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It is shown that there is a direct connection between the enhancement effects of chiroptical spectroscopic
signals using perpendicular-polarization detection method and the amplifications of various weak effects, known
as weak-value measurements, in quantum optics. In addition, the acceptable range of chiroptical weak values is
discussed.
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I. INTRODUCTION

The notion of measurement is at the core of quantum
mechanics: a measurement of an observable collapses the
system being measured into an eigenstate of the corresponding
Hermitian operator and such measurement yields the corre-
sponding eigenvalue. Thus it has been believed that, if the
initial state of system is a linear combination of eigenstates,
i.e., superposition state, nondestructive measurement that is
weak enough to leave the state vector unchanged, is not possi-
ble. However, in 1988 Aharonov, Albert, and Vaidman (AAV)
theoretically proposed a new concept of weak measurement as
opposed to the conventional measurement that is often referred
to as “strong” or “projective” measurement [1].

The idea behind weak measurement is to consider the case
that the interaction strength between the measuring device
“meter” and the system is sufficiently weak enough to leave the
system negligibly disturbed [2–4]. Assume the Hamiltonian
of the standard measurement can be written as Ĥ = −αxÂ,
where x is a canonical variable of the meter and α is either
a unity or a normalized time-dependent function compactly
centered at the time of measurement. Considering an ensemble
of particles, e.g., photons in optical measurement, with a
preselected initial state |ψi〉 and a postselected final state |ψf 〉
with |g(x)〉 the initial state of the measuring device, one can
obtain, taking the Taylor expansion reexponentiation of the
exponential function of measurement operator,

〈ψf |�〉 = 〈ψf |e−i
∫
Ĥ (t)dt |g(x)〉|ψi〉

∼= 〈ψf |1 − i

∫
Ĥ (t)dt |g(x)〉|ψi〉

= 〈ψf |ψi〉(1 − ixAw)|g(x)〉
∼= 〈ψf |ψi〉e−ixAw |g(x)〉, (1)

where the weak value of the system operator Â is defined
as (1),

Aw ≡ 〈ψf |Â|ψi〉
〈ψf |ψi〉 . (2)

Here, a central assumption for successful weak-value
measurements is that the initial spread or root-mean-square
dispersion (�p) of the conjugate momentum (p) of x is
significantly larger than Aw. Then, it was suggested that the
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weak value can be arbitrarily large, far outside the range
of eigenvalues of Â, if one can make the overlap 〈ψf |ψi〉
between the pre- and postselected states very small [1,2]. The
postselection probability is then defined as

Pps = |〈ψf |ψi〉|2. (3)

Aside from the fundamental physics interest in weak values,
they have been found to be quite useful in amplifying weak
effects or weak signals with sacrificing most of the data,
e.g., transmitted photons passing through optical measurement
device, in the postselection process, i.e., decrease in Pps, for
enhanced detections.

In 1991, Ritchie et al. [5] carried out an experiment that
has been believed to be an optical analog of the spin-1/2
experiment which was originally proposed by AAV [1] and
Duck et al. [6]. Using a Gaussian-mode laser beam and
also a pair of optical polarizers replacing the preselection
and postselection Stern-Gerlach magnets in the AAV thought
experiment, they were able to detect amplified weak effect
that is the birefringent material-induced separation of the two
orthogonal linear-polarization states of light. More recently,
Hosten and Kwiat [7] were able to detect a polarization-
state-dependent beam deflection of 1 Å, and Ben Dixon
et al. [8] reported the use of a Sagnac ring interferometric
weak measurement of very small (approximately hundreds of
femtoradians) transverse deflection of an optical beam. Later,
Brunner and Simon [9] showed that a weak measurement of
small longitudinal phase shift is also experimentally feasible.
In addition, a phase-and-amplitude measurement of photon
wave function was performed by Lundeen et al. [10].

In chiroptical spectroscopy [11–14] that has been used to
determine absolute configuration of chiral molecules, there
have been quite extensive efforts to make enhanced detections
of weak optical activity signals from chiral molecules in
isotropic media using self- and active-heterodyne detection
schemes [15–21]. One of the most successful approaches is
known as ellipsometric detection with quasinull polarization
geometry. Kliger and co-workers [15] in 1985 experimentally
demonstrated that a significant enhancement of chiroptical
signal is achievable by controlling the ellipticity angle of
incident elliptically polarized lights (EPLs) and using two op-
tical polarizers whose optic axes are orthogonal to each other.
More recently, we showed that the modified Mach-Zehnder
interferometric detection of extremely weak vibrational optical
activity signal from chiral molecules in solutions becomes
possible when two orthogonal polarizers placed before and
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after a chiral solution sample are properly used [17,19,20].
Here, it must be emphasized that the key element in these
chiroptical signal enhancements are a pair of perpendicular
polarizers and in fact they are the common elements used
in the seemingly unrelated weak measurements [5,7,9,10]
mentioned above. Nevertheless, it has not been realized that
the two research fields, chiroptical spectroscopy in molecular
physics and weak measurements in ultrasensitive metrology
and quantum optics, are closely related to each other in many
respects. Among different approaches to the amplification of
weak chiroptical signals [20], we shall specifically consider,
as a simple but representative example, the ellipsometric
detection method pioneered by Kliger [15,22], though the
same principle applies to other amplification schemes used
in chiroptical spectroscopy.

II. RESULTS AND DISCUSSION

We now use the weak-value formalism to describe the
enhancement effects of chiroptical signals when two orthogo-
nal linear polarizers are used to select the initial polarization
state of incident light and the final polarization state of the
transmitted light after interacting with chiral molecules in
isotropic media.

A. Chiroptical weak value

Using an appropriate phase shifter, one can convert a
linearly polarized light (LPL) into EPL with controllable
ellipticity angle θ [Fig. 1(a)]. Then, the electric fields (Jones
vectors) of the normalized left (+) and right (−) EPLs
can be expressed as linear combinations of two orthogonal
polarization states, i.e.,

|ψ±
i 〉 = cos θ |V 〉 ± i sin θ |H 〉, (4)

where |V 〉 and |H 〉 denote the vertical and horizontal polar-
ization states that are considered to be the optical analogs
of the spin-1/2 systems. Consider the case that the EPL,
which corresponds to the initial (preselected) state, interacts
with chiral molecules dissolved in an isotropic medium. Then,
using either the Jones matrix formalism [23] or linear-response
function theory [16,24], one can show that the transmitted light
affected by the medium containing chiral molecules is given
as

|�±〉 = e−iÂcL|ψ±
i 〉, (5)

where the operator Âc representing the weak chiroptical effects
on the propagating light is given as

Âc =
(

ρ − iκ

2

)
Î −

(
δ

2
− iη

4

)
σ̂y . (6)

Here, Î and σ̂y are the 2 × 2 identity matrix and the
y-component vector of the Pauli matrices, respectively. L is the
thickness of the solution sample and κ , ρ, η, and δ are the ab-
sorption coefficient [=ln(10)εc], dispersion [=ln(10)2πn/λ],
circular dichroism (CD) [=ln(10)(εL − εR)c], and circular
birefringence [=ln(10)2π (nL − nR)/λ], respectively, where
ε, n, λ, and c are, respectively, the decadic molar extinction
coefficient, refractive index, wavelength, and speed of light.
Typically, the ratios η/κ and δ/ρ are on the order of

|m/(μc)| ∼ 10−3−10−2 [13,25], where m and μ represent the
transition magnetic and electric dipoles of a chiral molecule.
Equation (6) indicates that the two polarization (spin) states
are weakly coupled to each other by the chiral molecules
and the real and imaginary parts of the coupling constant are
associated with circular birefringence and circular dichroism
(CD), respectively [13,14]. Here, it should be noted that,
due to the circular polarization-dependent loss of photons,
i.e., circular dichroism, the operator e−iÂcL in Eq. (5) is no
longer unitary. Nevertheless, the weak-value formalism is still
applicable as demonstrated in this paper.

In the ellipsometric chiroptical spectroscopy, an optical
polarizer whose axis is perpendicular to the major axis of the
initially prepared (preselected) EPL is placed after the solution
sample so that the independent postselection is to project the
transmitted light onto the y axis, i.e.,

|ψf 〉 = |H 〉. (7)

Now, since the linear chiroptical effects are indeed ex-
tremely weak, from Eq. (5) we find that, using the linearization-
and-reexponentiation approximation of Eq. (1) instead of the
Jones N -matrix technique [23,26],

〈ψf |�±〉 = 〈ψf |e−iÂcL|ψ±
i 〉 ∼= 〈ψf |1 − iÂcL|ψ±

i 〉
= 〈ψf |ψ±

i 〉(1 − iA±
c,wL) ∼= 〈ψf |ψ±

i 〉e−iA±
c,wL, (8)

where the chiroptical weak value A±
c,w is given as

A±
c,w ≡ 〈ψf |Âc|ψ±

i 〉
〈ψf |ψ±

i 〉 =
(

ρ ∓ δ

2
cot θ

)
− i

(
κ

2
∓ η

4
cot θ

)
.

(9)

Note that the weak value in Eq. (9) is a complex number
since it represents both the circular dichroic (imaginary part
of the chiral susceptibility) and circular birefringent (real part
of the chiral susceptibility) responses of chiral molecules.

B. Imaginary part of chiroptical weak value

As demonstrated by the Kliger group, us, and many others,
in the conventional ellipsometric chiroptical spectroscopy, it
is the intensity of the postselected electric field, which is
the horizontally polarized (spin-down) component, that is
measured:

I± = |〈ψf |�±〉|2 ∼= |〈ψf |ψ±
i 〉|2e2L Im[A±

c,w]. (10)

Thus the imaginary part of the chiroptical weak value,
Im[A±

c,w] = −(κ/2) ± (η/4) cot θ , is relevant and corresponds
to the observable in this case of intensity measurement scheme.
The approximations used in Eqs. (8) and (10) are valid
when the linear chiroptical effect is sufficiently weak so that
all the higher-order nonlinear chiroptical effects are negligible.
Furthermore, |A±

c,w|L < 1 and Im[A±
c,w] � 0. The quantity

|〈ψf |ψ±
i 〉|2 in Eq. (10), which was called the postselection

probability Pps in weak measurements, is just the intensity
of the horizontal component of the preselected initial EPL,
which will be denoted as I0—note that I0,+ = I0,− = sin2 θ .

Thus Eq. (10) can be rewritten as I± ∼= I0e
2L Im[A±

c,w] and the
experimentally measured difference in absorbances, i.e., CD,
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(a)

(b)

(c)

FIG. 1. (Color online) Schematic representation of the experimental setup for (a) quasinull ellipsometric detection of circular dichroism
and (b) quasinull detection of optical rotatory dispersion. Here, LP and PS are linear polarizer and phase shifter, respectively. In both cases,
the small y components of the incident EPLs (a) or LPLs (b) are used as an internal (self-) local oscillator that interferes with the chiroptical
signal electric field in the y direction, which is generated by the major x-component electric field of the incident light [20]. In the inset of
(a), the difference in arrival times of pulsed left and right EPL’s at the detector is shown. Just for illustration purposes, it is assumed that
nL < nR and εL > εR . Therefore, the left(+)-EPL pulse 〈ψf |�+〉 arrives at the detector earlier by δtw than the right(−)-EPL pulse 〈ψf |�−〉
does and the intensity of the left(+) EPL is smaller than that of the right(−) EPL. In the inset, the black Gaussian-shape pulse represents the
temporal envelope of transmitted field through an isotropic achiral (racemic) medium. Instead of using the self-heterodyne detection schemes
in (a) and (b), Mach-Zehnder interferometric detection method (c) can be used to selectively measure the y-polarized chiroptical signal field
(see Ref. [17] for a detailed description).

is found to be

�A ≡ ĀL − ĀR = log10
I+/I0

I−/I0

= 2

ln(10)
{Im[A+

c,w] − Im[A−
c,w]} = ηL

ln(10)
cot θ, (11)

where ĀL,R are the absorbances measured by using left and
right EPLs. Often, one can measure the dissymmetry factor
defined as gEPL = (I+ − I−)/Ī with Ī = (I+ + I−)/2 [13]. In
the limiting case that ηL cot θ is small, the dissymmetry factor
is given as gEPL � ηL cot θ .

These observables, �A and gEPL, give information on
the circular dichroism η (∝εL − εR). Figure 1(b) depicts the
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experimental scheme for the quasinull enhanced measurement
of optical rotatory dispersion (ORD) signal δ (∝nL − nR) by
using slightly rotated (±φ) LPLs and by measuring the same
absorption difference �A or dissymmetry factor gEPL. In this
case of the ORD measurement, the pre- and postselected states
are |ψ±

i 〉 = cos φ|V 〉 ± sin φ|H 〉 and |ψf 〉 = |H 〉 [16,19].
Then, the corresponding weak values are found to be A±

c,w =
−iκ/2 ∓ (iδ/2) cot φ + ρ ∓ (η/4) cot φ. Note that the attenu-
ation of the incident (rotated) LPL is additionally dependent on
circular birefringence nL − nR and the dispersion change by
circular dichroism εL − εR . The experimentally measured dif-
ference in absorbances and the dissymmetry factor are found to
be, for a small rotation angle φ, �A = −(2δL cot φ)/ ln(10)
and gEPL

∼= −2δL cot φ. Such enhancements of weak chi-
roptical signals were experimentally demonstrated by using
an independent (polarization-controlled) local oscillator in
the Mach-Zehnder interferometry [Fig. 1(c)] [17]. However,
the essential enhancement effect in the case of the ORD
measurement using the scheme in Fig. 1(b) is identical to
that in the ellipsometric detection of CD [Fig. 1(a)].

C. Real part of chiroptical weak value

In the conventional ellipsometric chiroptical spectroscopy
measuring the difference intensity, I+ − I−, one cannot mea-
sure the difference in the arrival times of the chiroptical
signal fields associated with left and right EPLs. In the inset
of Fig. 1(a), the temporal envelopes of chiroptical signal
fields for left and right EPLs are schematically drawn. Here,
without loss of generality, it is assumed that the refractive
index for left(+) EPL is smaller than that of right(−) EPL,
i.e., nL < nR , so that the left(+) EPL arrives at the detector
earlier by δt than the right(−) EPL. In the inset of Fig. 1(a),
the black Gaussian-shape pulse corresponds to the temporal
envelope of the transmitted light when the medium is racemic
(50:50 mixture of left- and right-handed chiral molecules)
and nL = nR . Here, we also assume that εL > εR , so that
the intensity of the left(+) EPL is smaller than that of the
right(−) EPL in this case. Of course, the relative magnitudes
of the refractive indices and absorption coefficients for left-
and right-handed EPLs are fully determined by the absolute
configuration of a dissolved chiral molecule, i.e., molecular
chirality. In the previous subsection, we presented a discussion
on how to measure the imaginary part of the chiroptical weak
value via intensity difference (I+ − I−) measurement scheme.

Here, one of the possible schemes for detecting the real
part of the chiroptical weak value, which is related to the
time delay of EPL caused by circular birefringent medium,
is presented and discussed. If the weak value amplification
scheme [Fig. 1(a)] is not used, the difference in the arrival
times of the left- and right-handed EPLs is simply proportional
to δ (∝nL − nR). More specifically, in this case we have
δt0 = (nL − nR)L/c. However, when the experimental scheme
with the quasinull polarization setup in Fig. 1(a) is used, the
difference in the arrival times becomes

δtw = (nL − nR)L

c
cot θ = λL

2πc ln(10)
{Re[A+

c,w] − Re[A−
c,w]}

= λL

2πc ln(10)
δ cot θ. (12)

The arrival time difference (δtw) measured with the weak
value amplification scheme differs from that (δt0) without it
by cot θ . Note that this arrival time difference corresponds to
the shift of the pointer position.

To measure such arrival time difference δtw, one can utilize
an interferometric detection scheme. For instance, the modified
Mach-Zehnder interferometry for measuring the real part of
the chiroptical weak value is shown in Fig. 2. The pre-
and postselection process is identical to the setup shown in
Fig. 1(a). However, instead of measuring the field intensities,
one can selectively measure the interference term between
the Ẽ±

c (=〈ψf |�±〉) and a local oscillator field ẼLO whose
polarization direction is set to be parallel to the y axis. In this
case, the signal at the output of the spectrometer reads

S±(ω) = |ẼLO(ω)|2 + |Ẽ±
c (ω)|2

+ 2 Re
[
Ẽ∗

LO(ω)Ẽ0
c (ω) exp(iωτ±

d )
]
, (13)

where the time difference τ±
d is that between the postselected

field with preselected left(+)- or left(−)-EPL pulse and the
reference local oscillator pulse and Ẽ0

c (ω) is the spectrum of
the chiroptical signal field. To remove the homodyne signals,
which are the first two terms in the above equation, and to
measure the heterodyned (interference) term only, a shutter in
the reference arm (lower pathway in Fig. 2) and a chopper in the
chiroptical signal arm (upper pathway) could be used. Once the
heterodyne-detected spectral interferogram, which is the third
term in Eq. (13), is measured, the standard Fourier transfor-
mation procedure [27,28] can be used to convert it to complex
electric field as well as to characterize the relative delay times
τ±
d with respect to the local oscillator pulse. Note that the

latter is possible by examining the interference fringe pattern
of the measured spectral interferogram and that the abso-
lute arrival times of chiroptical signals at detector are not
measured but the relative time difference between them is
accurately measured. This will in turn provide information on
δtw(=τ+

d − τ−
d ) as well as the real part of the chiroptical weak

value with Eq. (12), where the latter directly corresponds to
the shift of the pointer position in the weak-value formalism.

D. Enhancement and limits of chiroptical weak value

To show the enhancement (amplification) effect found in
the quasinull ellipsometry for chiroptical measurements, let
us consider the limit of small ellipticity angle θ . In this case,
the measured dichroic signal (ĀL − ĀR) or the dissymmetric
factor gEPL are both proportional to cot θ ∼ 1/θ . One or two
orders of magnitude enhancement of CD signals has thus
been experimentally demonstrated by making θ approach
zero [18]. Here, it is the small (experimentally controllable)
parameter θ that represents the measure of deviation from
perfect orthogonality between the pre- and postselected states
or approximately the square root of postselection probability
Pps (= sin2 θ ). Now, it becomes clear from Eqs. (9) and (11)
that, for the amplification of such a weak (chiroptical) effect,
the price to pay is throwing away most of the transmitted
photons in vertical polarization state, which may correspond
to “creating impossible ensembles” [2]. In fact, exactly the
same enhancement factors proportional to cot θ (∼1/θ for
small θ ) with θ being a small variable, such as transverse
deflection [see Eq. (5) in Ref. [8]], longitudinal phase shift
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FIG. 2. (Color online) Experimental scheme for measuring the real part of the chiroptical weak value in Eq. (9). This is a modified
Mach-Zehnder interferometer. The experimental setup on the signal (upper) pathway in the interferometer is identical to that for quasinull
ellipsometry in Fig. 1(a). The local oscillator field propagates through the reference (lower) pathway in the interferometer and its y-polarized
component is allowed to interfere with the weak-value-amplified chiroptical signal field at the detector. Then, comparing the fringe patterns
of measured spectral interferograms for left and right EPL’s, which are recorded by using MC (monochromator) and photon detector, one
can estimate the difference in the arrival times, δtw , of the two EPL’s at the detector, which is related to the real part of the chiroptical weak
value. Here, to adjust the relative delay time of the chiroptical signal field with respect to the local oscillator field, one of the mirrors (with an
arrow on it) is movable. To achieve an enhanced detection sensitivity, finite time delay between the detected signal field and the local oscillator
pulse is deliberately introduced. After measuring the two delay times, τ+

d and τ−
d , the difference in the arrival times δtw can be estimated with

δtw = τ+
d − τ−

d .

[Eq. (7) in Ref. [9]], polarization angle [Eq. (5) in Ref. [10]],
relative phase shift � [Eq. (3) in Ref. [7]], and so on, were
found in various weak measurements. Thus it is believed that
the direct connection between them is proven.

In the interferometric detection (Fig. 2) of the real part of
the chiroptical weak value, the experimental observable is the
difference in the arrival time, δtw [Eq. (12)]. The enhancement
factor in this case is again given as δtw/δt0 = cot θ ∼ 1/θ for
small θ .

Now, it is necessary to examine the possibility that
“the weak value with a properly preselected state and an
independently postselected state can be far outside the allowed
range of eigenvalues of Â” [1]. In the present case, the basis
set consists of two polarization (spin) states, |V 〉 and |H 〉.
The chiroptical effect operator Âc whose eigenvectors are left-
and right-circular polarization states, (|V 〉 ± i|H 〉)/√2, with
eigenvalues of (ρ ± δ/2) − i(κ/2 ± η/4), is not Hermitian.
The expectation values of Âc for the two basis states, which
are complex and degenerate as 〈V |Âc|V 〉 = 〈H |Âc|H 〉 =
ρ − iκ/2, are not necessarily quantum mechanical eigenval-
ues. Note that this degeneracy merely reflects the fact that
the absorption and dispersion of linearly polarized lights are
the same for the two linear polarization states. Although

the observables, �A and gEPL, or the real and imaginary parts
of the chiroptical weak value [Eq. (9)] appear to diverge as
θ approaches zero, since no photon can be spontaneously
produced it is impossible to achieve amplification larger
than (εL + εR)/|εL − εR| ∼ 102−103. Furthermore, because
of the magnetic susceptibility contribution to the amplitude
and phase of transmitted field at a very small θ , there is
another factor that limits such enhancement effect [25] after
all. Nevertheless, since Im[A±

c,w] can have a value in the range
from −κ to 0, the imaginary part of A±

c,w can indeed be outside
the range set by the imaginary parts of the two eigenvalues of
Âc, that are −(κ/2) ± (η/4). Thus this confirms the statement
above. Nevertheless, it is noted that the real and imaginary
parts of the weak value in Eq. (9) are still within legitimate
physically allowed range. In the case of the imaginary part
measurement, we should have Im[A±

c,w] � 0, which implies
that the corresponding enhancement factor should have an up-
per bound cot θ � 2κ/|η| ∼ |μc/m| ∼ 102−103—note that
Im[A±

c,w] > 0 means that the field intensity grows as the path
length of the chiral medium increases, which cannot be real-
ized. When one carries out an interferometric detection of the
time delay δtw, since we should have Re[A±

c,w] � 0, cot θ �
2ρ/|δ| ∼ |μc/m| ∼ 102−103. Otherwise, (Re[A±

c,w] < 0), the
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refractive index for EPLs becomes negative, which is not
acceptable.

Before this subsection is closed, it should be mentioned
that there exist theoretical works showing that there is no
limitation of the weak-value enhancement under the similar
condition. In particular, Susa et al. considered the case for an
arbitrary coupling interaction strength with the observable Â

satisfying Â2 = 1 [29–31]. They obtained the general results
for the expectation values of the position and momentum of the
probe and showed that they are bounded when the probe wave
function is assumed to be Gaussian. However, it was further
demonstrated that the maximum shift in the probe position
can have no upper bound for a specific optimal probe wave
function. In the present work, it was shown that, even within
the linearization approximation, the real and imaginary parts of
the chiroptical weak value are bounded due to the requirements
that the transmitted light intensity cannot increase as the
beam passes through a dissipative medium and that the chiral
medium refractive indices for left and right EPLs cannot be
negative. There seems to be a contradiction between the present
work and the previous theoretical prediction. However, it is
not possible to directly compare the present work with Susa
et al.’s theory mainly because the chiroptical observable Âc

considered in this paper is not unitary, i.e., Â2
c �= 1, whereas

they specifically assumed Â2 = 1. Nonetheless, it will be
interesting to examine a possibility of finding an optimal
probe wave function (temporal envelope function other than
Fourier-transform limited Gaussian pulse), which gives the
maximum shift (time delay δtw) in the near future.

E. Comparisons with previous works

Among quite a few experimental demonstrations of ampli-
fication effects that can be described in terms of weak-value
formalism, the present work is directly related to Brunner
and Simon’s weak measurements of small longitudinal phase
shifts induced by birefringent materials. In the present work,
the thickness of solution sample containing chiral molecules
is L so that the duration of the interaction, denoted as �t ,
is given as �t = nL/c. Then, the transmitted light [Eq. (5)]
affected by the chiral molecule medium can be rewritten as

|�±〉 = e−iÂ′
c�t |ψ±

i 〉, (14)

where Â′
c = cÂc/n. The chiroptical interaction Hamiltonian

in Eq. (14), Â′
c�t , shows the time-energy conjugate, where the

field-matter interaction time �t is conjugated to the complex
frequency operator Â′

c, of which real and imaginary parts
describe dispersion and absorption, respectively. Considering
the circular birefringence and circular dichroism, which are
related to the real and imaginary parts of the corresponding
chiral susceptibility, induced by chiral molecules as small
physical effects instead of measurement processes, one can
make a direct connection of the results in this paper with
Brunner and Simon’s theory on weak-value detection of small
longitudinal phase shifts induced by linear birefringence.

Since the EPL in Eq. (4) can be written as a sum of linearly
polarized light and circularly polarized light with unequal
weighting factors, i.e.,

|ψ±
i 〉 = (cos θ − sin θ )|V 〉 + sin θ (|V 〉 ± i|H 〉), (15)

the circular birefringence makes the arrival times of left(+)-
and right(−)-circularly polarized light at the detector different
from each other. This corresponds to the small longitudinal
phase shift studied in Ref. [9], when they measured a
purely imaginary weak value with the pre- and postselected
polarization states corresponding to |ψi〉 = (|H 〉 + i|V 〉)/√2
and |ψf 〉 = (ieiϕ |H 〉 + e−iϕ |V 〉)/√2 with small phase angle
ϕ. Note that, in that case, the time of arrival of the pulse is
the observable rather than average photon position measured
experimentally before (see Refs. [5] and [8]). Despite the
similarity between ours and Brunner and Simon’s work, there
are critical differences too. The material is a lossless (linear
birefringent) medium, whereas ours is a lossy medium. When
the pre- and postselected states are two nearly orthogonal
linearly polarized lights, the corresponding weak value mea-
sured is purely real in their case. If the pre- and postselected
states are two nearly orthogonal circularly polarized lights,
the weak value is purely imaginary and it is measured by
characterizing the frequency shift of the pointer spectrum.
They proposed two different interferometric schemes for
measuring the real and imaginary weak values in time and
frequency domain, respectively. In our case, the chiroptical
weak value in Eq. (9) intrinsically has both (dispersive) real
and (absorptive) imaginary parts that are related to the real
and imaginary parts of chiroptical susceptibility, because our
chiroptical operator represents both the circular birefringent
and dichroic properties of chiral medium, respectively.

Recently, Feizpour et al. [32] proposed a scheme for mea-
suring Kerr nonlinearity using the weak-value-amplification
method at the single-photon level. The nonlinear interaction
investigated by them is related to the cross-Kerr effect,
which couples a single-photon system to a classical probe
field. They showed weak-value-amplification effects on the
mean photon number at detector as well as on the average
phase shift induced by a cross-phase modulation effect. In
particular, they proposed an interferometric detection scheme
for measuring the weak-value-amplified phase shift. The
present work is similar to theirs. First, it was shown that
there is an amplification effect on the normalized difference
[gEPL = (I+ − I−)/Ī ] between the detected photon numbers
at detector when the initially prepared states are left and
right EPLs, which has been experimentally observed already.
Second, the difference in the longitudinal phase shifts of left
and right EPLs, which are induced by the circular birefringence
of chiral medium, is shown to be measurable by using an
interferometric scheme (Fig. 2), which has been referred to as
the heterodyne detection method in chiroptical spectroscopy.

Brunner and Simon additionally pointed out an interesting
connection between differential interference contrast (DIC)
microscopy [33] and weak measurements (see Supplementary
Material of Ref. [9]). The DIC microscopy was used to obtain
a good visual contrast using the same quasinull polarization
geometry shown in Fig. 1(a), which is also similar to crossed
nicols. Note that light does not transmit in a crossed nicols
state, but inserting an anisotropy between a polarizer and an
analyzer changes the state of the polarized light, causing the
light to pass through. In the DIC microscopy, the pre- and
postselections are performed by 45◦ and 135◦ polarizers. The
weak effect in this case is caused by a heterogeneous sample
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with varying refractive index or thickness, which makes the
|H 〉 and |V 〉 fields travelling through different areas of the
sample have slightly different phases. These small anisotropic
effects are amplified by performing the weak measurement
with very small postselection probability. The DIC technique
is quite similar to the quasinull polarization detection of
chiroptical weak value, but the latter is related to circular
birefringence (difference in refractive indices for left- and
right-handed fields) as well as circular dichroism (difference in
absorptions for left- and right-handed fields) instead of linear
birefringence.

III. SUMMARY AND A FEW CONCLUDING REMARKS

In summary, despite that there exist numerous reports
on enhancement effects in a variety of optical phenomena,
e.g., small transverse deflection [8], longitudinal phase shift
[9], both phase and amplitude changes of photon wave
function [10], spatial separation of optical beams induced by
a birefringent material [5], and so on, the direct connection
between the quasinull (perpendicular-polarization) chiroptical
signal measurements and the weak-value measurements in
quantum optics has been neither discussed nor clarified
before. In this paper, a way of interpreting chiroptical signal

enhancements in terms of weak values was presented and
a few orders of magnitude amplification effects and their
intrinsic upper limits were discussed. The chiroptical signal
enhancement satisfies the basic requirements of weak mea-
surements: (i) the pre- and postselected states are well defined
and independently prepared, (ii) the measurement effect is
sufficiently weak enough to leave the initial (superposition)
state little disturbed, (iii) as the postselection probability
is decreased, a significant enhancement in the observables
is achievable, and (iv) the weak value can be far outside
the range of eigenvalues of the chiroptical operator. It was
also shown that both the real and imaginary parts of the
chiroptical weak value are bounded. Aside from all the
philosophy, we anticipate that the weak-value-amplification
scheme for a possible enhancement of other weak effects in
spectroscopy may well be of use in developing a variety of
ultrasensitive spectroscopic tools for chemical and biological
analyses.
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