
suppressed to a significant degree. Unlike the case of a medium
with inertia-free nonlinearity, the initial stratification of the
wave beam develops only at the initial stage of the process, and
then filaments are attracted and the symmetric self-focusing
regime is restored. In this section, we will present the results
of studying the stability of the self-compression regime of a
relativistically strong laser pulse with respect to the violation
of the axial symmetry of the initial distribution.

Numerical analysis of this problem within the framework
of the (3 + 1)-dimensional model,

∂2a

∂z∂τ
+ βa

1 + φ
− ∂2a

∂x2
− ∂2a

∂y2
= 0, (28a)

∂2φ

∂τ 2
= ω2

p

ω2
0

1 + |a|2 − (1 + φ)2

2(1 + φ)2
,

(28b)

is an extremely complicated problem due not only to insuffi-
cient computational resources, but also to the difficulty of rep-
resenting the results of computer simulation of a nonstationary
three-dimensional problem. Therefore, we followed the papers
in [23,29,30]; specifically, while retaining the scaling of the
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FIG. 5. (Color online) Results of the self-compression of the laser
pulse specified at the input to the nonlinear medium in the form of
Eq. (30) (a0 = 1.2, κ = 0.83, and τp = 40π ) at various values of the
coefficient d1: d1 = 0, d1 = 0.5, and d1 = 2 (a, b, and c, respectively).
The left-hand panel shows the initial distribution of the field intensity;
the right-hand panel shows the result of numerical simulation of the
system of equations (29). Here, the dashed blue line shows the initial
temporal profile of the laser pulse at the beam axis; the black line
shows the current temporal profile of the pulse at the beam axis; the
green (gray) line shows the temporal profile of the pulse at x = x�

(in the cross section of the beam, where the intensity reaches the
maximum value), the dashed black line shows the initial distribution
of the field intensity in the transverse direction, and the cyan (light
gray) line shows the current distribution of the laser pulse in the
transverse direction.

equations, we reduced the number of spatial variables and in-
creased the nonlinearity degree at the same time. The dynamics
of the self-action of a relativistically strong laser pulse was sim-
ulated numerically by using the following system of equations:

∂2a

∂z∂τ
+ βa

1 + φ
− ∂2a

∂x2
= 0, (29a)

∂2φ

∂τ 2
= ω2

p

ω2
0

1 + |a|4 − (1 + φ)2

2(1 + φ)2
. (29b)

To study the details of the influence of structural perturba-
tions on the process of laser-pulse shortening, we specified the
initial distribution of the laser field, which was close to that
considered in [31]:

a(x,τ ) = a0 exp

(
− ln 2

2
(x − d1τ/τp)2 − 32 ln 2(τ/τp)6

)
.

(30)

As it follows from this formula, as the coefficient d1 increases,
the main axis of the elliptical structure of the spatially confined
pulse makes a turn. This corresponds to an increasingly great
deviation of the laser-pulse propagation direction from the
z axis. Figure 5 shows the results of the self-compression
of the pulse specified at the input to the nonlinear medium
in the form of Eq. (30). It is seen from the figure that the
self-compression regime is stable at the considered paths of
the pulse propagation. The turn of the main axis of the ellipse
of the spatially confined pulse results in slight weakening of
the pulse self-compression and the wing in the front part of the
pulse becomes more pronounced. This arises due to the fact
that, as the value of the coefficient d1 increases, the efficient
duration of the incident pulse decreases. Since we do not vary
the density of the background plasma, this leads to a decrease in
the efficiency of plasma-wave excitation by the incident pulse,
in contrast with the case when d1 = 0. Hence the quality of the
phase self-modulation of the incident pulse becomes worse at
a fixed length of the nonlinear medium.

VI. CONCLUSION

The paper proposes a concept for development of a plasma
compressor for generation of extremely short relativistically
strong femtosecond pulses at the petawatt power level. The
proposed compression mechanism is basically related to the
process of nonstationary self-focusing of a spatially confined
wave packet in transparent plasma during excitation of a
plasma wake wave with a period which exceeds the duration
of the laser pulse. It is shown that, in the optimal regime, laser
pulses with durations up to one optical period of the field can
be excited with an energy efficiency of 25%. It is demonstrated
that the regime of the laser-pulse self-compression is stable at
the considered propagation paths with respect to perturbations
of the axial symmetry of the initial distribution.
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