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Nonclassical features of the polarization quasiprobability distribution
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Polarization quasiprobability distribution is defined in the space of the Stokes observables. It can be
reconstructed with the help of polarization quantum tomography and provides a full description of the so-called
polarization sector of quantum states of light. We show here that due to its definition in terms of the discrete-valued
Stokes operators, polarization quasiprobability distribution has singularities at integer values of the Stokes
observables and takes negative values even for the quantum states typically considered as “classical” ones. In
experiments with “bright” multiphoton states, the photon-number resolution is smeared due to the photodetectors’
technical limitations. In this case, nonclassical features of the explored quantum states can be revealed by adding
a strong coherent beam into the orthogonal polarization.
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I. INTRODUCTION

During the last decade, nonclassical states of light became
a necessary tool in many physical experiments, most notably
very high-precision measurements [1], quantum computations,
and quantum cryptography (see, e.g., [2–4] and references
therein). Nonclassical light will also be used in the emerging
class of experiments aimed at the preparation of mechanical
objects in non-Gaussian quantum states [5,6].

In all of these experiments, some method of characterization
and verification of the generated quantum state is required. The
standard method for this is the quantum tomography [7,8],
which allows one to restore the Wigner function [9] of the
quantum state using the data acquired by a set of homo-
dyne measurements. However, in many cases, the practical
implementation of this method could be difficult, in particular
because it requires an additional local oscillator light source
with the phase locked with the explored light. This requirement
is especially hard to fulfill in the case of pulsed broadband light,
which is very typical in experiments with nonclassical light.

This problem can be avoided by using the polarization
tomography, which allows one to restore the quasiprob-
ability distribution for the three Stokes operators of the
two polarization modes of light—the so-called polarization
quasiprobability distribution (PQPD) [10–13]. Evidently, it
is not sensitive to the common phase of both polarizations
and therefore it is immune to the common phase fluctuations.
For this very reason, it does not allow one to restore the full
quantum state of the light, but only its polarization sector.
However, in most cases, the polarization-sector information is
sufficient [14–16].

It has to be emphasized that the boundary between “clas-
sical” and “nonclassical” quantum states of light cannot be
drawn in a unique way. In the literature, various effects are
considered as manifestations of nonclassicality. According
to the broader (“weaker”) definition, nonclassical is light
for which the Glauber’s P function is negative and/or more
singular than the δ function [17]. This definition encompasses
a large group of quantum states demonstrating quadrature
squeezing, antibunching, sub-Poissonian statistics, entangle-
ment, and other effects recognized as sufficient conditions for
nonclassicality. The narrower (“stronger”) definition requires

the negativity of the quasiprobability distributions that give
correct one-dimensional marginal distributions and therefore
represents the natural choice for the probability distributions
in the classical hidden-variable models. The most well-known
example is the Wigner function [9,18]. In this paper, we will
follow the last approach; a similar treatment, based on the first
one, can be found, e.g., in Ref. [19].

A distinctive feature of the PQPD is that it gives cor-
rect one-dimensional marginal distributions for the Stokes
variables. Therefore, it is possible to expect that PQPDs of
nonclassical (in the “stronger” definition) quantum states,
e.g., non-Gaussian ones, should demonstrate some nontrivial
features, such as negativity. However, as we show below, the
discrete-valued nature of the Stokes observables makes the
situation a bit more complicated.

For optomechanical experiments, especially interesting are
bright (with large mean number of photons) states because they
more effectively interact with mechanical objects (note that the
masses of even the most tiny nanobeams and nanomembranes
used in these experiments are huge in comparison with the
optical quanta “masses” h̄ω/c2 � 10−35 kg). For example,
it was shown more than 30 years ago that the squeezed
vacuum state allows one to improve the sensitivity of optical
interferometric displacement sensors [20]. Recently, this idea
was implemented in the laser interferometric gravitation-wave
detector GEO-600 [1]. In a similar way, bright quantum
non-Gaussian states, such as the squeezed single-photon state
Ŝ(r)|1〉, where Ŝ(r) is the squeezing operator [see Eq. (47)],
are more attractive for the non-Gaussian optomechanics than
their nonsqueezed counterparts, for example, the “ordinary”
single-photon state |1〉, considered, e.g., in Refs. [5,6].

Depending on the degree of squeezing r , the mean energy
of a squeezed single-photon state can be arbitrarily large. But
independently of its mean energy, this state always possesses
such essentially nonclassical features as the negative-valued
Wigner function and orthogonality to other squeezed Fock
states Ŝ(r)|n �= 1〉 with the same degree of squeezing r .

Note that recently, quantum state tomography of a squeezed
non-Gaussian quantum state has been experimentally demon-
strated; however, the mean number of photons in this experi-
ment was small [21].
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The main goal of this paper is to explore the nonclassical
behavior of PQPD and the applicability of the polarization
tomography to the verification of bright non-Gaussian quan-
tum states. Certainly, these topics are too broad to be covered
in one paper; therefore, we consider here only two particular
cases (see Secs. IV and V) which, in our opinion, are the most
interesting from the experimental realization point of view.

The paper is organized as follows. In Sec. II, we reproduce
the basic formalism of the polarization tomography that can
be found in the literature. In Sec. III, we discuss the effects
of photodetectors’ nonidealities and of the optical losses. In
Sec. IV, we consider the simplest particular case of the linearly
polarized light pulses and show that in this case, the PQPD can
be negative even for the states of light typically considered
as essentially classical (such as the coherent quantum state).
We also discuss a possible experimental setup aimed at the
demonstration of this negativity. In Sec. V, we consider
light containing some quantum state ρ̂ in one polarization
mode and a coherent quantum state |α0〉 in the other one.
It is easy to see that if |α0| is sufficiently large, then the
polarization tomography reduces to the ordinary tomography
with the coherent quantum state serving as the local oscillator,
providing thus a convenient means for restoring the quantum
state ρ̂. We formulate the requirements for the minimal
value of |α0| and for the photodetectors’ parameters that are
necessary to obtain the negative-valued PQPD in this setup for
the particular case of the squeezed single-photon state. The
appendices contain some cumbersome calculations, which are
not necessary for understanding the main results of this paper.

II. PQPD AND THE POLARIZATION CHARACTERISTIC
FUNCTION

Following the literature (see, e.g., [10,12,13]), we introduce
the polarization characteristic function as follows:

χ (u1,u2,u3) := Tr[ρ̂χ̂ (u1,u2,u3)], (1)

where ρ̂ is the density operator of a two-mode (horizontal and
vertical polarizations) quantum state of light,

χ̂(u1,u2,u3) = exp

(
i

3∑
i=1

uiŜi

)

= exp

[
i(â†H â†V )

(
u1 w∗

w −u1

)(
âH

âV

)]
, (2)

w = u2 + iu3, (3)

âH , âV are the annihilation operators for these modes,

Ŝ1 = n̂H − n̂V , (4a)

Ŝ2 = â†V âH + â†H âV , (4b)

Ŝ3 = i(â†V âH − â†H âV ) (4c)

are the Stokes operators, and

n̂H = â†H âH , n̂V = â†V âV (5)

FIG. 1. (Color online) The setup for polarization tomogra-
phy [10,13]. PBS is the polarizing beam splitter; D‖ and D⊥ are
the photodetectors. The signals from the detectors are processed
by either digital or analog electronics, after which a computer
calculates the probability distributions Wθφ(n) and performs the
Radon transformation.

are the photon-number operators in the H,V modes. The
PQPD is given by the Fourier transform of χ (u1,u2,u3):

W (S1,S2,S3) =
∫ ∞

−∞
χ (u1,u2,u3)

× exp

(
−i

3∑
i=1

uiSi

)
du1du2du3

(2π )3
. (6)

An important feature of the Stokes operators, crucial
for our consideration below, is that their eigenvalues are
integer numbers varying from −∞ to ∞. Therefore, the
marginal characteristic functions 〈exp(iui Ŝi)〉 (i = 1,2,3) for
these operators are 2π periodic in their argument, and the
corresponding marginal probability distributions for S1,2,3 are
equal to sums of the δ functions at the integer values of their
arguments (we prefer to use the continuous-valued Fourier
transformation here, which gives δ functions instead of δ

symbols, for the sake of consistency with the treatment below).
The characteristic function (1) can be readily restored using

the polarization tomography setup shown in Fig. 1. This setup
provides the probability distribution Wθφ(n) for the difference
of the photon numbers in two orthogonal polarization modes
measured by two photon counters D‖, D⊥:

Ŝθφ = â†‖â‖ − â†⊥â⊥

= (â†H â†V )

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)(
âH

âV

)

= Ŝ1 cos θ + (Ŝ2 cos φ + Ŝ3 sin φ) sin θ, (7)

where

â‖ = âH cos
θ

2
+ âV e−iφ sin

θ

2
, (8a)

â⊥ = âH sin
θ

2
− âV e−iφ cos

θ

2
(8b)

are the annihilation operators for these modes and the angles
θ , φ depend on the orientations of the half- and quarter-wave
plates shown in Fig. 1. The characteristic function of this
probability distribution is equal to

χθφ(λ) =
∞∑

n=−∞
Wθφ(n)eiλn = Tr[ρχ̂θφ(λ)], (9)
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where

χ̂θφ(λ) = exp[i(λŜθφ)]. (10)

By comparing Eqs. (2) and (10), it is easy to see that

χ (u1,u2,u3) = χθφ(λ), (11)

with

u1 = λ cos θ, w = λeiφ sin θ. (12)

The chain of equalities (9), (11), and (6) forms, in essence,
the Radon transformation, which allows one to calculate the
PQPD from the experimentally acquired set of the distributions
Wθφ(λ).

Taking into account that for any angle ϑ ,

Û †(ϑ)Ŝ1,2,3Û(ϑ) ≡ Ŝ1,2,3, (13)

where

Û(ϑ) = e−iϑ(n̂H +n̂V ) (14)

is the evolution operator which introduces a common phase
shift ϑ into both polarizations, it is easy to see that
the polarization characteristic function is invariant to this
transformation:

Tr[ρ̂ Û †(ϑ)χ̂(u1,u2,u3)Û(ϑ)] ≡ Tr[ρ̂χ̂(u1,u2,u3)]. (15)

Therefore, the PQPD is not sensitive to any common
(polarization-independent) fluctuations of the light optical
path.

At the same time, it follows from Eq. (15) that

χ (u1,u2,u3) = Tr[ρ̂polarχ̂(u1,u2,u3)], (16)

where

ρ̂polar =
∫

2π

Û(ϑ)ρ̂ Û †(ϑ)
dϑ

2π

=
∞∑

nH ,nV = 0
n′

H ,n′
V = 0

|nHnV 〉〈nH nV |ρ̂|n′
Hn′

V 〉〈n′
Hn′

V |δnH +nV n′
H +n′

V

(17)

is the polarization sector of the density operator equal to the
incoherent sum of the “slices” of the density operator with
given total numbers of quanta. Therefore, the polarization
tomography restores only part of the light quantum state,
namely, its polarization sector [14].

III. QUANTUM EFFICIENCY, OPTICAL LOSSES, AND
PHOTON-NUMBER INTEGRATION

In the above consideration, it was assumed implicitly that
the photodetectors are ideal and are able to exactly count
all incident quanta. Their nonideal quantum efficiency η < 1
can be modeled by imaginary gray filters with the power
transmissivity η, which mix the photodetectors’ input fields
with some vacuum fields,

â‖,⊥ → √
η â‖,⊥ +

√
1 − η b̂‖,⊥ , (18)

where b̂‖,⊥ are the annihilation operators of the vacuum fields.
It is easy to show that these gray filters can be replaced by

a single filter located at the input of the scheme of Fig. 1, with

some evident redefinition of the vacuum fields. This means
that we can consider the photodetectors as ideal ones but take
into account their nonunity quantum efficiency by introducing
the corresponding effective losses into the incident light. Note
that other optical losses can also be taken into account here by
replacing the photodetectors quantum efficiency in Eq. (18)
with the unified quantum efficiency of the scheme, equal to
the probability for an incident photon to reach one of the
photodetectors and be detected.

Another important shortcoming of contemporary photon-
counting detectors is that their counting rate does not exceed
∼107 s−1, which means that in the case of nanosecond and
shorter pulses typically used in nonlinear optics, they can count
only one photon per pulse. More advanced transition-edge
sensors can resolve up to 10 photons, having at the same time
high quantum efficiency up to 95%, but they are slow, difficult
to use, and expensive [22].

In experiments with bright multiphoton pulses, photon-
number integrating detectors are used instead, whose output
signal is linearly proportional to the input number of quanta,
but contaminated by additive noise. In the case of picosecond
pulses used, e.g., in Refs. [15,23], this noise is equivalent to
a measurement error of σ ∼ 102 quanta [24]. Here we will
model this noise by means of the Gaussian smoothing of the
probability distribution Wθφ :

W̃θφ(y) =
∞∑

n=0

Wθφ(n)√
2πσ 2

exp

[
− (y − n)2

2σ 2

]
. (19)

The corresponding smoothed characteristic function,

χ̃(u1,u2,u3) =
∫ ∞

−∞
W̃θφ(y)eiλydy

= χ (u1,u2,u3)e−σ 2λ2/2, (20)

being substituted into Eq. (6), gives the smoothed PQPD,

W̃ (S1,S2,S3)

=
∫ ∞

−∞
χ̃ (u1,u2,u3) exp

(
−i

3∑
i=1

uiSi

)
du1du2du3

(2π )3
. (21)

IV. LINEARLY POLARIZED QUANTUM STATES

To explore the negativity features of the PQPD, consider
a simple particular case of linearly polarized quantum states,
with only the H mode excited and the V mode in the vacuum
state:

ρ̂ = ρ̂H ⊗ |0〉V V 〈0|. (22)

It follows from Eqs. (16) and (17) that in this case,

χ (u1,u2,u3) =
∞∑

n=0

ρHnnχ (u1,u2,u3|n), (23)

where

ρHnn = 〈n|ρ̂H |n〉 (24)

and χ (u1,u2,u3|n) is the characteristic function for the case
of the n-photon Fock state in the H mode. It was shown in
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paper [12] that it is equal to

χ (u1,u2,u3|n) = (cos λ + iu1 sinc λ)n. (25)

The corresponding smoothed characteristic function, pro-
duced by photon-number integrating detectors, is equal to
(assuming that σ � 1 and, therefore, λ � 1)

χ̃ (u1,u2,u3)

≈
∞∑

n=0

ρHnn

(
1 − λ2

2
+ iu1

)n

e−λ2σ 2/2

≈
∞∑

n=0

ρHnn exp

[
−σ 2u2

1

2
+ inu1 − (n + σ 2)|w|2

2

]
, (26)

and the smoothed PQPD [see Eq. (21)] is equal to

W̃ (S1,S2,S3) ≈
∞∑

n=0

ρHnn

(2π )3/2σ (n + σ 2)

× exp

[
− (S1 − n)2

2σ 2
− S2

23

2(n + σ 2)

]
, (27)

where

S23 =
√

S2
2 + S2

3 . (28)

This result is completely intuitive and does not contain any
nonclassical features, such as the negativity.

Consider, however, the exact nonsmoothed PQPD. Unfor-
tunately, the general equation for W (S1,S2,S3) in this case
cannot be expressed in any simple analytical form, but for our
purposes its marginal distributions are sufficient.

The marginal characteristic function for S1 is given by

χ (u1,0,0) =
∞∑

n=0

ρHnne
iu1n. (29)

The corresponding marginal probability distribution,

W1(S1) =
∞∑

n=0

ρHnnδ(S1 − n), (30)

is equal to the photon-number distribution for the state ρ̂H .
The explanation is evident: the Stokes variable S1 is equal to
the difference of photon numbers in two polarizations, and in
the case we consider here, the V mode does not contain any
quanta at all.

Much more interesting is the behavior of the other Stokes
variables, S2, S3. Note that the characteristic function (23) does
not depend on the angle φ and therefore the corresponding
PQPD is invariant with respect to rotation in the S2, S3 plane.
From a classical point of view, this symmetry is incompatible
with the above-mentioned discreteness of the marginal distri-
butions for S2 and S3: this combination of features cannot be
manifested by any (positive-valued) probability distribution.
However, it is completely feasible in the case of quantum
quasiprobability distributions, which can have negative-valued
areas.

To analyze this feature in more detail, consider the two-
dimensional marginal distribution for S2, S3, which in this

particular case is equal to (see Appendix A)

W23(S2,S3) =
∫ ∞

−∞
W (S1,S2,S3)dS1

=
∫ ∞

−∞
χ (0,u2,u3)e−iu2S2−iu3S3

du2du3

(2π )2

=
∞∑

n=0

ρHnn

2n

n∑
k=0

n!

k!(n − k)!
w|2k−n|(S23), (31)

where

w0(S23) = δ(S2)δ(S3), (32a)

wm>0(S23) = 1

2π

∂

∂S23

⎧⎪⎨
⎪⎩

− S23

|m|
√

m2 − S2
23

, S23 < m,

0, S23 � m.

(32b)

The last equations, while looking a bit cumbersome, are
actually very transparent. W23 is equal to the weighted sum
of functions wm. The non-negative weight factors are given
by the initial photon-number distribution convolved with
the binomial distribution created by the beam splitter. Each
of the functions wm, except for w0, has negative values
in the circular area S23 < m (see Fig. 2, left panel, where
w1 is plotted as the typical example). This means that the
marginal distribution (31) and therefore the corresponding
PQPD W (S1,S2,S3) indeed has negative-valued areas for any
quantum state ρ̂H .

It is this negativity that reconciles the discreteness of the
marginal distributions and the rotation symmetry in the S2, S3

plane, nullifying the marginal distributions for noninteger
values of S2,3. How it is possible is demonstrated in the right
panel of Fig. 2, where the two-dimensional color plot of the
function w1(S2,S3) is shown, with the positive-valued area of
this function marked by red color and the negative-valued one
by blue color. It is easy to see that integration along the line
S2 = 1 involves only positive values of w1(S2,S3) and thus
gives a positive net value (actually infinity); and integration
along the line S2 < 1 involves both positive and negative
values and thus can (and actually does) give zero. Due to the
rotational symmetry of the picture, this result holds also for
the marginal distribution of S3, as well as of any combination
Sφ = S2 cos φ + S3 sin φ (a similar result has been reported
recently by Masalov [25]).

This amazing structure of PQPD can be easily demonstrated
experimentally using linearly polarized single-photon or even
weak coherent light pulses. In the former case, with an account
for the optical losses [see Eq. (18)],

〈n|ρ̂H |n〉 = p0δn0 + p1δn1, (33)

where

p0 = 1 − η, p1 = η. (34)

In the latter one, assuming that α � 1 and taking into account
that the losses only decrease the mean number of quanta of the
coherent state, α → α

√
η, and it still remains coherent, we get

the same equation (33), but with

p0 = e−|α|2 ≈ 1 − |α|2, p1 ≈ |α|2. (35)
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FIG. 2. (Color online) Left panel: Plot of w1(S23). Right panel: Color plot of w1(S2,S3) (blue: negative values; red: positive ones).
Integration along the line S2 = 1 gives infinity; integration along the lines S2 < 1 gives zero due to the negative-valued areas. All quantities
are dimensionless.

In both of these simple cases, in order to restore the marginal
distribution (31), it is sufficient that the experimentalist mea-
sures only the distribution Wθφ for θ = π/2 [see Eqs. (12)],
which has a very simple form that is shown in Fig. 3. Note that
if the distributions are measured by a single-photon detector,
then no two-photon events will be observed. The presence
of two-photon states in the density matrix ρH (as in the
case of a coherent state) will only increase the probability
of a single-count event p1 and reduce the probability of
a no-count event p0. The two-dimensional marginal Radon
transformation (31), applied to this distribution, gives

W23(S2,S3) = p0δ(S2)δ(S3) + p1w1(S23), (36)

i.e., a δ-function peak at S2 = S3 = 0, surrounded by the
negative-valued area provided by w1.

At first sight, it looks strange that PQPD can be negative
valued even for such a “perfectly classical” state as the
coherent one. However, it was emphasized, e.g., in the
review paper [26], that classical local hidden-variable models
require two necessary conditions: (i) the “classicality” of the
quantum state, in the sense of the positivity of its Wigner
function, and (ii) the classicality of the measurement (only
linear observables such as positions, momentums, and their
linear combinations have to be measured). The nonsmoothed

FIG. 3. (Color online) Typical probability distributions for (a) a
single-photon state and (b) a coherent state with α = 1 at the input
of the polarization tomography setup. The Quantum efficiency of the
detectors is η = 0.6 and the angle θ is chosen to be π/2. All quantities
are dimensionless.

polarization tomography, which measures the discrete-valued
Stokes variables, evidently violates the second assumption.

Another conclusion that can be derived from the above
consideration is that the polarization tomography of linearly
polarized light (22) cannot be used to segregate the “classical”
(with the Wigner function positive everywhere) quantum states
ρ̂H from the “nonclassical” ones because in the smoothed
case (with photon-number integrating detectors) it always
gives positive PQPD, and in the nonsmoothed case (with
photon-number-resolving detectors) it always gives PQPD
with negativities (except for the trivial case of the vacuum
state).

V. “HIGHLIGHTED” POLARIZATION QUANTUM
TOMOGRAPHY

The evident solution to this problem is the “highlighting”
of the nonclassical features by feeding bright coherent light
into the second polarization mode:

ρ̂ = ρ̂H ⊗ |α0〉V V 〈α0|. (37)

It is easy to see that in this case, the polarization tomography
setup with fixed θ = π/2 exactly reproduces the ordinary
quantum tomography setup, with the vertical polarization light
serving as the local oscillator and the angle φ serving as the
homodyne angle.

Indeed, consider the asymptotic case of a very strong
coherent field, |α0| → ∞. In this case, the operator âV in
Eq. (2) can be replaced by its mean value α0, which gives the
following equation for polarization characteristic function:

χ (0,u2,u3) ≈ χs(α0w
∗), (38)

where

χs(z) = Tr{ρ̂H exp[i(zâ†H + z∗âH )]} (39)

is the symmetrically ordered characteristic function for the
state ρ̂H , whose Fourier transformation gives the Wigner
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function for this state:

W (x,p) =
∫ ∞

−∞
χs(z) exp[−i

√
2(x Re z + p Im z)]

d2z

2π2
.

(40)

A rigorous treatment of this problem (see Appendix B)
shows that indeed a relation between the smoothed polarization
characteristic function and the symmetrically ordered charac-
teristic function exists, which in the reasonable particular case
of not very bright quantum state ρH ,

〈n〉 � σ 2, (41)

where 〈n〉 is the mean number of quanta, simplifies to the
smoothed version of Eq. (38):

χ̃ (0,u2,u3) = χs(α0w
∗)e−σ 2|w|2/2. (42)

With an account for the optical losses [see the discussion
around Eq. (18) and Appendix C], this equation takes the
following form:

χ̃ (0,u2,u3) = χs(ζ )e−ε2ζ 2/2, (43)

where

ζ = ζ ′ + iζ ′′ = √
η α0w

∗ (44)

and

ε2 = 1

η

(
1 − η + σ 2

|α0|2
)

(45)

is the total “quantum inefficiency” of the tomography scheme,
which takes into account both the optical losses and the finite
value of α0.

Finally, Fourier transformation of this equation gives the
relation between the Wigner function and the smoothed PQPD:

W̃23(S2,S3) = 1

πη|α0|2ε2

∫ ∞

−∞
W (x,p)

× exp

[
−|S2 − iS3 − √

2η α∗
0 (x + ip)|2

2η|α0|2ε2

]
dxdp

(46)

(compare with Eq. (7.35) of [8]). Note that in the ideal case
of ε = 0, the Gaussian factor in this equation degenerates to
the δ function, giving the exact one-by-one correspondence
between W23(S2,S3) and W (x,p).

Consider two examples of quantum states (37): a Gaussian
squeezed vacuum state Ŝ(r)|0〉H and a non-Gaussian squeezed
single-photon state Ŝ(r)|1〉H , where

Ŝ(r) = exp

[
r

2

(
â†H

2 − â2
H

)]
(47)

is the squeezing operator.
In the first case,

χs(z) = exp

(
−z′2e2r + z′′2e−2r

2

)
. (48)

It is shown in Appendix D 1 that the corresponding smoothed
marginal polarization characteristic function is equal to

χ̃(0,u2,u3) = exp

(
−δ2

+ζ ′2 + δ2
−ζ ′′2

2

)
, (49)

where

δ2
± = e±2r + ε2 (50)

[it is easy to see that it can be obtained simply by substitution
of Eq. (48) into (42); however, the direct calculation of
Appendix D 1 allows one to formulate the explicit analog
of condition (41) for this particular case].

Using then Eq. (6), we obtain the marginal PQPD that is
Gaussian and thus positive everywhere:

W̃23(S2,S3) = 1

2πη|α0|2δ+δ−
exp

[
−1

2

(
s2

2

δ2+
+ s2

3

δ2−

)]
, (51)

where

s2 = Re
S2 − iS2√

ηα∗
0

, s3 = Im
S2 − iS2√

ηα∗
0

(52)

are the normalized Stokes variables.
In the case of the squeezed single-photon state,

χs(z)

= (1 − z′2e2r − z′′2e−2r ) exp

(
−z′2e2r + z′′2e−2r

2

)
. (53)

It is shown in Appendix D 2 that the corresponding smoothed
marginal polarization characteristic function is equal to

χ̃(0,u2,u3)

= (1 − ζ ′2e2r − ζ ′′2e−2r ) exp

(
−δ2

+ζ ′2 + δ2
−ζ ′′2

2

)
, (54)

and, correspondingly [using again Eq. (6)],

W̃23(S2,S3)

= 1

2πη|α0|2δ+δ−

(
s2

2e
2r

δ4+
+ s2

3e
−2r

δ4−
+ ε4 − 1

δ2+δ2−

)

× exp

[
−1

2

(
s2

2

δ2+
+ s2

3

δ2−

)]
. (55)

It is easy to see that if

ε < 1, (56)

that is, if the photon-number integration given by σ is not very
strong, and the quantum efficiency η is sufficiently high, then
the PQPD manifests negativity, which is caused, of course,
by the negativity of the Wigner function. Note that in particular,
the condition (56) requires that the unified quantum efficiency
of the scheme has to be higher than 1/2 [8].

However, for the negativity of the PQPD to be experi-
mentally detectable, it is important that the negative part is
pronounced compared to the positive part. This imposes a
requirement that ε should be smaller than a certain value,
which strongly depends on the squeezing.

In Fig. 4, the probability distribution (55) is plotted for
the ordinary (nonsqueezed) single-photon state and for the
6 db squeezed one. The left two plots correspond to the ideal
case of ε = 0, and the right ones correspond to the typical
case of ε2 = 0.7. It can be seen from these plots that the
negative-valued area of W̃23 shrinks due to the losses, but is
only weakly affected by the squeezing. However, the depth of
this area decreases very significantly in the squeezed case, due
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FIG. 4. (Color online) Contour plots of the quasiprobability distribution (55) as a function of the normalized Stokes parameters (52) for the
squeezed single-photon state in the absence of losses and photon-number integration (left column) and with ε2 = 0.7 (right column). Top row:
no squeezing (er = 1); bottom row: 6 db squeezing (er = 2). The negative-valued areas are encircled by the white lines (the color corresponding
to W23 = 0 varies due to the different ratios of the maximal and the minimal values of W23). All quantities are dimensionless.

to the well-known feature of vulnerability of the squeezing to
the optical losses.

The convenient quantitative measure of the negativity,
which takes both of these effects into account, is the volume of
the negative-valued part of the quasiprobability distribution,

V− = −
∫

W̃23<0
W̃23(S2,S3)dS2dS3. (57)

It is plotted in Fig. 5 as a function of ε2 for several
values of the squeezing factor. It follows from this plot
that, unfortunately, for reasonable losses ε2 � 0.5, only quite
modest squeezing of about 10 db can be used. In order to use

FIG. 5. (Color online) The volume of the negative-valued area
of the quasiprobability distribution (55) as a function of the total
quantum inefficiency ε2. All quantities are dimensionless.

bright strongly squeezed states, the optical losses have to be
reduced significantly, down to ε2 � 0.1.

VI. CONCLUSION

We have shown that the polarization quantum tomography
is an essentially discrete-variable technique. It is aimed at find-
ing the quasiprobability distribution of the Stokes observables
whose quantum counterparts, i.e., the Stokes operators, have
discrete spectra. In its rigorous version, polarization quan-
tum tomography should involve measurements with photon-
number-resolving detectors, leading to discrete experimental
probability distributions. In this case, the reconstructed PQPD
will contain nonclassical features, such as negativity areas,
even for perfectly classical states. This demonstrates the
connection between two standard signs of nonclassicality:
the discreteness of photon numbers and the negativity of
quasiprobability distributions.

However, in an experiment with “bright” multiphoton
states, it is usually impossible to perform measurements with
single-photon resolution. Photon-number integration leads to
the smearing of the probability distribution and therefore can
prevent the observation of PQPD negativity, even for some
“very nonclassical” states such as the Fock ones.

This problem can be solved by “highlighting” the quantum
state, that is, by adding a strong coherent beam into the
orthogonal polarization mode. This procedure actually bridges
polarization quantum tomography with the Wigner-function
tomography; in the very strong highlighting case, the former
one simply reduces to the latter one. The negativity of the
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Wigner function will then be manifested in the negativity of
the PQPD, provided that the losses are not too high and the
photon-number integration is not too broad. In this way, one
can test for nonclassicality bright quantum states of light, such
as squeezed Fock states.
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APPENDIX A: DERIVATION OF THE MARGINAL
PQPD (31)

By setting in Eq. (23) u1 = u2 = 0, we get

χ (0,w) =
∞∑

n=0

ρHnn cosn |w|. (A1)

Therefore,

W23(S2,S3) = 1

(2π )2

∞∑
n=0

ρHnn

×
∫

2π

dϕ

∫ ∞

0
|w|d|w|e−iS23|w| cos ϕ cosn|w|

=
∞∑

n=0

ρHnn

2n

n∑
k=0

n!

k!(n − k)!
W2k−n(S23)

=
∞∑

n=0

ρHnn

2n

n∑
k=0

n!

k!(n − k)!
w|2k−n|(S23), (A2)

where

S23 =
√

S2
2 + S2

3 , ϕ = arg(S2 + iS2), (A3)

wm(S23) = Wm(S23) + W−m(S23)

2
, (A4)

Wm(S23) = 1

(2π )2

∫
2π

dϕ

∫ ∞

0
|w|d|w|e−i(S23 cos ϕ+m)|w|

= ∂Fm(S23)

∂S23
, (A5)

Fm(S23) = i

(2π )2

∫
2π

dϕ

∫ ∞

O

d|w| e−i(S23 cos ϕ+m)|w|

cos ϕ

= i

(2π )2
lim
γ→0

∫
2π

dϕ

∫ ∞

O

d|w| e−[γ+i(S23 cos ϕ+m)]|w|

cos ϕ

= 1

2π

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
γ→0

γ

(S2
23 + γ 2)3/2

, m = 0 ,

− S23

|m|
√

m2 − S2
23

, m > 0 S23 < m ,

0 , S23 � m > 0 ,

(A6)

which gives Eq. (32).

APPENDIX B: POLARIZATION CHARACTERISTIC
FUNCTION OF QUANTUM STATES (37)

Consider the polarization characteristic function (1) for the
two-mode coherent state |α〉H |α0〉V , which was calculated in
Ref. [12]:

χ (u1,u2,u3|α) = exp[−κ|α|2 − κ
∗|α0|2

+ i(αα∗
0w + α∗α0w

∗) sinc λ], (B1)

where

κ = 1 − cos λ − iu1 sinc λ. (B2)

Expressing the density operator ρ̂H through the Glauber’s P
function,

ρ̂H =
∫

|α〉P (α)〈α| d2α, (B3)

and using the well-known relations between P (α), the corre-
sponding normally ordered characteristic function χn(z), and
the symmetric characteristic function (39),

χn(z) = Tr(ρ̂eizâ†eiz∗ â) =
∫

P (α)eiz∗α+zα∗
d2α, (B4)

χs(z) = χn(z)e−|z|2/2, (B5)

we get the polarization characteristic function for an arbitrary
quantum state of the form (37):

χ (u1,u2,u3) =
∫

P (α)χ (u1,u2,u3|α) d2α

= 1

π2

∫ ∞

−∞
χn(z) exp[−κ|α|2

+ i(αα∗
0w + α∗α0w

∗) sinc λ

− κ
∗|α0|2 − i(z∗α + zα∗)]d2αd2z

= 1

πκ

∫ ∞

−∞
χs(z) exp

( |z|2
2

− |z − α0w
∗ sinc λ|2

κ

− κ
∗|α0|2

)
d2z. (B6)

For our consideration below, we only need the part of this
characteristic function with u1 = 0:

χ (0,u2,u3) = 1

2π sin2 |w|
2

∫ ∞

−∞
χs(z)

× exp

(
−1

2
cot2

|w|
2

∣∣∣∣z−2α0w
∗

|w| tan
|w|
2

∣∣∣∣
2
)

d2z.

(B7)

Smoothing this characteristic function [see Eq. (20)] and
taking into account that if σ � 1 then only small values of
|w| � 1 are of relevance, we get

χ̃(0,u2,u3)

= 2e−σ 2|w|2/2

π |w|2
∫ ∞

−∞
χs(z) exp

(
−2|z − α0w

∗|2
|w|2

)
d2z . (B8)

In the particular case of (41), which is equivalent to the
condition |z| � |w|, the Gaussian function in this equation
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can be approximated by the δ function,

2

π |w|2 exp

(
−2|z − α0w

∗|2
|w|2

)
→ δ(z − α0w

∗), (B9)

which gives Eq. (42).

APPENDIX C: OPTICAL LOSSES

Let us start with the symmetrically ordered characteristic
function of some quantum state ρ̂,

χs(z) = Tr{ρ̂ exp[i(zâ† + z∗â)]}. (C1)

Using the description of the optical losses by means of an
imaginary gray filter [see Eq. (18)], the characteristic function
of the lossy optical mode can be expressed as follows:

χ loss
s (z) = Tr{Âρ̂ ⊗ |0〉L L〈0|Â† exp[i(zâ† + z∗â)]}

= Tr{ρ̂ exp[i
√

η(zâ† + z∗â)]}
× L〈0| exp[i

√
1 − η(zb̂† + z∗b̂)]|0〉L

= χs(
√

η z)e−(1−η)|z|2/2, (C2)

where ρ̂ is the initial density operator (before passing the light
through the gray filter), |0〉L is the ground state of the “losses”
(vacuum) mode, and Â is the unitary evolution operator
corresponding to the transformation (18). The substitution of
this characteristic function into Eq. (42) gives Eq. (43).

APPENDIX D: SMOOTHED PQPDs FOR THE DAMPED
SQUEEZED VACUUM AND SQUEEZED SINGLE-PHOTON

STATES

1. Squeezed vacuum state

The symmetrically ordered characteristic function for the
squeezed vacuum state has the form

χ loss
s (z) = exp

(
−�2

+z′2 + �2
−z′′2

2

)
, (D1)

where

�2
± = ηe±2r + 1 − η. (D2)

The substitution of this characteristic function into Eq. (B7)
gives

χ (0,u2,u3) = C0 exp

{
− 2

|w|2
[
�2

+
κ

2+
Re2(α0w

∗)

+�2
−

κ
2−

Re2(α0w
∗)

]}
, (D3)

where

κ
2
± = �2

± + cot2
|w|
2

, (D4)

C0 = 1

κ+κ− sin2 |w|
2

. (D5)

Suppose that the squeezing is not very strong [compare with
Eq. (41)]:

�+ � 1

|w| ∼ σ. (D6)

In this case, smoothing of (D3) gives Eq. (49).

2. Squeezed single-photon state

By using Eqs. (53) and (C2), we get

χ loss
s (z) = [1 − η(z′2e2r − z′′2e−2r )]

× exp

(
−�2

+z′2 + �2
−z′′2

2

)
. (D7)

The substitution of this characteristic function into Eq. (B7)
gives

χ (0,u2,u3)

= C0

{
C2

0 (η cos |w| + 1 − η)

− 4η

|w|2 cot2
|w|
2

[
Re2(α0w

∗)

κ
4+

e2r + Im2(α0w
∗)

κ
4−

e−2r

]}

× exp

{
− 2

|w|2
[
�2

+
κ

2+
Re2(α0w

∗) + �2
−

κ
2−

Re2(α0w
∗)

]}
.

(D8)

In the smoothed case of (D6), this equation simplifies to
Eq. (54).

[1] J. Abadie et al., Nat. Phys. 7, 962 (2011).
[2] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.

Phys. 74, 145 (2002).
[3] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and

G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).
[4] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Rev. Mod. Phys.

82, 1041 (2010).
[5] J. Zhang, K. Peng, and S. L. Braunstein, Phys. Rev. A 68, 013808

(2003).
[6] F. Khalili, S. Danilishin, H. Miao, H. Müller-Ebhardt, H. Yang,

and Y. Chen, Phys. Rev. Lett. 105, 070403 (2010).
[7] K. Vogel and H. Risken, Phys. Rev. A 40, 2847 (1989).
[8] M. G. Raymer and M. Beck, Lect. Notes Phys. 649, 235 (2004).

[9] W. Schleich, Quantum Optics in Phase Space (Wiley-VCH,
Berlin, 2001).

[10] P. A. Bushev, V. P. Karassiov, A. V. Masalov, and A. A. Putilin,
Opt. Spectrosc. 91, 526 (2001).

[11] V. P. Karassiov, and A. V. Masalov, J. Opt. B: Quantum
Semiclass. Opt. 4, S366 (2002).

[12] V. P. Karassiov and A. V. Masalov, Laser Phys. 12, 948
(2002).

[13] V. P. Karassiov and A. V. Masalov, J. Exp. Theor. Phys. 99, 51
(2004).

[14] C. Marquardt, J. Heersink, R. Dong, M. V. Chekhova, A. B.
Klimov, L. L. Sánchez-Soto, U. L. Andersen, and G. Leuchs,
Phys. Rev. Lett. 99, 220401 (2007).

023822-9

http://dx.doi.org/10.1038/nphys2083
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/RevModPhys.79.135
http://dx.doi.org/10.1103/RevModPhys.82.1041
http://dx.doi.org/10.1103/RevModPhys.82.1041
http://dx.doi.org/10.1103/PhysRevA.68.013808
http://dx.doi.org/10.1103/PhysRevA.68.013808
http://dx.doi.org/10.1103/PhysRevLett.105.070403
http://dx.doi.org/10.1103/PhysRevA.40.2847
http://dx.doi.org/10.1007/978-3-540-44481-7_7
http://dx.doi.org/10.1134/1.1412666
http://dx.doi.org/10.1088/1464-4266/4/4/321
http://dx.doi.org/10.1088/1464-4266/4/4/321
http://dx.doi.org/10.1134/1.1787078
http://dx.doi.org/10.1134/1.1787078
http://dx.doi.org/10.1103/PhysRevLett.99.220401


M. V. CHEKHOVA AND F. YA. KHALILI PHYSICAL REVIEW A 88, 023822 (2013)

[15] B. Kanseri, T. Iskhakov, I. Agafonov, M. Chekhova, and
G. Leuchs, Phys. Rev. A 85, 022126 (2012).

[16] C. R. Müller, B. Stoklasa, C. Peuntinger, C. Gabriel,
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