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Electromagnetic-force distribution inside matter
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Using the method of finite difference time domain, we solve Maxwell’s equations numerically and compute
the distribution of electromagnetic fields and forces inside material media. The media are generally specified by
their dielectric permittivity ε(ω) and magnetic permeability μ(ω), representing small, transparent dielectric and
magnetic objects such as platelets and microbeads. Using two formulations of the electromagnetic force density,
one due to Lorentz [Collected Papers 2, 164 (1892)] and the other due to Einstein and Laub [Ann. Phys. 331,
541 (1908)], we show that the force-density distribution inside a given object can differ substantially between
the two formulations. This is remarkable, considering that the total force experienced by the object is always the
same, irrespective of whether the Lorentz or the Einstein-Laub formula is employed. The differences between
the two formulations should be accessible to measurement in deformable objects.
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I. INTRODUCTION

The classical theory of electrodynamics is based on
Maxwell’s microscopic equations and the Lorentz law of
force [1,2]. Maxwell’s equations relate the electric field E(r,t)
and the magnetic induction B(r,t) to the distribution of electric
charge ρ(r,t) and electric current J(r,t) in space-time. In the
presence of E and B fields, the Lorentz law specifies the force
density F experienced by material media, which are the seats
of ρ and J, as follows:

F(r,t) = ρ(r,t)E(r,t) + J(r,t) × B(r,t). (1)

In addition to electric charge and current, material media
are also hosts to electric and magnetic dipoles, the densities
of which are generally represented by polarization P(r,t) and
magnetization M(r,t). In the presence of P and M, Maxwell’s
equations are usually written in their macroscopic form
[1–3], in terms of the electric field E, the displacement field
D = εoE + P, the magnetic field H, and the magnetic
induction B = μoH + M. Here εo and μo are, respectively,
the permittivity and permeability of free space. (The SI system
of units is used throughout the paper.) One may choose to
rearrange Maxwell’s macroscopic equations in such a way as
to eliminate the D and H fields, in which case the resulting
equations resemble the microscopic equations with effective
charge and current densities [1–5] that are given by

ρ(r,t) = ρfree(r,t) − ∇ · P(r,t), (2a)

J(r,t) = Jfree(r,t) + ∂P(r,t)/∂t + μ−1
o ∇ × M(r,t). (2b)

Applying the Lorentz law to the above charge- and current-
density distributions, one obtains the electromagnetic (EM)
force density according to the Lorentz formulation, as follows:

FL(r,t) = (ρfree − ∇ · P)E

+(
Jfree + ∂P/∂t + μ−1

o ∇ × M
) × B. (3)

Associated with the above force density is an EM torque
density relative to the origin of coordinates, an arbitrarily
chosen reference point. The Lorentz torque-density is given
by

TL(r,t) = r × FL(r,t). (4)

Other characteristics of the EM field that are intimately tied
to the Lorentz force of Eq. (3) are the energy density E(r,t),
Poynting vector S(r,t), EM momentum density p(EM)(r,t),

and stress tensor
↔
T(r,t). These entities have the following

expressions in the Lorentz formulation:

EL(r,t) = 1
2εoE · E + 1

2μ−1
o B · B, (5)

SL(r,t) = μ−1
o E(r,t) × B(r,t), (6)

p
(EM)
L (r,t) = εoE(r,t) × B(r,t), (7)

↔
TL(r,t) = 1

2

(
εoE · E + μ−1

o B · B
)↔
I − εoEE − μ−1

o BB. (8)

In Eq. (8) above,
↔
I is the identity tensor. The various

characteristics of the field are interconnected through the
energy and momentum continuity equations, namely,

∇ · S + E · J + ∂E/∂t = 0, (9)
↔∇ · ↔

T + F + ∂p(EM)/∂t = 0. (10)

In the mid-1960s, Shockley discovered a violation of
momentum conservation in EM systems under certain circum-
stances, and proceeded to coin the term “hidden momentum”
to account for the imbalance [6]. Physical arguments were
subsequently advanced to explain the nature of hidden mo-
mentum [7–12]. The subject remains somewhat controversial
to this day, and the existence and properties of hidden entities
continue to be debated [13–22]. Suffice it to say that the action
of the E field on magnetization is believed to produce a hidden
energy flux μo

−1M(r,t) × E(r,t) and a hidden momentum
density εoM(r,t) × E(r,t). Whenever the Poynting vector of
Eq. (6) indicates an imbalance or discontinuity in the rate of
flow of EM energy, one must recognize the hidden energy
flux as the source of the discrepancy. Similarly, whenever the
Lorentz force of Eq. (3) or the torque of Eq. (4) is found to
produce no changes in the linear or angular momentum of a
material system, the incongruity can be resolved by accounting
for the time rate of change of the hidden momentum.

While the above approach to electrodynamics is logically
consistent, one might ask whether an alternative formulation
exists that avoids the need for hidden entities inside magnetic
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materials. As it turns out, Einstein and Laub proposed such
a formulation in 1908 [23], but it appears that, by the time
of Shockley’s discovery, their contribution had been largely
forgotten. It also did not help that Einstein himself, in response
to a June 15, 1918, letter from Walter Dällenbach concerning
the EM stress-energy tensor, wrote: “It has long been known
that the values I had derived with Laub at the time are wrong;
Abraham, in particular, was the one who presented this in
a thorough paper. The correct strain tensor has incidentally
already been pointed out by Minkowski” [24]. We now know,
however, that the major difference between the Lorentz and
the Einstein-Laub formulations is the lack of hidden entities
inside magnetic materials in the latter. In other words, it can be
shown that the total force and total torque exerted by EM fields
on any object are precisely the same in the two formulations,
provided that the contributions of hidden momentum to the
Lorentz force and torque on magnetic matter are subtracted
[5,25,26]. Since the vast majority of the experimental tests of
the Lorentz force law pertain to total force and/or total torque
experienced by rigid bodies, these experiments can be said to
confirm equally the validity of the Einstein-Laub formulation.

It may thus appear that the choice between the Lorentz
and the Einstein-Laub formulations is a matter of taste; those
who feel comfortable with hidden entities may continue to
use the Lorentz law, while others can resort to the Einstein-
Laub formalism in order to avoid keeping track of hidden
entities inside magnetic materials. This apparent equivalence,
however, does not stand up to further scrutiny. Even after
subtracting the hidden momentum contribution from the
Lorentz force, the corresponding force-density distribution
within an object turns out to be substantially different from
that predicted by the Einstein-Laub formulation. We believe
that such differences are measurable and, in fact, the scant
experimental evidence presently available seems to favor the
Einstein-Laub formulation. In the following sections, we use
computer simulations to illustrate some of the differences in
the force-density distribution between the two formulations.
Before presenting our numerical results, however, it will be
useful to briefly review the Einstein-Laub formalism.

II. THE ELECTRODYNAMICS OF EINSTEIN AND LAUB

A particular arrangement of Maxwell’s macroscopic equa-
tions eliminates D and B, leaving the remaining fields
(E and H) related to effective electric charge and current
densities, (ρfree − ∇ · P, Jfree + ∂P/∂t), in addition to effective
magnetic charge and current densities, (−∇ · M, ∂M/∂t). The
corresponding force-density equation in this case was given
by Einstein and Laub [23] as follows:

FEL(r,t) = ρfreeE + Jfree × μoH + (P · ∇)E + (∂P/∂t)

×μoH + (M · ∇)H − (∂M/∂t) × εoE. (11)

The torque density in the Einstein-Laub formalism can be
shown to require three terms [25,26], namely,

TEL(r,t) = r × FEL(r,t) + P(r,t) × E(r,t)

+ M(r,t) × H(r,t). (12)

Although Einstein and Laub briefly mentioned the P × E
and M × H terms of the above expression in the context of
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FIG. 1. (Color online) A constant and uniform E field Eo acts on a
permanently polarized solid cylinder of cross-sectional area A, height
h, and uniform polarization Po. (a) In the Einstein-Laub formulation,
the force density (P · ∇)E is zero everywhere and the torque density is
given by Po × Eo. (b) In the Lorentz formulation, bound charges with
density −∇·P appear on the top and bottom facets of the cylinder,
giving rise to surface charge densities ±Po. Thus, the force exerted
by the external E field on these facets is ±APoEo, even though the
net force acting on the cylinder is zero. The torque density is now
given by r × FL(r,t), which is, once again, equal to Po × Eo.

birefringent media [23], it is not difficult to prove the need for
the inclusion of these terms in Eq. (12) under all circumstances.
As a simple example, consider a permanently polarized solid
cylinder, having uniform polarization Po along the cylinder’s
axis, as shown in Fig. 1. In the presence of a constant and
uniform external field E(r,t) = Eo, the term (P·∇)E of Eq. (11)
does not produce any forces on the cylinder. Therefore, in
addition to the r × FEL term of Eq. (12), one needs the P × E
term to account for the torque experienced by the cylinder. In
contrast, the − (∇ · P)E term of the Lorentz force density in
Eq. (3) produces equal and opposite forces on the cylinder’s
top and bottom facets in response to the E field E(r,t) = Eo.
As before, the integrated force on the entire cylinder vanishes,
yet Eq. (4) yields the correct torque without needing additional
terms. A similar argument justifies the inclusion of the M × H
term in the Einstein-Laub torque-density formula in Eq. (12).

In linear, isotropic media, where P is always parallel to
E, and M always parallel to H, the P × E and M × H terms
of Eq. (12) automatically vanish. This might explain why
Einstein and Laub originally confined the use of these terms to
birefringent media. However, aside from justifications based
on specific examples, the universality of Eq. (12) can be
proven by demonstrating its consistency with the principle
of conservation of angular momentum [26].

The energy density, Poynting vector, momentum density,
and stress tensor associated with the Einstein-Laub formula-
tion are given by

EEL(r,t) = 1
2εoE · E + 1

2μoH · H, (13)

SEL(r,t) = E(r,t) × H(r,t), (14)

p
(EM)
EL (r,t) = E(r,t) × H(r,t)/c2, (15)

↔
TEL(r,t) = 1

2 (εoE · E + μoH · H)
↔
I − DE − BH. (16)
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The Einstein-Laub formulation gives precisely the same
total force on any given object, as does the Lorentz formu-
lation. This is not difficult to see, considering that the stress
tensor of Eq. (8) is identical to that in Eq. (16), when both
tensors are evaluated on a closed surface located entirely in
free space surrounding the object under consideration. Such a
surface is generally used to calculate the EM force exerted on
an isolated object. It is also possible to show that the total EM
torque acting on an isolated object is always the same in the
two formulations [5,25].

The astute reader will have noticed that the EM momentum
densities in Eqs. (7) and (15) differ by εoM × E. This
momentum, however, has no observable effects, as it merely
balances the hidden momentum of the Lorentz formulation.
(The Einstein-Laub formulation, of course, does not have
entities hidden inside magnetic matter, neither in the material
system nor in the EM fields.) The bottom line is that no
measurement of total force or total torque on a given object
can distinguish one formulation from the other.

The distinctive features of the electrodynamics of Lorentz
relative to that of Einstein and Laub are in the distributions of
force and torque throughout material media, which are hosts
to ρfree, Jfree, P, and M. In other words, despite the equality
of total force and total torque, the distributions predicted
by the two formulations are not always the same [27,28].
Such distributions should be measurable in experiments on
deformable media, such as liquid droplets, and also in
conjunction with nonlinear optical phenomena associated with
electrostriction or magnetostriction.

The goal of the present paper is to compare and contrast
these differing force distributions. We mention in passing
that other EM force-density equations, due, for example, to
Helmholtz, Minkowski, Abraham, and Peierls [8,29–32], have
been proposed and investigated in the past. Reference [29],
in particular, contains a wealth of information on Abraham,
Minkowski, Einstein-Laub, Helmholtz, and Peierls theories,
presenting the relevant theoretical arguments, as well as
experimental comparisons among the various formulations.
Many of the discussions in [29] are, in fact, closely related
to the topic of the present paper. The focus of our paper,
however, is exclusively on the Lorentz and Einstein-Laub
equations, as it is not our goal here to provide an exhaustive
comparison of all existing formulations; rather we seek to
illustrate, through numerical simulations, the changes in the
force-density distribution that could arise when one force
equation replaces another, despite the fact that the total force
and total torque acting on an isolated object remain the same.

In Minkowski’s theory, the force density acts only where
∇ε or ∇μ is nonzero (typically at surfaces and interfaces), and

there are no forces inside a homogeneous medium. (Here ε and
μ are the relative permittivity and permeability of the medium.)
The Abraham force density is identical to that of Minkowski
in stationary situations. The Abraham and Minkowski force
densities, as well as their associated tensors, are in standard
use and have been successful in making simple predictions.
Again, the total force and torque acting on an isolated body
generally agree with those obtained using alternative theories.
However, unlike the Einstein-Laub formulation, electrostric-
tion and magnetostriction appear neither in Abraham’s nor
in Minkowski’s theory and must be introduced separately,
resulting in what is commonly known as the Helmholtz force
[29]. The Helmholtz force is a description in common use
which is similar, but not identical, to the Einstein-Laub force.

Both the Lorentz and the Einstein-Laub theories are
microscopic (as opposed to phenomenological), and can,
in principle, be applied under general circumstances. Both
theories allow polarization and magnetization to be related to
electric and magnetic fields in nonlinear, nonlocal, anisotropic,
dispersive, and hysteretic materials, without hampering one’s
ability to predict local force and torque densities. In contrast,
other formulations may be restricted to linear media, where
P(r,t) is proportional to E(r,t) and M(r,t) is proportional
to H(r,t). [If these linear media also happen to be free
from dispersion, the proportionality constants will be the
electric and magnetic susceptibilities εoχe = εo(ε − 1) and
μoχm = μo(μ− 1).]

III. THE EINSTEIN-LAUB FORCE INSIDE LINEAR
NONABSORPTIVE MEDIA

In linear, transparent media, one can express the time-
averaged Einstein-Laub force density in terms of the gradient
of the intensity of the EM field. The same cannot be said
about the Lorentz force density, and therein lies a major
difference between the two formulations. In the present section
we analyze the time-averaged Einstein-Laub force density
in a linear medium specified by its relative permittivity
ε(ω) and relative permeability μ(ω). Here ω is the angular
frequency of a monochromatic, but otherwise arbitrary, EM
wave traveling through the medium. The wave induces the
following polarization and magnetization at the point (r,t) in
space-time:

P(r,t) = Re{εo[ε(r,ω) − 1]E(r,ω) exp(−iωt)}, (17a)

M(r,t) = Re{μo[μ(r,ω) − 1]H(r,ω) exp(−iωt)}. (17b)

In a nonabsorptive medium, where both ε(ω) and μ(ω) are
real valued, and where ρfree = 0 and Jfree = 0, the Einstein-Laub
force density of Eq. (11) may be simplified as follows:

〈FEL(r,t)〉 = 1
2 Re{[εo(ε − 1)E · ∇]E∗ − iωεo(ε − 1)E × (B∗ − M∗) + [μo(μ − 1)H · ∇]H∗ + iωμo(μ − 1)H × (D∗ − P∗)}

= 1
2 Re{εo(ε − 1)(E · ∇)E∗ − εo(ε − 1)E × (−iωB)∗ + μo(μ − 1)(H · ∇)H∗ + μo(μ − 1)H × (−iωD)∗

+ iωεo(ε − 1)E × μo(μ − 1)H∗ − iωμo(μ − 1)H × εo(ε − 1)E∗}
= 1

2 Re{εo(ε − 1)(E · ∇)E∗ + εo(ε − 1)E × (∇ × E∗) + μo(μ − 1)(H · ∇)H∗ + μo(μ − 1)H × (∇ × H∗)

+ iωμoεo(ε − 1)(μ − 1)(E × H∗ + E∗ × H)}.
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FIG. 2. (Color online) (a) A semi-infinite dielectric of refractive index n = 2.0 is illuminated from above by a linearly polarized Gaussian
beam having λo = 0.65 μm and an amplitude FWHM of 1.5 μm. The incident beam, which has a circular cross section, is linearly polarized
along the x axis. The source is placed inside the dielectric at z = 0.5 μm, and the beam is allowed to propagate downward. Shown in (b) and (c)
are plots of instantaneous Ex and Ez in the yz and xz planes, respectively. The integral over the xy plane of the z component of the Poynting
vector, Sz, yields the total incident optical power as Pinc = 8.3 × 10−16 W. This arbitrary value, chosen for numerical convenience, is the scale
factor by which the computed force density must be normalized.

Note that Maxwell’s equations ∇ × E = −∂B/∂t and ∇ ×
H = ∂D/∂t have been used in going from the second to the
third line of the above derivation. The last term in the final ex-
pression is purely imaginary and can therefore be dropped. The
remaining terms are then simplified with the aid of the vector

identity ∇(A · B) = (A · ∇)B + (B · ∇)A + A × (∇ × B) +
B × (∇ × A). We will have

〈FEL(r,t)〉 = 1
4εo[ε(r,ω) − 1]∇(E · E∗)

+ 1
4μo[μ(r,ω) − 1]∇(H · H∗). (18)

FIG. 3. (Color online) Plots of the force-density components Fx and Fy in the xy and yz cross-sectional planes of the system depicted in
Fig. 2, computed using the Einstein-Laub formula. The left column represents an incident beam that is linearly polarized along the x axis,
while the right column corresponds to linear polarization along y. The arrows overlapping the plots of Fx in the xy plane (top row) show the
total force density Fx x̂ + Fy ŷ, which tends to compress the host medium radially toward the z axis. The color scale bar shows the force density
in units of μN/m3.
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It is thus seen that, in the special case where the EM
wave is monochromatic and also ε and μ are real valued,
the time-averaged Einstein-Laub force density consists of two
terms, each being proportional to the gradient of the local
field intensity. Note that ε and μ in Eq. (18) are, in general,
functions of the spatial coordinates r, yet they remain outside
the gradient operator. This proportionality of the Einstein-Laub
force density to the local intensity gradient of the EM field
is unique. The examples discussed in the following sections
clearly demonstrate that this property is not shared by the
Lorentz force.

It should be pointed out that certain experimental obser-
vations are believed to support the Helmholtz force over that
of Einstein and Laub; see, for example, the Hakim-Higham
experiment involving the force of static electric fields on liquid
dielectrics [33]. Hakim and Higham conclude (as does Brevik
[29]) that the Helmholtz theory provides a better fit to their
experimental data than does the theory of Einstein and Laub.
Interpretation of such experiments, however, as pointed out by
Brevik [29], requires careful attention to spurious effects, and,
in any case, it is necessary to examine a much broader range of
situations before settling on a microscopic theory of EM force
and torque that is firmly rooted in physical reality.

IV. GAUSSIAN BEAM PROPAGATING INSIDE
A TRANSPARENT, HOMOGENEOUS,

ISOTROPIC DIELECTRIC

With reference to Fig. 2(a), consider a transparent, nonmag-
netic dielectric of refractive index n = 2.0, through which a
monochromatic Gaussian beam propagates along the negative
z axis. The beam has vacuum wavelength λo = 0.65 μm, is
linearly polarized along x, and has a circular cross section with
a full-width-at-half-maximum amplitude FWHM = 1.5 μm.
The instantaneous E-field profile of the beam is shown in
Figs. 2(b) and 2(c), which are plots of Ex in the yz plane
and Ez in the xz plane, respectively. Note that the propagation
distance along z is only about 1 μm, which is less than the
Rayleigh range of the Gaussian beam. This explains why the
fraction of the beam shown in these figures remains collimated
as it propagates downward along the z axis.

Figure 3 shows plots of the force-density components
Fx and Fy in the xy and yz cross-sectional planes of the
system depicted in Fig. 2. The Einstein-Laub force-density
distribution FEL = (P · ∇)E + (∂P/∂t) × μoH has been used
in these calculations. The left-hand column in Fig. 3 represents
the case of an incident beam that is linearly polarized along
the x axis, while the right-hand column corresponds to linear

FIG. 4. (Color online) Plots of the Lorentz force-density components Fx and Fy in the xy and yz cross-sectional planes of the system
depicted in Fig. 2. The left column represents an incident beam that is linearly polarized along the x axis, while the right column corresponds to
linear polarization along y. The arrows overlapping the plots of Fx in the xy plane (top row) show the total in-plane force density Fx x̂ + Fy ŷ,
which tends to compress the dielectric host in one direction but expand it in another direction. This behavior of the force is also apparent in the
Fy plots in the yz plane (bottom row). The color scale bar shows the computed force density in units of μN/m3. This force density corresponds
to an incident optical power Pinc = 8.3 × 10−16 W, as pointed out in the caption to Fig. 2.
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polarization along y. The arrows overlapping the Fx plots in
the xy plane (top row) show the total force density Fx x̂ + Fy ŷ
in the cross-sectional xy plane. Clearly, the optical force
everywhere tends to compress the host medium toward the
z axis. The compressive nature of the force is also apparent in
the Fy plots in the yz plane (bottom row).

The Lorentz formula FL = −(∇ · P)E + (∂P/∂t) × B pre-
dicts a very different force-density distribution in the system
of Fig. 2, as seen in Fig. 4. According to Figs. 4(a) and 4(c),
when the E field of the incident beam is parallel to the x axis,
the radiation force in the yz plane is compressive (i.e., toward
the z axis), while that in the xz plane is expansive. Conversely,
Figs. 4(b) and 4(d) indicate that, when the incident E field is
parallel to y, the force in the xz plane is compressive, while
that in the yz plane is expansive.

In 1973, Ashkin and Dziedzic performed a remarkable
experiment in which they focused a green laser beam (λo =
0.53 μm) onto the surface of pure water [34]. They observed
a bulge on the surface where the focused laser beam had
entered. Subsequent analysis by Loudon [35,36] showed that
compressive radiation forces beneath the surface tend to

squeeze the liquid toward the optical axis, causing a surface
bulge via the so-called “toothpaste tube” effect. In his analysis,
Loudon used the Einstein-Laub formulation; his findings are
consistent with the results of our simulations depicted in
Fig. 3, which indicate a compressive force pointing everywhere
toward the z axis. In contrast, a theoretical analysis based
on the Lorentz formulation [37] revealed the existence of
both expansive and compressive forces in different regions
beneath the surface, which effectively cancel out, thus ruling
out the possibility of bulge formation on the water surface.
The simulation results shown in Fig. 4 are in agreement with
the latter analysis. The observations of Ashkin and Dziedzic
in [34] thus provide rare experimental evidence against the
Lorentz formulation and in support of the Einstein-Laub
force-density expression.

One must not forget, however, that the Abraham and
Minkowski force densities also predict a bulge similar to
that observed in the experiment, although, in this case,
electrostriction (i.e., Helmholtz force) is required to account
for the “squeeze” of the liquid needed for stability. This
alternative explanation of the observed bulge, discussed at

x
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FIG. 5. (Color online) Plots of the time-averaged Einstein-Laub force density in various cross sections through the center of the
computational domain. A Gaussian beam of wavelength λo = 0.65 μm, having amplitude FWHM = 1 μm, is incident from the air on a
2-μm-thick dielectric slab of refractive index n = 1.5, which occupies the range z = − 1 μm to z = + 1 μm; the source is at z = 1.2 μm. The
color scale bars show the computed force density in μN/m3, corresponding to an incident optical power Pinc = 7.3 × 10−16 W. (a)–(c) Fx ,
Fy , and Fz, respectively, in the central xy plane. (d) Fx in the central xz plane. (e) Fy in the central yz plane. (f) Fz in the central xz plane.
(g) Diagram showing the Gaussian beam and the dielectric slab. (h) The vector field Fx x̂ + Fy ŷ superposed over the distribution of Fx in the
central xy plane. (i) Fz in the central yz plane.
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length in [29], is qualitatively similar to Loudon’s analysis
based on the Einstein-Laub equation. Either way, it is clear that
the experimental results hint at a departure from the Lorentz
law, suggesting the need for further analysis to pinpoint the
correct form of the microscopic force equation, one that can
accurately predict the measurable characteristics of the bulge
in addition to explaining other relevant observations.

V. GAUSSIAN BEAM PASSING THROUGH
A TRANSPARENT SLAB

The conclusions reached in the preceding section remain
valid for a thin dielectric slab of a transparent material as well.
Shown in Fig. 5 are the various cross-sectional profiles of
the Einstein-Laub force-density distribution in a 2-μm-thick
slab of refractive index n = 1.5. The incident beam is
Gaussian and linearly polarized along the x axis, having
λo = 0.65 μm and a circular cross-section with FWHM =
1.0 μm. The incident beam, whose optical power (in the

air) is Pinc = 7.3 × 10−16 W, propagates along the negative z

direction. As before, the incident optical power has an arbitrary
value chosen for numerical convenience. The computed force
densities must subsequently be normalized by the above Pinc

to yield the force density per watt of incident optical power.
In Fig. 5, the standing wave created between the entrance

and exit facets of the slab is clearly visible in the plotted
force profiles in the xz and yz planes. While Fz alternates
in direction (pointing up or down depending on the location
within a fringe), the lateral component Fx x̂ + Fy ŷ of the force
is radially directed and points inward everywhere, tending
to compress the host medium uniformly toward the z axis.
In contrast, the Lorentz force-density distribution depicted in
Fig. 6 for the same slab under identical conditions shows a
compressive lateral force in the yz plane, but an expansive
lateral force in the xz plane.

A possible experiment on a thin dielectric slab to distinguish
the behavior predicted by the Einstein-Laub equation (Fig. 5)
from that suggested by the Lorentz law (Fig. 6) could involve

x

z

n=1.5
2µm

(g)

(a)

(d) (e) (f)

(h) (i)

(b) (c)

FIG. 6. (Color online) Plots of the time-averaged Lorentz force density in various cross sections through the center of the computational
domain. A Gaussian beam of wavelength λo = 0.65 μm, having amplitude FWHM = 1 μm, is incident from the air on a 2-μm-thick dielectric
slab of refractive index n = 1.5, which occupies the range z = − 1 μm to z = + 1 μm; the source is at z = + 1.2 μm. The color scale bars show
the computed force density in μN/m3, corresponding to an incident optical power Pinc = 7.3 × 10−16 W. (a)–(c) Fx , Fy , and Fz, respectively,
in the central xy plane. (d) Fx in the central xz plane. (e) Fy in the central yz plane. (f) Fz in the central xz plane. (g) Diagram showing the
Gaussian beam and the dielectric slab. (h) The vector field Fx x̂ + Fy ŷ superposed over the distribution of Fx in the central xy plane. (i) Fz in
the central yz plane.
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a Si3N4 membrane having a thickness of only a few microns
and supported on a silicon substrate. A small hole etched into
the substrate would allow the Si3N4 membrane to act as a
free-standing slab. Silicon nitride would be a good choice
for such an experiment as it has minimal inhomogeneity and
no crystalline anisotropy that would otherwise complicate
the interpretation of the results. More importantly, Si3N4 is
highly transparent at λ ∼ 0.8 μm, where femtosecond pulsed
Ti:sapphire lasers operate. A 150 fs–1.0 μJ light pulse focused
to a diameter of ∼10 μm at normal incidence will excite
an elastic wave within the membrane. The evolution of this
wave, monitored by a local probe (e.g., micro-Raman probe
[38]), should readily distinguish between the two force-density
formulations. Needless to say, the aforementioned numbers are
exemplary; one could, for instance, increase the spot diameter
to 50 μm and raise the optical pulse energy to 25 μJ without
affecting the following discussion.

With a 6 MW laser pulse focused to an Airy disk diameter
of ∼10 μm on the surface of the Si3N4 membrane, the
pressure on the cylindrical boundary of the beam (as it
passes through the slab) will be 1

4εo(n2 − 1)|E|2 ≈ 200 MPa.
Considering that Young’s modulus of Si3N4 (depending on
the material fabrication method) is somewhere in the range
of 150−300 GPa, the 10 μm diameter of the illuminated
region should contract by about 0.1% under the action of the
6 MW light pulse. The sensitivity of the Raman microprobe
is ∼25 MPa for silicon [38]. If we assume that Si3N4 is not
too different from silicon in its Raman signal sensitivity, the
optically induced stress will be about an order of magnitude
greater than that needed for micro-Raman measurements. (Of
course, the stress is induced in the medium only for a short
duration after the application of the pump pulse, so averaging
over many pulses is needed to obtain a reasonably strong
Raman signal.)

The threshold for ablation due to multiphoton absorption in
BK7 glass has been reported at 5.6 μJ for a 150 fs Ti:sapphire
pulse focused to a 10 μm-diameter spot [39]. Assuming that
Si3N4 is not too different in this respect from BK7 glass,
our suggested pulse energy of 1.0 μJ over a 10 μm spot is
substantially below the ablation threshold. In addition, the
extinction coefficient of Si3N4 at λ = 0.8 μm is essentially
“zero” according to available literature. It is easy to estimate
that the imaginary part of the refractive index must be below
10−4 for the thermal effects to be negligible. (Assumptions:
1.0 μJ pulse focused to a diameter of 10 μm on a 5 μm-thick
film, maximum temperature rise ∼10 ◦C).

The relative change in the refractive index with pressure is
defined as (1/n)dn/dP . Typical numbers for Si, diamond,
boron nitride, and SiC range from 10−3 to 10−4 GPa−1.
Considering that the radial radiation pressure inside the Si3N4

membrane is on the order of 0.2 GPa, the fractional change of
the refractive index is expected to be in the 10−4−10−5 range.
Placing the sample in a high-Q cavity and monitoring the
cavity’s transmission would be one way to measure this level
of �n, although this small value of �n may be easily obscured
by a few degrees of temperature rise in the sample. Moreover,
the nonlinear refractive index of Si3N4 should be significant
at these intensities. Assuming a typical nonlinear coefficient
n2 = 10−15 cm2/W, our intensity of 6 × 1012 W/cm2 will

change the refractive index of the illuminated spot by as much
as 0.006, swamping the desired signal.

The existence of a nonlinear signal, however, is not
necessarily counterproductive, considering that the stress that
needs to be monitored is itself a source of nonlinearity
(via electrostriction), as discussed in the following section.
While the electronic contribution to the Kerr nonlinearity is
essentially instantaneous, the electrostrictive nonlinearity has a
slower temporal response. The bottom line is that, with a speed
of sound around 104 m/s, 1 ps after the high-power pulse has
passed through the membrane, the elastic deformations in the
area under illumination will have propagated by only ∼10 nm.
Therefore, with a probe that is delayed by ∼1.0 ps relative to
the high-power pump pulse, one should be able to monitor the
change in the refractive index caused by electrostriction alone.

VI. CONTRIBUTION OF ELECTROMAGNETIC
FORCE TO NONLINEAR OPTICAL EFFECTS

The EM force density acquires a direct physical meaning
in the context of electrostriction of a dielectric medium in
the presence of an optical wave. In particular, electrostriction
induced by a spatially inhomogeneous E field causes the host
medium to constrict in regions of higher electric field, thereby
creating a pressure and mass-density variation throughout the
medium. For a broad class of isotropic dielectric media, the
acoustic wave equation that governs mass-density variations
ρ̃(r,t) in the medium [40,41] is given by

(
∂2

∂t2
− 	′∇2 ∂

∂t
− v2∇2

)
ρ̃(r,t) = −∇ · F(r,t). (19)

Here we have followed the notation of [41], where the mean
density ρ0 � |ρ̃|, v is the speed of sound in the host medium,
	′ is the damping parameter, and F is the EM force density.
(We have changed the sign of the right-hand-side of Eq. (19)
compared to Ref. [41] on the basis that the force density
there should have been F = −∇pst , with pst the strictive
pressure, to yield a compressive force density associated
with regions of negative pressure.) The standard theory of
electrostriction, derived using thermodynamic arguments and

y

z

x

Incident Gaussian
beam (z = 1.7µm)

Droplet (n=1.35)

Lens

Ey

FIG. 7. (Color online) A green laser beam (λo = 532 nm), linearly
polarized along the y axis, is focused above a 3-μm-diameter water
droplet. The focused spot’s FWHM is 2.0 μm. The droplet is centered
at the origin, with the focal plane of the lens being 0.2 μm above its
upper surface.

023826-8



ELECTROMAGNETIC-FORCE DISTRIBUTION INSIDE MATTER PHYSICAL REVIEW A 88, 023826 (2013)

FIG. 8. (Color online) Cross-sectional plots of the Ey field amplitude in the absence of the droplet. Frames (a)–(c) show Ey in the central
xy, xz, and yz planes, respectively. The Gaussian beam (λo = 532 nm) is initiated at z = 1.7 μm and propagates downward, along the negative
z axis. The integral of the z component of the Poynting vector over the xy plane is Pinc = 3.0 × 10−15 W. This arbitrary optical power is used
for numerical convenience; all computed EM forces must be normalized by Pinc to yield the force per watt of incident optical power.

the Lorentz-Lorenz law, yields

Fst = 1
2εo[(n2 − 1)(n2 + 2)/3]∇〈Ẽ2〉. (20)

In the above equation, Ẽ is the electric field amplitude of
an EM wave propagating in a dielectric medium of refractive
index n, and the angle brackets represent time averaging
[41]. The electrostrictive force density of Eq. (20) has two
distinguishing features: (i) the force density is independent
of the polarization state of the field; (ii) for a cylindrically
symmetric intensity profile of the E field, the force density is
cylindrically symmetric.

A key question now arises as to whether the Lorentz force
density FL of Eq. (3) or the Einstein-Laub force density FEL of
Eq. (11) provides a better model for electrostrictive phenomena
in nonmagnetic dielectrics for which we hereinafter set
ρfree = 0, Jfree = 0, and M = 0. Our arguments in the preceding
sections reveal that the time-averaged Einstein-Laub force
density is, in fact, nearly identical to the standard model
result [to within a numerical factor of (n2 + 2)/3], whereas
the time-averaged Lorentz force does not yield a cylindrically
symmetric force density for an intensity profile of the same
symmetry and that the force density further depends on the
polarization state. This suggests that excitation of acoustic
waves in a medium by a laser beam could serve as a
useful experimental test of the Lorentz versus Einstein-Laub
theories. The fact that, in its general features, the Einstein-Laub
formulation agrees with the standard model of electrostriction
is a powerful argument in its favor given the success of the
standard model in describing the nonlinear optical phenom-

ena of electorstrictive self-focusing and stimulated Brillouin
scattering [40–43]. However, the possibility still exists that the
standard theory is lacking and that the Lorentz theory is indeed
correct. By highlighting the differences between the force
densities predicted by the two theories, perhaps the numerical
simulations reported in the present paper could suggest to the
experimentalist the design of some possible diagnostic tests.

VII. GAUSSIAN BEAM PROPAGATING
THROUGH A WATER DROPLET

Figure 7 shows a focused laser beam having λo = 532 nm
and amplitude FWHM = 2.0 μm, illuminating a spherical
water droplet of refractive index n = 1.35 and diameter d =
3 μm. The beam is linearly polarized along the y axis, and
the droplet is centered at the origin of coordinates, its upper
surface being 0.2 μm below the focal plane of the lens.

The focused beam’s cross-sectional profile in the xy plane
is Gaussian, and the source plane is located at z = 1.7 μm,
which is 0.2 μm above the droplet’s upper surface. The
propagation is along the negative z axis. In the absence of
the droplet, Fig. 8 shows three cross-sectional plots of Ey , i.e.,
the E-field amplitude in the xy, xz, and yz planes. These Ey

plots are snapshots at a particular time (long enough for the
FDTD solution to have become time harmonic). The overall
propagation distance in Fig. 8 being less than the Rayleigh
range of the focused spot, the beam remains essentially
collimated as it propagates downward.

Figure 9 shows cross-sectional profiles of the field ampli-
tude Ey in the xy, xz, and yz planes in the presence of the

FIG. 9. (Color online) Cross-sectional plots of the Ey field amplitude in the presence of the droplet (n = 1.35, d = 3 μm). The Gaussian
beam is initiated at z = 1.7 μm and propagates downward, along the negative z axis. The xy cross-sectional plot in (a) represents the central
plane of the droplet, where z = 0. Similarly, the xz cross-sectional plot in (b) corresponds to the central plane where y = 0, and the yz

cross-sectional plot in (c) represents the central plane located at x = 0.
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FIG. 10. (Color online) Plots of Fx in two cross-sectional planes: top row, xy plane; bottom row, xz plane. The symmetry of the problem is
such that Fx vanishes in the central yz plane. The left-hand column corresponds to the Einstein-Laub formulation, while the right-hand column
represents the Lorentz formulation. In both formulations Fx tends to compress the droplet toward the central yz plane. The color scale bars
indicate the computed force density in μN/m3, corresponding to an incident optical power Pinc = 3.0 × 10−15 W.

water droplet. The droplet now acts as a second lens to further
focus the incident beam into a smaller spot below the droplet.
Reflection and refraction at the air-water interface as the beam
enters and exits the droplet are fully accounted for in these
simulations.

The force-density plots in Figs. 10–12 represent local time
averages. The Fx , Fy , and Fz force-density distributions are
shown in the xy, xz, and yz planes through the center of
the droplet. The Fx and Fy profiles have a symmetry plane
where they vanish, so the corresponding plots are not included
in Figs. 10 and 11. Within the droplet, the Fx and Fz force
components have similar profiles in the two formulations.
However, Fy shows two distinct behaviors, tending to com-
press the droplet in the Einstein-Laub formulation (left panel
in Fig. 11) and to stretch it in the Lorentz formulation (Fig. 11,
right panel). It is this feature of the Fy component of the
force-density distribution that must be probed experimentally
in order to decide between the Einstein-Laub and Lorentz
formulations.

Figure 10 shows plots of Fx in two cross-sectional planes:
top row, xy plane; bottom row, xz plane. The symmetry of
the problem dictates that Fx vanish in the central yz plane.
The left-hand column in Fig. 10 corresponds to the Einstein-
Laub formulation, while the right-hand column represents the
Lorentz formulation. In the case of Fx , there is not much
difference between the two formulations: Both predict a force
that tends to compress the droplet toward the central yz plane.
The integrated force on each hemisphere in both formulations

is ±6.97 × 10−18 μN. Normalization by the incident optical
power Pinc yields a force of ± 2.3 nN per watt on each
hemisphere.

Figure 11 shows plots of Fy in two cross-sectional planes:
top row, xy plane; bottom row, yz plane. The symmetry of
the problem dictates that Fy vanish in the central xz plane.
The left-hand column corresponds to the Einstein-Laub for-
mulation, while the right-hand column represents the Lorentz
formulation. For this force component, there is a substantial
difference between the two formulations: While Fy (EL) tends
to compress the droplet toward the central xz plane, Fy (L)

wants to stretch the liquid away from that central plane.
The integrated force on each hemisphere for the Einstein-
Laub formulation is ± 2.3 nN per watt of incident optical
power; the corresponding Lorentz force is ± 2.96 nN per
watt.

Figure 12 shows plots of Fz in three cross-sectional planes:
top row, xy plane; middle row, xz plane; bottom row, yz

plane. The left-hand column corresponds to the Einstein-
Laub formulation, while the right-hand column represents the
Lorentz formulation. For this force component, there is not
much difference between the two formulations: Both predict
an Fz that, on the whole, tends to push the droplet downward
and away from the lens. The total integrated value of Fz in both
cases is − 0.53 nN per watt of incident optical power. [This
means that, in an inverted optical trap, the 0.14 pN weight of
the droplet can be balanced against a 260 μW continuous wave
(cw) focused laser beam.]

023826-10



ELECTROMAGNETIC-FORCE DISTRIBUTION INSIDE MATTER PHYSICAL REVIEW A 88, 023826 (2013)

FIG. 11. (Color online) Plots of Fy in two cross-sectional planes: top row, xy plane; bottom row, yz plane. The symmetry of the problem is
such that Fy vanishes in the central xz plane. The left-hand column corresponds to the Einstein-Laub formulation, while the right-hand column
represents the Lorentz formulation. While Fy (EL) tends to compress the droplet toward the central xz plane, Fy (L) wants to stretch the liquid
away from that central plane. The color scale bars indicate the computed force density in μN/m3, corresponding to an incident optical power
Pinc = 3.0 × 10−15 W.

It is thus clear that the EM force distribution inside a liquid
droplet is substantially different in the two formulations. If the
droplet visibly deforms under a focused beam, its deformation,
according to Einstein and Laub, will be axially symmetric and
independent of the polarization state of the incident beam.
The droplet thus assumes the shape of a prolate spheroid.
In contrast, the Lorentz force tends to flatten the droplet by
stretching it in the equatorial plane along the direction of
incident polarization, while maintaining the vertical distance
between its poles.

VIII. CONCLUDING REMARKS

The force and torque exerted by EM fields on material
media are tied intimately to the linear and angular momenta
of the fields. Denoting the field’s linear momentum density by
p(EM)(r,t) and its angular momentum density by L(EM)(r,t) =
r × p(EM)(r,t), conservation of momentum demands that the
following identities remain valid at all times t :∫∫∫ ∞

−∞
F(r,t)dxdydz + d

dt

∫∫∫ ∞

−∞
p(EM)(r,t)dxdydz = 0,

(21a)
∫∫∫ ∞

−∞
T(r,t)dxdydz + d

dt

∫∫∫ ∞

−∞
L (EM)(r,t)dxdydz = 0.

(21b)

Thus, in a closed system, any momentum (linear or angular)
that leaves the EM field will enter the material media by
way of the force and torque exerted by the fields on the
media. Similarly, any momentum appearing in the EM field
comes at the expense of the system’s mechanical momenta
(linear or angular), again through the action of EM force
and torque. It can be shown that, in the case of the Lorentz
law, the identities in Eq. (21) are satisfied with F, T, and
p(EM) given, respectively, by Eqs. (3), (4), and (7). Similarly,
in the Einstein-Laub formulation, the identities in Eqs. (21)
are satisfied when the EM force, torque, and momentum
are given by Eqs. (11), (12), and (15). It must be pointed
out that the aforementioned EM angular momentum density
expression, L(EM)(r,t) = r × p(EM)(r,t), is completely general,
covering both the spin and orbital angular momenta of the
field.

While the Lorentz formalism requires the notions of hidden
energy and hidden momentum in order to comply with special
relativity and with the conservation laws, the Einstein-Laub
formulation remains compatible with other physical principles
without the need for such hidden entities in conjunction
with magnetic materials [7–22]. The EM momentum density
in the Einstein-Laub theory, p(EM) = E × H/c2, is the well-
known Abraham momentum density [44], which is also the
momentum predicted by the Balazs thought experiment [45].
The other well-known expression for the momentum density
of the EM fields is that due to Minkowski, p(EM) = D × B [46],
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FIG. 12. (Color online) Plots of Fz in three cross-sectional planes: top row, xy plane; middle row, xz plane; bottom row, yz plane.
The left-hand column corresponds to the Einstein-Laub formulation, while the right-hand column represents the Lorentz formulation. Both
formulations predict an Fz that tends to push the droplet downward. The color scale bars indicate the computed force density in μN/m3,
corresponding to an incident optical power Pinc = 3.0 × 10−15 W.

which is not relevant to the present discussion; we have
discussed the significance of Minkowski’s momentum and its
role in radiation pressure problems elsewhere [47].

Since hidden momentum is not a measurable entity, it is
impossible to decide between the two theories on the basis of
hidden momentum. It is also known that, once the contribution
of hidden momentum is properly removed from the Lorentz
law, the total force and total torque exerted by EM fields on
any isolated object will turn out to be precisely the same [5,25].
Any measurable differences between the two formulations
must therefore be sought in the distributions of EM force
and torque within material media. In the examples presented
in Secs. IV, V, and VII, we focused our attention exclusively
on nonmagnetic materials, where small deformations of the
host medium (induced by radiation pressure acting on electric
dipoles) offer the possibility of telling the two theories apart.

Similar differences also exist between predicted force-density
distributions inside magnetic materials, albeit at frequencies
well below the optical regime, where ordinary magnetic mate-
rials exhibit significant susceptibilities. The goal of the present
paper has been to draw attention to the existence of such
differences, in the hope of encouraging the experimentalist
to take a closer look at the internal distributions of EM force
and torque.
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