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Influence of the phonon-mediated coupling on the properties of a single quantum-dot laser
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We theoretically investigate the influence of the phonon-mediated coupling on the properties of the laser
generated by a single red-detuned quantum dot (QD), where the QD is coherently driven and coupled to a
microscopic cavity which can be engineered in a photonic band-gap (PBG) material. In the low-temperature
limit, the phonon-mediated coupling is deleterious to the emission of photon into cavity field and the threshold
behavior of the laser persists after the inclusion of the phonon-mediated processes. Without being engineered
in the PBG material, if the damping rate κ of the cavity is close to but smaller than the phonon-mediated
spontaneous emission rate γ of the dot, the photon statistics of the cavity field change from super-Poissonian to
sub-Poissonian. The nonclassical effect can be achieved due to the phonon-mediated processes induced by the
electron-phonon interaction and the off-resonant dot-cavity coupling. The nonclassical effect can be enhanced
by the PBG material. When the effect of the thermal phonon is taken into account, the cavity field exhibits
the super-Poissonian property. If κ is much smaller than γ , the phonon-mediated processes can lead to the
increase (decrease) of the photons provided that the incoherent pumping rate is lower (higher) than the effective
phonon-mediated threshold. But, if κ is close to or larger than γ , the emission of the photon may dominate the
absorption process, strengthening the intensity of the cavity field.
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I. INTRODUCTION

A single-emitter laser consisting of an atom in Rydberg [1]
or lower electronic states [2], an ion [3], a superconducting
qubit, or a quantum dot (QD) [4,5] interacting with a single-
cavity mode is the fundamental model in the field of cavity
quantum electrodynamics (CQED). Numerous interesting
effects have been discovered in the behavior of single-emitter
laser, such as squeezing [6], antibunching of photons [7],
single and entangled photon sources [8], and observation
of the vacuum-Rabi splitting in the spectrum [9]. It is a
prerequisite for pumping rate exceeding that of relaxation
when the conventional laser is generated, i.e., the pumping
rate must be larger than the threshold of the lasing transition.
The property of the thresholdless laser of a dressed atom is
investigated [10], where a resonantly driven atom is strong
coupled to a microcavity which is engineered in a photonic
band-gap (PBG) material [11–14]. It is found that, under
a thresholdless operation, mean photon number increases
nonlinearly with the pumping rate, and this process is indicated
by a sub-Poissonian statistics of the cavity field. Recently, a
different analytical description is suggested to investigate the
stationary behavior of a two-level emitter [15], which is shown
to be a phase-averaged nonlinear coherent state (an eigenstate
of a specific deformed annihilation operator) [16].

Every achievement with atoms becomes an objective for
semiconductor because the semiconductor systems, e.g., a
system based on semiconductor QDs embedded in photonic
crystal nanocavities [17], allows for the design of scalable
structure, hence possess unique advantages in terms of inte-
gration and scalability. The promising applications range from
the studies of light-matter interaction, over ultralow-threshold
lasers, to various applications in quantum information science
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and integrated nanophotonic network. The ability of the
photonic crystal microcavities to realize extremely small-
microcavity mode volumes and very high-cavity Q factors
endows it with a priority in realizing strong coupling [18].
Deterministic coupling a single QD to a photonic crystal cavity
has been realized [19] and a thresholdless laser operating on
a single QD is expected to be achieved [20]. Recently, the
strong coupling of light and matter is reported to be realized
with QDs in microcavities [21] and to be different from the
paradigm of atoms in optical cavities.

One of the interesting developments in recent CQED
experiments with QDs coupled to semiconductor microcavities
is the observation of off-resonant dot-cavity coupling, in
which excitations of one or more QDs embedded in a cavity
also lead to a significant photon emission at cavity-field
frequency. This fascinating phenomenon, initially reported
by Hennessy et al. [22] and Press et al. [23], distinguishes
the solid-state system from atomic CQED. Some theoretical
[24,25] and experimental interests have been attracted to
explore the physical mechanism behind such coupling as
well as the possible applications. The power broadening
of the QD linewidth and saturation of the cavity emission
are observed [26,27] when measuring the spectroscopy of a
resonantly driven QD which is coupled to an off-resonant
cavity. The off-resonant coupling can be theoretically mod-
eled by introducing a phenomenologically incoherent cavity
pumping mechanism [28] to the coupled system. In contrast,
an intuitive model for off-resonant coupling is proposed with
inclusion of two additional incoherent decay terms into the
dynamics of the system [25], referred to as phonon-mediated
coupling. It appears that this model can properly describe
the off-resonant dot-cavity coupling in a better way than the
treatment of coupling between the QD and the cavity as a pure
dephasing process, particularly in the case of large QD-cavity
detuning [25]. On the other hand, the polaron transformation
can eliminate the exciton-phonon coupling and introduces a

023835-11050-2947/2013/88(2)/023835(12) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.023835


JIA-PEI ZHU, HUI HUANG, AND GAO-XIANG LI PHYSICAL REVIEW A 88, 023835 (2013)

modified dot-cavity coupling and a modified radiative-decay
rate [29] and, consequently, is convenient for studying QD
cavity-QED systems. A polaron master-equation method was
proposed to describe the electron-phonon interaction (EPI) in
the QD-cavity system [30,31]. Recently, the signatures of a
coherently driven QD are demonstrated to be preserved after
phonon-assisted scattering to an off-resonant cavity even for
the presence of the incoherent scattering processes [32]. The
phonon-mediated coupling between two QDs is also shown
through an off-resonant photonic-crystal microcavity [33].
Besides, the strong coupling of a QD to a photonic molecule
within a photonic crystal platform is studied as well as the
observation of off-resonant cavity-cavity and QD-cavity inter-
action [34]. A solid-state CQED system with the bichromatic
driving has also been investigated [35]. An endless pursuit
for understanding the mechanism behind the off-resonant
coupling and for its applications is going on. However, to
the best of our knowledge, none of these works investigate the
properties of the laser generated by a single QD which is off-
resonant coupled with a cavity, and this is the task of this paper.

The purpose of this paper is to investigate the influence
of the phonon-mediated coupling on the properties of the
laser generated by a single strongly driven QD which is red
detuned from and strongly coupled to a microcavity. It is
found that, in a low-temperature limit, the phonon-mediated
coupling plays a deleterious role in the mean photon number.
The threshold behavior of the laser persists after the inclusion
of the phonon-mediated processes. If the damping rate of
the cavity κ is close to but smaller than the spontaneous
emission rate γ of the dot, the photon statistics of the cavity
field change from super-Poissonian to sub-Poissonian. The
interesting nonclassical phenomenon can be achieved in the
off-resonant dot-cavity system, without being engineered in
a PBG material. This character should be attributed to the
phonon-mediated processes induced by the EPI and the off-
resonant dot-cavity coupling. When the effect of the thermal
phonon is taken into account, the cavity field exhibits the
super-Poissonian property. If the κ is much smaller than γ , the
phonon-mediated processes can lead to the increase (decrease)
of the photons in the cavity when the incoherent pumping rate
is lower (higher) than the effective phonon-mediated threshold.
But, if κ is close to or larger than γ , the emission process may
dominate the absorption process, leading to the increase of the
photon number in the cavity.

This paper is organized as follows. In Sec. II, we introduce
the system and give the polaron master equation of the reduced
density operator for the coupled dot-cavity system, in which
the phonon-mediated coupling is explicitly included; then, we
derive the equations for photon-number distribution function.
Section III is devoted to the investigations of the influence of
the phonon-mediated coupling on the properties of the laser.
We first discuss the results in the limit of low temperature.
Then, we explore the case when the effect of the thermal
phonon is considered and give the reasonable explanations.
Finally, we summarize our results in Sec. IV.

II. DESCRIPTION OF THE SYSTEM

The model for a single-emitter system strongly coupled
to a microscopic cavity of frequency ωc engineered inside

a PBG material was reported in previous literatures [10,12].
Our model consists of a single two-level QD and a high-Q
microscopic cavity. The QD with ground state |1〉 and excited
state |2〉 separated by transition frequency ωa is driven by
a coherent external laser field with frequency ωL and Rabi
frequency ε, and strongly coupled to the cavity which can be
technically engineered within a photonic crystal. Aside from
the coupling to the cavity, the QD is also allowed to interact
with an acoustic-phonon reservoir. In the rotating frame with
the frequency of ωL, the Hamiltonian of the system can be
written as (setting h̄ = 1 throughout the paper)

Ĥ = Ĥ0 + ĤI , (1)

in which the term

Ĥ0 = �ca
†a + �a

2
σz + ε(σ12 + σ21)

+
∑

λ

�λa
†
λaλ +

∑
p

ωpb†pbp, (2)

representing the unperturbed Hamiltonians of the coherently
driven QD under the rotating-wave approximation, the cavity,
and the photonic crystal vacuum reservoir and the phonon
reservoir. The operators a† (a), a

†
λ (aλ), and b

†
p (bp) are the

creation (annihilation) operators for the microcavity mode,
the photonic crystal vacuum reservoir, and the phonon
reservoir, respectively. �i = ωi − ωL (i = a,c,λ) describe the
detunings between the transition frequency of the driven
QD, the cavity-mode frequency, and the frequency of the
crystal reservoir, from the driving frequency ωL, respectively.
σ12 = σ

†
21 = |1〉〈2| is the lowering operator of the electron

in the bare QD, and σz = |2〉〈2| − |1〉〈1| corresponds to the
population invention operator.

In addition to the coupling with a single mode of a
microcavity, the single QD is also allowed to interact with the
photonic crystal vacuum reservoir and phonon reservoir. In
practice, such a system can be realized by embedding a QD in
a dielectric microcavity placed within a two-mode waveguide
channel in a two-dimensional (2D) PBG microchip [12]. Under
the rotating-wave approximation, the corresponding coupling
can be given by the Hamiltonian within the electric dipole and
rotating-wave approximations as

ĤI = gc(a†σ12e
i�ct + aσ21e

−i�ct ) +
∑

p

gpσz(bp + b†p)

+
∑

λ

gλ(ωλ)(a†
λσ12e

i�λt + aλσ21e
−i�λt ). (3)

The coefficients gc, gp, and gλ(ωλ) describe the coupling
strength of the QD with the cavity mode, the phonon reservoir,
and the vacuum modes of the photonic crystal, respectively.
The information about the frequency dependence of the
photonic crystal is stored in the coupling constant gλ(ωλ),
which can be written as gλ(ωλ) = gλD(ωλ) with gλ being a
constant proportional to the dipole moment of the QD and
D(ωλ) corresponding to the transfer function of the reservoir.
By appropriately engineering the system topology, at a certain
frequency a large discontinuity in the local photon density of
states (LDOS) can be produced, e.g., |D(ωλ)|2 = u(ωλ − ωb),
where u(ωλ − ωb) is the unit step function and ωb refers to the
photonic density-of-states band-edge frequency. The cavity
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resonant frequency can be engineered to be within a PBG or
low-LDOS region and near the LDOS discontinuity, such that
the dot system which is strongly coupled to the cavity field
also experiences this discontinuity which strongly influences
the QD dynamics and results in new emission effects, i.e.,
|D(ωλ)|2 = 0 for ωλ > ωb and |D(ωλ)|2 = 1 for ωλ < ωb.
For a real band-gap material, the band edge is not exactly
in the form of the step function but is rather in a form of a
slope with width �ω/ωb ≈ 10−4 [11–14]. For example, for
the case that the phonon-mediated spontaneous emission rate
γ is of the order 10−6ωb, the cavity damping rate κ ranges from
10−9ωb to 10−6ωb, and the Rabi frequency of the driving field
is the order 10−3ωb, the unit-step-function approximation is
reasonable [12]. In this regime, both the secular approximation
and the rotating-wave approximation can be safely used in the
system under consideration.

A. Polaron master equation in the dressed-states basis

For the convenience for studying this QD-cavity system,
we transform the total system to the polaron frame [29–31]
to eliminate the electron-phonon coupling and introduce
a renormalized dot-cavity coupling strength. The polaron
transformation of the QD-driven system can be written as
H̃ = exp(S)Ĥ exp(S) with

S =
∑

p

gp

ωp

(b†p − bp)σz. (4)

The transformed Hamiltonian of the system can be expressed
as three parts

H̃ = H̃sys + H̃bath + H̃int, (5)

where

H̃sys = �a

2
σz + �ca

†a + 〈B〉X̃g, (6a)

H̃bath =
∑

λ

�λa
†
λaλ +

∑
p

ωpb†pbp, (6b)

H̃int =
∑

λ

〈B〉gλ(ωλ)(a†
λσ12e

i�λt + H.c.)

+ X̃gϒ̃g + X̃uϒ̃u (6c)

describe the Hamiltonian of a modified system (the QD
plus the cavity), the baths (photonic vacuum and phonon
reservoirs), and the interaction between the system and baths,
respectively. In writing the expressions of Eq. (6), we have
omitted the polaron shift − ∑

p g2
p/ωp which accounts for

the renormalization of the resonant frequency of the QD
because of phonon emission and reabsorption. In Eq. (6), we
have defined the operators of the system as

X̃g = gc(a†σ12 + aσ21) + ε(σ12 + σ21),
(7)

X̃u = igc(a†σ12 − aσ21) + iε(σ12 − σ21),

and the fluctuation operators of the phonon reservoir as

ϒ̃g = 1

2
(B+ + B− − 2〈B〉),

(8)

ϒ̃u = 1

2i
(B+ − B−).

Here, we have assumed that the phonon effect induced by the
radiative decay processes has negligible contributions on our
results thus treating B± as 〈B〉 during the interaction of the QD
with the photonic crystal vacuum reservoir. B± is the coherent
displacement operator of the phonon modes with the form

B± = exp

[
±

∑
p

2gp

ωp

(bp − b†p)

]
, (9)

and 〈B〉 represents the thermally averaged values of the phonon
displacement operators, which in general is of the form [31]

〈B〉 = exp

[
−1

2

∫ ∞

0

J (ω)

ω2
coth

(
ω

2KBTp

)
dω

]
= exp

[
−1

2

∑
p

(
2gp

ωp

)2

(2n̄p + 1)

]
= 〈B+〉 = 〈B−〉. (10)

J (ω) is the spectral function of the phonon reservoir. n̄p ≡
〈b†pbp〉 = [exp(ωp/KBTp) − 1]−1 is the mean phonon occu-
pation number of frequency ωp at a reservoir temperature
Tp and KB is the Boltzmann constant. Since M̂ = ∑

p

gp

ωp
b
†
p

and N̂ = ∑
p′

gp′
ωp′ bp′ satisfy the condition of [M̂,[M̂,N̂ ]] =

[N̂,[M̂,N̂ ]] = 0, for simplicity, in this paper we apply the
relation

eα(M̂+N̂) = eαM̂eαN̂ e−α2[M̂,N̂]/2 (11)

and assume that the EPI is not strong such that the Taylor
series expansion can be applied to approximately rewrite the
displacement operators as B± ≈ 〈B〉[1 ± ∑

p

2gp

ωp
(bp − b

†
p)].

This treatment implies that we have neglected the processes
involving multiphonon transitions.

Since the QD is strongly driven by a coherent field which
can be viewed as a dressing field for the QD, we assume that
the strength of the driven field is much stronger than that of
the dot cavity (ε � gc), and take the eigenstates defined by
Ĥd = �aσz/2 + 〈B〉ε(σ12 + σ21) as the dressed states of the
QD. The eigenstates of Ĥd are obtained through the definition
Ĥd |α〉 = λα|α〉 with the form

˜|1〉 = c|1〉 − s|2〉, ˜|2〉 = s|1〉 + c|2〉, (12)

where the parameters c ≡ cos φ and s ≡ sin φ with rota-
tion angle 0 � φ � π are defined as c2 = (1 + �a

2
)/2 and

s2 = (1 − �a

2
)/2. 2 = (4〈B〉2ε2 + �2

a)1/2 is the generalized
Rabi frequency of the driving field. The operators Rij =
˜|i〉 ˜〈j | (i,j = 1,2) correspond to the dressed-state transitions

and the term R
†
3 = ˜|2〉 ˜〈2| − ˜|1〉 ˜〈1| is the population inversion

of the dressed QD. We point out here that despite the
application of the external driving field, the lasing transition
is pumped by a pure incoherent process. The coherent field
appears here as a dressing field of the QD. Therefore, the
process investigated in this paper is not the resonant scattering
of coherent field. In this dressed-state basis, we transform
the system into the interaction picture described by the
unperturbed Hamiltonian

H̃0 = �ca
†a + R3 +

∑
λ

�λa
†
λaλ +

∑
p

ωpb†pbp. (13)
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The interaction Hamiltonian of the system H̃int(t) =
exp(iH̃0t)H̃int exp(−iH̃0t) is correspondingly obtained as

H̃int(t) = Ĥ λ
I (t) + Ĥ

p

I (t), (14a)

Ĥ λ
I (t) =

∑
λ

〈B〉gλ(ωλ)[csa†
λR3e

i(ωλ−ωL)t

+ c2a
†
λR12e

i(ωλ−ωL−2)t

+ s2a
†
λR21e

i(ωλ−ωL+2)t + H.c.], (14b)

Ĥ
p

I (t) =
∑

p

2gp

ωp

〈B〉[(gca
†ei�ct + ε)(csR3 + c2R12e

−i2t

− s2R21e
i2t ) − H.c.](bpe−iωpt − b†peiωpt ). (14c)

In this paper, we only focus on the case of �c = 2,
the coherently driven QD being red detuned from the cavity
which is tuned to resonance with the high-frequency Rabi
sideband. We assume that the central frequency ωp of the
phonon reservoir is nearly around 4. In this case, we can
employ the secular approximation to drop the terms oscillating
at rapid frequencies such as e±iωpt , e±i(�c±ωp)t , e±i(2±ωp)t ,
e±i(�c−2±ωp)t , and e±i(�c+2+ωp)t . The interaction coupling
(14c) reduces to

Ĥ
p

I (t) = −〈B〉
∑

p

2gp

ωp

gcs
2(aR12b

†
pei�pt + H.c.), (15)

where �p = ωp − �c − 2 represents the detuning of the
phonon-mode frequency from the frequency of �c plus the
splitting frequency of the dressed states. The term aR12b

†
pei�pt

in Eq. (15) describes the process that the electron transits
from the dressed state |2̃,N − 1〉 to the upper dressed state
|1̃,N〉 through the absorption of a cavity-mode photon and
simultaneous emission of a phonon. Since the energy differ-
ences between the high-frequency transition of the dressed
QD and the cavity frequency are compensated by the phonons
with frequency ωp 	 4, the phonon-mediated processes
discussed above and their counterparts occur resonantly.

In order to study the dynamics of the dot-cavity system, we
assume that the couplings between the QD and the phonon
and photonic crystal vacuum reservoirs are weak and the
changes of the couplings in the reservoirs are negligible. Also,
a fast time scale for the decay of the reservoir correlations is
assumed such that the secular [36] and Born-Markov [37]
approximations can be used. We apply the second-order
perturbation theory to trace over the reservoir degrees of
freedom and obtain the corresponding dissipative part of the
master equation through the following equation:(

∂ρ

∂t

)
λ,p

= −
∫ t

0
dt ′TrR{[H̃int(t),[H̃int(t

′),ρT (t ′)]]}, (16)

where TrR denotes tracing over the photonic crystal vacuum
reservoir and phonon reservoir variables. Under the Born-
Markov approximation, the operator ρT (t ′) in Eq. (16) will be
replaced by ρ(t) ⊗ ρλ(0) ⊗ ρp(0), where ρ(t) is the reduced
density operator for the dressed QD plus the cavity field
and ρp(0) and ρλ(0) are the initial phonon and photonic
crystal vacuum reservoir operators. After straightforward
calculations, the master equation for reduced density operator
of the coupled dot-cavity system, which can describe the

influence of the phonon-mediated off-resonant coupling on
the dynamics of the dot-cavity system, has the form [12,38]

dρ

dt
= −i[Ĥ ′

I ,ρ] + Lcρ + Lλρ + Lpρ. (17)

In Eq. (17),

Ĥ ′
I = ig1(a†R12 − aR21), (18)

where g1 ≡ 〈B〉gcc
2 is the effective phonon-mediated cou-

pling constant between the dressed dot and the off-resonant
cavity. The first dissipative term Lcρ = κD[a] in master
equation (17) with the definition

D[O] = 1
2 (2OρO† − O†Oρ − ρO†O) (19)

is phenomenologically included, and describes the damping
of the cavity mode into the crystal reservoir with decay rate
κ . The second dissipative term Lλρ in master equation (17),
originating from the interaction between the QD and the
photonic crystal as described by Eq. (14b), is obtained as

Lλρ = γ0D[R3] + γ+D[R12] + γ−D[R21], (20)

which is responsible for the damping among the dressed
states of the dressed-QD system. Specifically, as shown in
Fig. 1, the parameter γ0 = γ c2s2u(ωL − ωb) corresponds to
the spontaneous emission rate with which the electron of the
QD transits at central frequency of the dressed states. γ =
γ̃ 〈B〉2 represents the phonon-mediated spontaneous emission
rate and γ̃ is the spontaneous emission rate of the QD in
free space. The coefficient γ− = γ s4u(ω− − ωb) corresponds
to the phonon-mediated spontaneous decay rate of electron
which occurs at frequency ω− = ωL − 2 from the lower
dressed state ˜|1〉 of one manifold with N + 1 excitations to
the upper dressed state ˜|2〉 of the manifold below with N

excitations [12,39], whereas the coefficient γ+ = γ c4u(ω+ −
ωb) describes the decay rate of electron which occurs at
frequency ω+ = ωL + 2 from the upper dressed state ˜|2〉
of one manifold (with N excitations) to the lower dressed state
˜|1〉 of the manifold below (with N − 1 excitations), as depicted

in Fig. 1.
Actually, the incoherent pumping process happens in the

way from |1̃〉 with N + 1 excitations to |2̃〉 with N excitations.

L

L

1
2( ) LN

1
2( ) LN

3
2( ) LN 2

1

0

0

2

1

2

1
2

FIG. 1. Energy levels of the dressed-QD system with the transi-
tion rates to and out of the upper dressed state ˜|2〉. The transition rate
γ+ corresponds to the phonon-mediated spontaneous emission rate at
lasing frequency ωL + 2.
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That is to say, the accumulation of the population in |2̃〉
with N excitations due to the incoherent pumping processes
results from the annihilation of a photon from the driving
field and simultaneous spontaneous emission of a photon with
frequency ωL − 2. The lasing process occurs between |2̃〉
with N excitations and |1̃〉 with N + 1 excitations through the
transition from |2̃〉 to |1̃〉, in which one cavity-mode photon
with frequency ωL + 2 is created and one photon of the
driving field is annihilated. As a result, the creation of a
cavity-mode photon with frequency ωL + 2 is accompanied
with the annihilation of two photons of the driving field and
spontaneous emission of a photon with frequency ωL − 2.
The laser can be generated only when the requirement
γ− > γ+,γ0 is satisfied because, in this case, these processes
mentioned above occur repeatedly, leading to the continuous
growth of the cavity photon number. Since the transitions
between the dressed states occur at three frequencies ωL,
ωL ± 2, and as referred previously that the cavity resonant
frequency can be engineered to be within a PBG material, it is
possible to eliminate spontaneous emission at the frequencies
of ωL and ωL + 2 by the strong driving with  � γ,κ,γpn̄p,
where γp and n̄p is the dissipation rate of the QD exciton
and the mean number of the phonon bath. In this case, the
thresholdless laser can be generated in the PBG material as
discussed in Sec. III.

A lot of attention both from theoretical [25,31,32] and
experimental [40,41] fields has focused on this interesting off-
resonant dot-cavity system. The power broadening of the QD
linewidth and saturation of the cavity emission are observed
[26,27] when measuring the spectroscopy of a resonantly
driven QD which is coupled to an off-resonant cavity. The
signatures of a coherently driven QD are demonstrated to be
preserved after phonon-assisted scattering to an off-resonant
cavity even for the presence of the incoherent scattering
processes [32]. The phonon-mediated coupling between two
QDs is also shown through an off-resonant photonic-crystal
microcavity [33]. The effect of the phonon-mediated coupling
on the dynamics of the considered system is modeled by
adding an additional incoherent decay term to the master
equation [25]. Furthermore, a polaron master-equation method
was proposed to describe the electron-phonon interaction
(EPI) in the QD-cavity system [30,31]. More and more
exciting achievements are reported. However, to the best
of our knowledge, the investigation about the influence of
the phonon-mediated processes arose due to the EPI and
off-resonant dot-cavity coupling on the properties of the
single-dot laser generated specially for the nonclassical field
is yet vacant, and this is the main purpose of this paper.
We find something interesting: (1) The threshold behavior of
the laser persists after the inclusion of the phonon-mediated
processes. (2) Without being engineered in the PBG material,
the interesting nonclassical character can be generated due to
the phonon-mediated processes that arose from the EPI and the
dressed off-resonant coupling in the conventional dot-cavity
system. (3) Nonclassical effect can be enhanced by the PBG
material in the low-temperature limit. We believe that these
could be useful for the relevant studies in such an off-resonant
dot-cavity system.

We only focus on the case that the QD is red detuned
from the cavity, i.e., �c = 2 and ωp 	 4. In this case, the

dissipative term Lpρ induced by both the EPI and the off-
resonant dot-cavity coupling is obtained after straightforward
calculations following Eq. (16) as

Lpρ = s4γp(n̄p + 1)D[aR12] + s4γpn̄pD[a†R21], (21)

where γp = 2πg2
c 〈B〉2 ∑

p( 2gp

ωp
)2δ(ωp − 4) is the dissipation

rate of the QD exciton states through the absorption of a
photon and simultaneous emission of a phonon. n̄p(ωp,Tp) =
(eωp/KBTp − 1)−1 is the mean phonon occupation number at a
bath temperature [31], where KB is the Boltzmann constant.
The term D[aR12] describes the process in which the electron
populated on the dressed state ˜|2〉 transits to the state ˜|1〉 with
the absorption of a photon of the cavity field, while the term
D[a†R21] depicts the process with emission of a photon and
simultaneous absorption of a phonon. Under the condition of
�c = 2 and ωp 	 4, the processes described by both the
terms D[aR21] and D[a†R12] nearly occur resonantly.

B. Equations for photon-number distribution function

To determine the characteristics of the coupled dot-cavity
system and investigate the influence of the phonon-mediated
coupling between the QD and the cavity, it is important to
get the photon-number distribution function. In the following,
we first derive the evolution equations of the density-matrix
elements with respect to the dressed states of the QD, ρij =
˜〈i|ρ ˜|j 〉. Considering the coherence of the dot-cavity system,

we then introduce four combinations of these density-matrix
elements and calculate the equations for them. Finally, we
obtain the corresponding equations in the photon-number
representation, from which the photon-number distribution
function can be directly obtained.

For the case with �c = 2, the evolution equations of these
density-matrix elements can be obtained by straightforward
calculations from the master equation (17) as

ρ̇11 = g1(a†ρ21 + ρ12a) + γ+ρ22 − γ−ρ11 + κLcρ11

+ γp(n̄p + 1)s4aρ22a
† − γpn̄p

2
s4(aa†ρ11 + ρ11aa†),

ρ̇22 = −g1(ρ21a
† + aρ12) − γ+ρ22 + γ−ρ11 + κLcρ22

− γp

2
(n̄p + 1)s4(a†aρ22 + ρ22a

†a) + γpn̄ps4a†ρ11a,

ρ̇12 = g1(a†ρ22 − ρ11a
†) − 4γ0 + γ+ + γ−

2
ρ12 + κLcρ12

− γp

2
(n̄p + 1)s4ρ12a

†a − γpn̄p

2
s4aa†ρ12,

ρ̇21 = g1(ρ22a − aρ11) − 4γ0 + γ+ + γ−
2

ρ21 + κLcρ21

− γp

2
(n̄p + 1)s4a†aρ21 − γpn̄p

2
s4ρ21aa†, (22)

where ρ11 = ˜〈1|ρ ˜|1〉 and ρ22 = ˜〈2|ρ ˜|2〉 are the populations of
the dressed states of the coupled dot-cavity system, Trd (ρ) =
ρ11 + ρ22 corresponds to the reduced density operator of the
cavity field. Equation (22) has explicitly included the effect
of the off-resonant coupling into the dynamics of the coupled
system through the terms proportional to the dissipation rate
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γp of the excited QD. In this paper, we use γp as well as n̄p to
evaluate the influence of the phonon-mediated coupling.

In order to find the distribution function of the photon
number of the cavity mode, we introduce four Hermitian
combinations of the density-matrix elements:

ρ(1) = ρ22 + ρ11, ρ(2) = ρ22 − ρ11,
(23)

ρ(3) = a†ρ21 + ρ12a, ρ(4) = ρ21a
† + aρ12.

With these definitions, the evolution equations for these
combinations ρ(i) can be obtained as Eqs. (A1) and (A2) (see
the Appendix) via straightforward calculations for ρ̇(i) with
the help of Eq. (22). After that, we expand these combined
operators of the system in terms of the photon-number states
|n〉 of the microcavity field. We find in the photon-number
representation that the diagonal elements P (i)

n = 〈n|ρ(i)|n〉
satisfy the following equations of motion:

Ṗ (1)
n = g1P

(3)
n − g1P

(4)
n + κ

[
(n + 1)P (1)

n+1 − nP (1)
n

] + γp

2
(n̄p + 1)s4

[
(n + 1)

(
P

(1)
n+1 + P

(2)
n+1

) − n
(
P (1)

n + P (2)
n

)]
+ γpn̄p

2
s4[n(

P
(1)
n−1 − P

(2)
n−1

) − (n + 1)
(
P (1)

n − P (2)
n

)]
,

Ṗ (2)
n = −g1P

(3)
n − g1P

(4)
n + κ

[
(n + 1)P (2)

n+1 − nP (2)
n

] − γ1P
(1)
n − γpopP

(2)
n − γp

2
(n̄p + 1)s4

[
(n + 1)

(
P

(1)
n+1 + P

(2)
n+1

)
(24)

+ n
(
P (1)

n + P (2)
n

)] + γpn̄p

2
s4

[
n
(
P

(1)
n−1 − P

(2)
n−1

) + (n + 1)
(
P (1)

n − P (2)
n

)]
,

Ṗ (3)
n = g1n

[
P

(1)
n−1 − P (1)

n + P
(2)
n−1 + P (2)

n

] + κ(n + 1)P (3)
n+1 − κP (4)

n −
[
γcoh + κ

2
(2n − 1) + γp

2
s4(2nn̄p + n − 1)

]
P (3)

n ,

Ṗ (4)
n = g1(n + 1)

[
P (1)

n − P
(1)
n+1 + P (2)

n + P
(2)
n+1

] + κ(n + 1)P (4)
n+1 −

[
γcoh + κ

2
(2n + 1) + γp

2
s4(2nn̄p + 2n̄p + n)

]
P (4)

n ,

where

γpop = γ+ + γ−, γ1 = γ+ − γ−,
(25)

γcoh = (4γ0 + γ+ + γ−)/2.

γpop and γcoh are the resonance fluorescence decay rates
for populations and coherence of the QD, respectively. In
deriving Eq. (24), we have limited ourselves to the diag-
onal elements P (i)

n = 〈n|ρ(i)|n〉 since the equations can be
decoupled for diagonal elements and the off-diagonal elements
〈m|ρ(i)|n〉(m �= n) owing to the dependence of Eqs. (A1) and
(A2) only on the bilinear combinations of the cavity-filled
operators, i.e., the off-diagonal elements of these combinations
are zero, which is in agreement with the result reported by
Kilin et al. in Ref. [16]. The stationary behavior of the system
is accessible if the photon-number distribution function P (1)

is obtained. This can be achieved by solving Eq. (24) through
the truncation of the photon number such that P (1) does not
change when the number of the truncated states is increased.

The major difference of Eqs. (24) from that obtained in
other models in a photonic crystal [10,12] is the appearance of
those terms proportional to γp, which characterize the effect
of the EPI between the QD and the cavity, which could lead to
the absorption (emission) of a photon at cavity frequency and
subsequent emission of a phonon when a electron transits from
excited dressed state to the ground one of the QD which is red
detuned from the cavity. The main purpose of this paper is to
investigate the influence of the phonon-mediated processes on
the properties of the laser.

III. RESULTS AND DISCUSSIONS

In this section, we will investigate the influence of the
phonon-mediated processes that arose due to the EPI and

the off-resonant dot-cavity coupling on the properties of laser
generated in the dot-cavity system which can be engineered
within the PBG material. We evaluate the lasing properties of
the cavity field using the steady-state mean photon number
〈n〉 and Mandel’s Q parameter [42] which determines the
statistics of the cavity field. 〈n〉 and Mandel’s Q parameter are
defined by the photon-number distribution function P (1)

n in the
photon-number representation as

〈n〉 =
∞∑

n=0

nP (1)
n , 〈n2〉 =

∞∑
n=0

n2P (1)
n , (26a)

Q = 〈(�n)2〉 − 〈n〉
〈n〉 . (26b)

The Mandel’s Q parameter is related to the Fano factor F =
〈(�n)2〉/〈n〉 via the relation Q = F − 1, which is usually used
to identify the threshold behavior and nonclassical effect of the
cavity field. Positive and negative values of Q indicate super-
and sub-Poissonian statistics of the cavity field, respectively,
and Q = 0 corresponds to a Poissonain case in which the state
of the cavity field is coherent states.

In the following, we numerically solve the set of Eq. (24) to
obtain the stationary value of the distribution function P (1)

n and
the mean photon number and Mandel’s Q parameter. We first
discuss the influence of the phonon-mediated processes on the
properties of laser in the low-temperature limit n̄p = 0. Then,
we explore the case when taking the temperature of the thermal
phonon into account and supply the reasonable explanations.
The discontinuity function u(ω− − ωb) = 1 is set through the
discussions and u(ω+ − ωb) = 0 and 1 represent the presence
(shown with black lines) and absence (shown with red lines) of
the PBG material, respectively. All parameters are scaled with
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the phonon-mediated spontaneous emission rate γ in obtaining
the numerical results.

A. Low-temperature limit n̄ p = 0

As a simplification, we first consider the case of low-
temperature limit, i.e., n̄p = 0, which indicates that we only
care about the influence of the process described by the term
D[aR12] on the properties of laser and neglect the process
described by the term D[a†R21] in Eq. (21). In order to provide
an overview of the different coupling schemes with respect to
the damping rate κ of the cavity and the phonon-mediated
spontaneous emission rate γ of the QD, we display our
results from two aspects: (I) κ < γ , (II) κ > γ . Every case
is discussed both for the presence and absence of the PBG
material.

1. Case I: κ < γ

First, for the coupling scheme κ < γ , i.e., κ = 10−3γ , we
illustrate 〈n〉 and Mandel’s Q parameter in Fig. 2 as a function
of the incoherent pumping rate γ− for different values of γp.
Figure 2(a) shows a threshold behavior or a kink in the absence
of the PBG material, and no threshold for the absence of the
PBG material. The threshold behavior of the laser persists after
the inclusion of the phonon-mediated processes.

The threshold of the laser can be understood as follows.
As mentioned in Sec. II A, if the requirement γ− > γ+,γ0
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FIG. 2. (Color online) For n̄p = 0, the mean photon number 〈n〉 of
the cavity field and Mandel’s Q parameter are illustrated as a function
of the incoherent pumping rate γ− for different dissipation rate γp in
the coupling scheme κ = 10−3γ with g1 = 10γ . The discontinuity
function u(ω− − ωb) is set to be 1, and u(ω+ − ωb) = 0 and 1
represent the presence (black lines) and absence (red lines) of the PBG
material, respectively. γp = 0, u(ω+ − ωb) = 0 for solid line, γp = 0,
u(ω+ − ωb) = 1 for dotted line, γp = 10−2γ , u(ω+ − ωb) = 0 for
dashed line, γp = 10−2γ , u(ω+ − ωb) = 1 for dotted-dashed line.

is satisfied, the lasing transition processes occur repeatedly,
thus leading to the continuous growth of the cavity photon
number. In the absence of PBG material, this requirement is
equivalent to s4 > c4 or γ− > γ 0

− = γ /4. So, the threshold
occurs when the pumping rate attains the value γ 0

−, which
corresponds to the population inversion between the dressed
states of the lasing transition. The upper level ˜|2〉 of the
lasing transition is populated with the pumping rate γ−
simultaneously depopulated (relaxed) via the decay rate γ+,
and reverse for the lower level ˜|1〉 as indicated by L2ρ in
Eq. (20). Therefore, for a low pumping rate γ− < γ 0

−, the
pumping is weaker than the relaxation and no population
inversion occurs. When the pumping is increased such that
γ− > γ 0

−, the pumping is stronger than the relaxation and the
emission processes dominant over the absorption processes,
thus leading to the generation of the laser [see Fig. 2(a)]. In the
presence of the PBG material under consideration, the decay
rate γ+ as well as rate γ0 of the state ˜|2〉 with N excitations
can be suppressed or eliminated so that the condition γ− > γ+
can be fulfilled even for a low pumping rate. The stimulated
emission process dominates the absorption process of photons
into the cavity field, thus leading to the generation of
thresholdless laser. This threshold(less) behavior of laser, in
agreement with what is described in Refs. [10,12], persists
after the additional consideration of the electron-phonon
coupling.

For �a < 0 (γ−/γ > 1
4 ), e.g., �a = −5〈B〉ε, s4 	 0.9, we

also have s4 > c4. The population occupation in the dressed
state |2̃〉 is dominant over that in |1̃〉 because the pumping
rate γ− is larger than the damping rate γ+. As mentioned in
Sec. II A, the incoherent pumping process happens in the way
from |1̃〉 with N + 1 excitations to |2̃〉 with N excitations.
The creation of a cavity-mode photon with frequency ωL +
2 is accompanied with the annihilation of two photons of
the driving field and spontaneous emission of a photon with
frequency ωL − 2. These processes mentioned above occur
repeatedly, thus leading to the continuous growth of the cavity
photon number as confirmed in Fig. 2(a).

On the other hand, it is also clearly shown in Fig. 2(a)
that the mean photon number of the cavity field is decreased
with the increasing of γp, which indicates that the inclusion
of the phonon-mediated process induced by the EPI impedes
the emission of photons into the cavity field, and leads to a
reduction of the mean photon number. This effect is more
obvious for a larger incoherent pumping rate. However, in the
absence of PBG material, no obvious change of the threshold
is found when the term D[aR12] is considered, which implies
that the phonon-mediated process described byD[aR12], under
the condition of n̄p = 0, does not affect the threshold of the
laser. For the coupling scheme κ = 10−3γ , when γp = 0, the
Mandel’s Q parameter has a sharp peak at γ 0

− = 1
4γ [see

Fig. 2(b)]. It is a clear indication of a threshold behavior.
In the absence of the PBG material, with the increasing of
γp, the phonon-mediated process reduces the Q parameter,
but still being super-Poissonian. While the Q parameter is
increased when the cavity is engineered within the PBG
material, it is still around the Poissonian statistics as shown in
Fig. 2(b).

Second, when the decay rate of the cavity is smaller than
but close to the phonon-mediated spontaneous emission rate of
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FIG. 3. (Color online) For n̄p = 0, the mean photon number 〈n〉
and Mandel’s Q parameter of the cavity field are plotted as a function
of γ− for different values of γp in the coupling scheme κ = 0.2γ .
γp = 0, u(ω+ − ωb) = 0 for solid line, γp = 0, u(ω+ − ωb) = 1 for
dotted line, γp = 0.8γ , u(ω+ − ωb) = 0 for dashed line, γp = 0.8γ ,
u(ω+ − ωb) = 1 for dotted-dashed line. Other parameters are the
same as in Fig. 2.

the QD, i.e., κ = 0.2γ , we plot 〈n〉 and Mandel’s Q parameter
in Fig. 3 as a function of γ− for various values of γp. A
reduction of the mean photon number of the cavity field is
also induced by the phonon-mediated process. In the absence
of the PBG material, due to the increasing of the ratio κ/γ−,
the kink becomes less visible. Another effect is that the mean
photon number increases nonlinearly with the increase of the
pumping rate, and this nonlinear effect is more prominent
after inclusion of the phonon-mediated process regardless of
the presence or absence of the PBG material, as shown in
Fig. 3(a).

For a cavity with κ = 0.2γ engineered in the PBG material,
the nonlinear increase of the photon number is accompanied
by a sub-Poissonian statistics of the cavity field. This sub-
Poissonian character can be enhanced by the inclusion of
the phonon-mediated process as shown with the black lines
in Fig. 3(b). Here, we should stress that for a conventional
cavity with κ = 0.2γ and without being engineered in the
PBG material γ+ = γ−, the photon statistics of the cavity
field is Poissonian if the EPI is not considered, i.e. γp = 0,
as shown by the dotted line in Fig. 3(b). However, by
increasing γp, the photon statistics of the cavity field can be
tuned to vary from Poissonian to sub-Poissonian in a wide
range of pumping regimes, approaching a negative value of
the Q parameter as confirmed by the dotted-dashed line in
Fig. 3(b). This sub-Poissonian character should be attributed
to the phonon-mediated processes induced by the EPI and the
off-resonant dot-cavity coupling. It is different from the case
γp = 0 where the Q parameter can not attain a negative value.
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FIG. 4. (Color online) For n̄p = 0, 〈n〉 and Mandel’s Q parameter
are plotted as a function of γ− for different values of γp in the coupling
scheme κ = 2γ . γp = 0 and u(ω+ − ωb) = 0 for solid lines, γp = 0
and u(ω+ − ωb) = 1 for dotted lines, γp = 0.5γ and u(ω+ − ωb) = 0
for dashed lines, γp = 0.5γ and u(ω+ − ωb) = 1 for dotted-dashed
lines. Other parameters are the same as in Fig. 2.

These discussions indicate that, in the case of low-temperature
limit n̄p = 0, the interesting nonclassical character can be
generated in a conventional off-resonant dot-cavity system,
without being engineered in a PBG material.

2. Case II: κ > γ

Figure 4 illustrates 〈n〉 and Mandel’s Q parameter as a
function of γ− for γp being 0 and 0.5γ in the coupling scheme
κ = 2γ . In this scheme, the photon number is small, therefore
the contributive lasing transitions are limited. So, the effect
of the phonons is deleterious to, but has little influence on,
the photon number as shown in Fig. 4(a). When κ = 2γ , the
Mandel’s Q parameter is negative both for the presence and
absence of the PBG material. The inclusion of the phonon-
mediated processes as well as the role of the PBG material can
reduce the value of Q and enhance the nonclassical effect of
the photon field [see Fig. 4(b)].

These numerical discussions about the influence of the
phonon-mediated process can be explained as follows. The
process, in which the relaxation of the excited QD occurs
through the emission of a photon and simultaneous absorption
of a phonon as described by the term D[a†R21] in Eq. (21), is
neglected through the low-temperature limit n̄p = 0. Only the
process described by the term D[aR12] in Eq. (21) is allowed
to occur, which will lead to the absorption of photon at the
cavity frequency and emission of a phonon due to the EPI.
Therefore, when the phonon-mediated dot-cavity coupling is
taken into account, it is not a surprise that a reduction of the
mean photon number of the cavity field is induced as indicated
especially from Figs. 2(a) and 3(a).
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As discussed above, under the condition of n̄p = 0, the
phonon-mediated processes induced by the EPI and the off-
resonant dot-cavity coupling could lead to a reduction of
the photon number. The threshold behavior is preserved, but
the value of Mandel’s Q parameter is reduced. It is worth
pointing out that, for a cavity with κ = 0.2γ and without
being engineered in a PBG material, the photon statistics of the
cavity field can be changed from Poissonian to sub-Poissonian
by increasing γp. The interesting nonclassical effect can be
achieved for the off-resonant dot-cavity system, without being
engineered in a PBG material. This character should be
attributed to the phonon-mediated processes induced by the
EPI and the off-resonant dot-cavity coupling. In the following
section, we take the effect of the thermal phonon into account,
i.e., n̄p �= 0, to investigate the property of the laser.

B. Role of the temperature of the phonon bath n̄ p �= 0

The phonon number n̄p, characterizing the temperature of
the phonon reservoir, in experimental systems is generally not
negligible. Taking n̄p = 5 as an example, we illustrate the
mean photon number 〈n〉 of the cavity field and Mandel’s
Q parameter as a function of the incoherent pumping rate
γ− for different damping rate γp in Figs. 5–7. For the
parameters mentioned before, with ωb being the order of
1014 Hz and  ∼ 1011 Hz (corresponding to 0.41 meV),
the central frequency ωp of the phonon bath approximating
4 × 1011 Hz, an estimated temperature of the order 10 K is
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FIG. 5. (Color online) Same as in Fig. 2 except n̄p = 5. (a) γp =
0 and u(ω+ − ωb) = 0 for solid lines, γp = 0 and u(ω+ − ωb) = 1
for dotted lines, γp = 0.01γ and u(ω+ − ωb) = 0 for dashed lines,
γp = 0.01γ and u(ω+ − ωb) = 1 for dotted-dashed lines. (b) γp = 0
and u(ω+ − ωb) = 0 for solid lines, γp = 0 and u(ω+ − ωb) = 1 for
dotted lines, γp = 10−3γ and u(ω+ − ωb) = 0 for dashed lines, γp =
10−3γ and u(ω+ − ωb) = 1 for dotted-dashed lines. The inset of (a)
shows an enlarged view of 〈n〉.
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FIG. 6. (Color online) Same as in Fig. 3 except n̄p = 5. γp = 0

and u(ω+ − ωb) = 0 for solid lines, γp = 0 and u(ω+ − ωb) = 1
for dotted lines, γp = 0.01γ and u(ω+ − ωb) = 0 for dashed lines,
γp = 0.01γ and u(ω+ − ωb) = 1 for dotted-dashed lines.

obtained. We find that the influence of the phonon-mediated
processes on 〈n〉 and Mandel’s Q parameter is different from
the case of n̄p = 0. The behaviors of 〈n〉 in different schemes
are discussed first, then the corresponding behaviors of the
Mandel’s Q parameter.
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FIG. 7. (Color online) Same as in Fig. 4 except n̄p = 5. γp = 0
and u(ω+ − ωb) = 0 for solid lines, γp = 0 and u(ω+ − ωb) = 1
for dotted lines, γp = 0.01γ and u(ω+ − ωb) = 0 for dashed lines,
γp = 0.01γ and u(ω+ − ωb) = 1 for dotted-dashed lines.
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For a cavity whose damping rate is much smaller than
the spontaneous emission rate of the QD, i.e., κ = 10−3γ , it
seems from Fig. 5(a) that the mean photon number of the
cavity field is obviously reduced due to the phonon-mediated
processes, and this reduction is pronounced for a large value
of the pumping rate. This is similar to the case of the
low-temperature limit. However, for the cavity without being
engineered in the PBG material, it is shown in the inset
of Fig. 5(a) that the plots for the photon number 〈n〉 with
different values of γp converge at γ ′0

− 	 0.27γ , which plays
the role of a new effective phonon-mediated threshold. This
fact indicates that the phonon-mediated processes reduce the
mean photon number of the cavity field only when γ− > γ ′0

− ;
if γ− < γ ′0

− , the effect of the inclusion of the phonon-mediated
processes is to increase, rather than reduce, the mean photon
number of the cavity field. This implies that, for a good
cavity, when the incoherent pumping γ− is smaller than the
new effective phonon-mediated threshold γ ′0

− , the phonon-
mediated processes may stimulate extra emission of photon
into the cavity field, leading to an increase of the photon
number.

For n̄p = 5, if the damping rate of the cavity is close to
or larger than the spontaneous emission rate of the QD, i.e.,
κ = 0.2γ and 2γ , the mean photon number of the cavity field
is increased rather than decreased with the increase of γp

regardless of the presence or absence of the PBG material as
shown in Figs. 6(a) and 7(a), which is surprisingly different
from the ideal case with zero temperature n̄p = 0, where the
inclusion of the phonon-mediated processes is deleterious to
the emission of a photon into the cavity field. In this case,
the intensity of the cavity photon could be strengthened by
phonon-mediated processes that arose from the EPI and the
off-resonant dot-cavity coupling. The increase of 〈n〉 with γ−
is also nonlinear.

In fact, for n̄p �= 0, two types of processes described by
Eq. (21) are involved during the relaxation of the excited QD.
As discussed before, the term D[aR12] describes the process
in which the electron populated on the excited dressed state
˜|2〉 transits to the state ˜|1〉 with the absorption of a photon

and simultaneous generation of a phonon, while the term
D[a†R21] depicts the process with emission of a photon and
simultaneous absorption of a phonon. In this case, whether the
effect of the presence of the phonon-mediated coupling is to
increase or decrease the mean photon number of the cavity
field depends on the strength of these two types of competitive
processes. For the case of κ = 10−3γ , the electronic degrees
of the QD are in the steady state. It is reasonable to decouple
the QD from the cavity, thus the strength of the absorption
and emission processes of photons can be approximated as
s4γp(n̄p + 1)ρ22 and s4γpn̄pρ11, respectively. The quantity
W = γps4[(n̄p + 1)ρ22 − n̄pρ11] is illustrated as a function of
γ− in Fig. 8. It is clearly indicated from Fig. 8 that the emission
processes of photons dominate the absorption processes when
the incoherent pumping rate γ− is below the new effective
phonon-mediated threshold γ ′0

− and the inverse for γ− > γ ′0
− .

Therefore, the photon number is increased when γ− < γ ′0
− ,

and reduced when γ− > γ ′0
− as confirmed in Fig. 5(a). For the

case of κ = 0.2γ considered in Fig. 6 and κ = 2γ in Fig. 7,
the treatment of decoupling the QD from the cavity is not valid
anymore. In these two cases, the numerical results show that

0 0.2 0.4 0.6 0.8
0.2

0.1

0

0.1

0.2

Γ Γ

W
Γ

p

FIG. 8. The quantity W related to the strength of the competitive
emission and absorption processes is plotted as a function of γ− for
different values of γp with n̄p = 5 in a conventional cavity with decay
rate κ = 10−3γ , corresponding to the situation discussed in Fig. 5.
γp = 10−3γ (solid line), 10−2γ (dashed line).

the emission processes govern the absorption processes and
the photon number of the cavity is increased.

We recall that, in the case of the low-temperature limit, the
statistics of the photon is super-Poissonian for a conventional
cavity, Poissonian for a cavity within a PBG material. The
presence of the phonon-mediated coupling leads to a reduction
of the mean photon number as well as the Mandel’s Q

parameter as illustrated in Figs. 2–4. This sub-Poissonian char-
acter should be attributed to the phonon-mediated coupling.
However, a strikingly different effect under the consideration
of environmental temperature, i.e., n̄p = 5, is that the total
effect of the presence of the phonon-mediated coupling is to
increase the values of Mandel’s Q parameter regardless of the
presence of the PBG material, resulting in a pronounced super-
Poissonian statistics [see Figs. 5(b) and 6(b)] or changing
from sub-Poissonian statistics to Poissonian statistics [see
Fig. 7(b)]. For example, the behavior of the Q parameter
is distinct from each other when comparing Figs. 2(b) and
5(b), especially for the case without being engineered in
the PBG material. For n̄p = 0, the values of Q parameter
are reduced, while for n̄p = 5 they are increased due to the
phonon-mediated processes, although both of them correspond
to super-Poissonian statistics. The enhanced super-Poissonian
statistics and the disappearance of the sub-Poissonian statistics
of the off-resonant cavity field lead us to conclude that
the phonon-mediated processes arose from the EPI and off-
resonant dot-cavity coupling could damage the nonclassical
effect of the system when the temperature of the phonon
reservoir is considered.

IV. CONCLUSION

We have investigated the influence of the phonon-mediated
processes induced by EPI together with the off-resonant
dot-cavity coupling on mean photon number and Mandel’s
Q parameter of the photon field. In the low-temperature limit,
the inclusion of the phonon-mediated processes could lead
to a reduction of the mean photon number. If κ  γ , the
threshold behavior is preserved, but the value of Mandel’s Q

parameter is reduced; if κ = 0.2γ , the photon statistics of the
cavity field can be tuned to sub-Poissonian by increasing γp.
Without being engineered in a PBG material, the interesting
nonclassical effect can be achieved due to EPI and the
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off-resonant dot-cavity coupling, and the nonclassical effect
can be enhanced by the PBG material. When the temperature of
the phonon reservoir is considered, i.e., n̄p = 5, the total effect
of the phonon-mediated processes is to increase the values
of Mandel’s Q parameter. The phonon-mediated processes
damage the nonclassical effect of the system. If κ  γ ,
the phonon-mediated processes could lead to the increase
(decrease) of the photon number when the pumping rate γ− is
smaller (larger) than the effective phonon-mediated threshold
γ ′0

− . However, for κ = 0.2γ or κ = 2γ , the intensity of the
cavity photon could be strengthened by phonon-mediated
processes arose from the EPI and the off-resonant dot-cavity
coupling.
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APPENDIX: THE EVOLUTION EQUATIONS
FOR COMBINATIONS ρ(i)

The evolution equations for combinations ρ(i) are obtained
from the straightforward calculations for ρ̇(i) according to the

definition (23) with the help of Eq. (22), which are of the form

ρ̇(1) = g1ρ
(3) − g1ρ

(4) + κL−
c ρ(1) + γp

2
n̄ps4L−

p (ρ(1) − ρ(2))

+ γp

2
(n̄p + 1)s4L−

c (ρ(1) + ρ(2)),

ρ̇(2) = −g1ρ
(3) + g1ρ

(4) + κL−
c ρ(2) − γ1ρ

(1) − γpopρ
(2) (A1)

− γp

2
(n̄p + 1)s4L+

c (ρ(1) + ρ(2))

+ γp

2
n̄ps4L+

p (ρ(1) − ρ(2)),

with

ρ̇(3) = g1L−
p ρ(1) + g1L+

p ρ(2) + κL−
c ρ(3) − κρ(4)

+
(

κ

2
− γcoh

)
ρ(3) − γp

2
(n̄p + 1)s4(a†a − 1)ρ(3)

− γp

2
n̄ps4aa†ρ(3), (A2)

ρ̇(4) = g1L+
c ρ(2) − g1L−

c ρ(1) + κL−
c ρ(4) −

(
κ

2
+ γcoh

)
ρ(4)

− γp

2
(n̄p + 1)s4a†aρ(4) − γp

2
n̄ps4(aa† + 1)ρ(4),

with the definition of the operators L±
c,pρ(i) as

L±
c ρ(i) ≡ (2aρ(i)a† ± a†aρ(i) ± ρ(i)a†a)/2,

(A3)
L±

p ρ(i) ≡ (2a†ρ(i)a ± aa†ρ(i) ± ρ(i)aa†)/2.
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445, 896 (2007).

[23] D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler,
M. Kamp, A. Forchel, and Y. Yamamoto, Phys. Rev. Lett. 98,
117402 (2007).

[24] U. Hohenester, Phys. Rev. B 81, 155303 (2010).
[25] A. Majumdar, E. D. Kim, Y. Gong, M. Bajcsy, and J. Vučković,

Phys. Rev. B 84, 085309 (2011).
[26] A. Majumdar, A. Faraon, E. D. Kim, D. Englund, H. Kim, P.
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