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Dynamics of the modulational instability in microresonator frequency combs
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A study is made of frequency-comb generation described by the driven and damped nonlinear Schrodinger
equation on a finite interval. It is shown that frequency-comb generation can be interpreted as a modulational
instability of the continuous-wave pump mode, and a linear stability analysis, taking into account the cavity
boundary conditions, is performed. Further, a truncated three-wave model is derived, which allows one to gain
additional insight into the dynamical behavior of the comb generation. This formalism describes the pump mode
and the most unstable sideband and is found to connect the coupled mode theory with the conventional theory of
modulational instability. An in-depth analysis is done of the nonlinear three-wave model. It is demonstrated that
stable frequency-comb states can be interpreted as attractive fixed points of a dynamical system. The possibility of
soft and hard excitation states in both the normal and the anomalous dispersion regime is discussed. Investigations
are made of bistable comb states and the dependence of the final state on the way the comb has been generated.
The analytical predictions are verified by means of direct comparison with numerical simulations of the full

equation and the agreement is discussed.
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I. INTRODUCTION

An optical frequency comb consists of a large number
of highly resolved and nearly equidistant spectral lines.
Frequency combs show great promise for many current and
emerging applications. This includes numerous applications to
spectroscopy, precision frequency metrology, optical clocks,
and synthesis of optical waveforms, as well as channel
generation for wavelength division multiplexing telecommu-
nication systems [1]. Many of these applications rely on
creating radio-frequency beat notes between known comb-line
frequencies and other unknown optical frequencies, enabling
radio-frequency measurements of optical phenomena. This
requires knowledge about the absolute frequency of the comb
lines, which can be determined with great precision by the
self-referencing method if the optical comb spans a full octave.

Frequency combs can be generated either using mode-
locked femtosecond lasers or using continuous-wave (cw)
pumped microresonator cavities. Light is confined within a
small mode volume in microresonators, which enhances the
intensity-dependent nonlinear interaction, thereby enabling
efficient frequency conversion. Comb generation in microres-
onators relies fundamentally on the parametric four-wave
mixing process. This nonlinear process is responsible for
transferring energy from the pump mode and redistributing
it among the frequency sidebands. A special degenerate case
of four-wave mixing is the modulational instability, where
two pump photons are annihilated to create a signal and idler
pair at an equidistant frequency spacing from the pump. This
mechanism is responsible for creating the primary sidebands
and is the most important frequency conversion process which
occurs in microresonators.

In this paper we consider microresonator-based frequency
combs in the formalism of a driven and damped nonlinear
Schrodinger (NLS) equation. Our aim is to get a better
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understanding of the generation of Kerr frequency combs
and their long-term dynamical behavior. The principal path
to frequency-comb generation is to start with an empty cavity
and use the modulational instability to create sidebands from
the unstable steady-state cw solution of the pump mode. Since
a given comb state can be represented as a point in an infinite
dimensional phase space, this can be interpreted to imply that
a trajectory exists which connects the modulationally unstable
cw solution with the final comb state. A comb that is generated
in this manner is known as a soft excitation [2]. A linear
modulational instability analysis can be used to determine
when the steady-state cw pump solution becomes unstable,
but it cannot make any predictions about the final comb state.
Moreover, stationary comb states may also exist which are
isolated in phase space in the sense that their trajectories are not
connected with the cw solution. These are conversely known as
hard excitations. In this paper we use a finite mode truncation
to limit the size of the phase space to four dimensions. This is
accomplished by using a three-wave mixing model that takes
into account the pump mode and the dominant sideband pair.
This approximation can be justified by the fact that a substantial
part of the total energy will be contained within these three
modes [3]. The location of different solutions representing
either stationary or breather type states can thus be determined
by studying the location and stability of fixed-point curves of
the three-wave model.

An analysis using a similar three-mode model was previ-
ously presented in [2] (cf. also [4]), where the concept of soft
and hard excitations was introduced. In this paper we make a
more detailed analysis, which is not limited to the anomalous
dispersion regime and does not assume a particular physical
system with a fixed dispersion.

The driven and damped NLS equation and the cavity
boundary condition are introduced in Sec. II together with
the normalization used throughout the rest of the article.
Section III contains an analysis of the modulation instability
which is used for later comparison with the three-wave
model and to determine the dominant sideband pair. The

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.88.023819

T. HANSSON, D. MODOTTO, AND S. WABNITZ

truncated three-wave mixing model is derived in Sec. IV
together with a set of equations for the location of its fixed
points. The influence of the comb parameters on the dynamics
is considered in Sec. V, which describes different regimes
of comb generation. Section VI discusses the dependence
of the final comb state on the route used to generate the
comb. The final section contains conclusions and a discussion
about the agreement of the model with numerical simulations.

II. THE DRIVEN AND DAMPED NLS MODEL

Most theoretical descriptions of microresonator frequency
combs to date have been carried out using a modal expansion
approach, which describes the slow evolution of the comb
spectrum using coupled mode equations [4,5]. This approach is
not very suitable for direct modeling of temporal structures and
may be cumbersome to apply to broadband combs, which in the
case of octave spanning combs can comprise hundreds or even
thousands of resonant modes. An alternative description of mi-
croresonator frequency combs was proposed by Matsko et al.
in [6], where the intracavity field is modeled in the time domain
using a mean-field driven and damped NLS equation, viz.,

7 —iy|APA

T,
=—(a+7+i80)A+\/iAm, (1)

where ¢ is the ordinary time that describes the temporal
structure of the field inside the cavity and t is a slow time
describing the evolution of this structure over successive
round trips. This equation is also known in the literature as
the Lugiato-Lefever equation [7-9] and has previously been
used to model the nonlinear dynamics of dispersive fiber ring
cavities [10], where the equation is obtained as the mean-field
limit of an infinite-dimension Ikeda map [11].

In order that only resonant frequencies should contribute
to the total field inside of the cavity, it is necessary to subject
Eq. (1) to the periodic boundary condition,

A(t 4 19,7) = A(t,7), 2)

where 1 is the cavity round-trip time. This condition en-
sures frequency selectivity and is appropriate for resonators
possessing a high quality factor. The spectral location of
the cavity eigenfrequencies are assumed to be given by the
Taylor expansion w, = wy + Dip + (D2/2)u2 (cf. [12]), and
the boundary conditions enable the frequency sampling of the
resonance spectrum to be made using an equidistant frequency
step with a spacing corresponding to the free spectral range
(Dy). Cavity dispersion arises from the second term of
Eq. (1) with the dispersion coefficient § = —Dz(ro/Df).
The generalization to higher orders of dispersion is easily
accomplished; see [8].

The remaining parameters in Eq. (1) are defined as follows:
y is the nonlinear coefficient, « is the loss per cavity round
trip, T, is the coupling coefficient, &y is the detuning of the
pump frequency, and Aj, is the external pump field. In deriving
Eq. (1) it is implicitly assumed that the cavity modes are
degenerate so that light is localized in only one spatial mode.
One must further neglect the frequency dependence of both
absorption and coupling coefficients.
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Equation (1) can be simplified by normalizing it to reduce
the number of parameters. It is convenient to choose the
normalization so that the complete cavity loss& = o + T, /2 =
1 and the cavity round-trip time ty = 27, giving

A . 3*A 2 .

- TiB— —ilAFA=—(1+i80)A + fo, 3)

ot or?
where A = ./y/aA, t=(a/tn)r, = Qn/to), B=
(B/2a)(27/w0)*, 8o = 80/@, and fy = (V¥ Tc/@?)Ain, with
the tilde which has been dropped in Eq. (3) referring to the
new system. Equation (3) has three independent parameters,
contrary to the case of the driven and damped NLS equation
on the infinite line which has only two [13]. The reason
for this difference is that an extra parameter appears due
to the boundary condition. We have taken these parameters
to be dispersion (8), detuning (§p), and the external pump
field (fp). The boundary condition in Eq. (2) is changed
to A(t + 2m,7) = A(t,7), which corresponds to a unit free
spectral range.

III. MODULATIONAL INSTABILITY

Equation (3) is well known to have a bistable behavior [7]
and can have either one or three steady-state cw solutions with
amplitude A, for a given pump intensity | fy|%. These solutions
satisfy the equation

| fol> = 1A0I*[(80 — |ApH)* + 11, 4

which is single valued for detunings 8y < /3, while exhibiting
bistability for detunings 8y > /3. The middle, negative slope
branch between |Ag|> = (28 + «/83 — 3)/3 is unstable with
respect to cw perturbations, i.e., perturbations at the pump
frequency.

Optical frequency-comb generation is usually initiated by
modulational instability (MI) of the cw pump mode. This
well-known process is an interplay between dispersion and
nonlinearity which leads to a breakup of the cw solution
into a periodic pulse train. It is found in many nonlinear
and dispersive wave equations and is fundamental to the
formation of solitons and solitary waves. The MI causes a
transfer of energy from the pump mode to the sidebands
which produces the primary sidebands of the frequency comb.
However, contrary to the case of, e.g., an optical fiber the MI in
microresonators need not display any Fermi-Pasta-Ulam type
of periodic recurrence [3], since the pump mode can become
phase locked to the driving pump. While the cw solution is
always adiabatically reachable from zero initial conditions,
i.e., a cavity devoid of photons, the same need not be true of
different frequency-comb states.

To analyze the MI we make a Fourier expansion of the field
A = A(t,71), viz.,

A(t,t) = Aog(D) + Z Ap(t) exp(—ikt), (&)
k

where k is an integer, and project the resulting equation onto a
Fourier basis by multiplying with exp(i ut)/27 and integrating
over ¢. This produces a system of coupled mode equations
equivalent to those used in the modal expansion approach
[4,5]. In this paper we consider the dynamics of a finite
mode truncation of this infinite dimensional coupled system of
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equations. Specifically, a three-wave model composed of the
pump mode (A) and one pair of sidebands at integer frequency
wn (A,,A_,). The coupled mode equations then take the form

90 ,
B_TO = i(|Aol* 4+ 21A_, > + 2|A, [P Ag — (1 +i80)Ag
+i2A_, AL AL+ fo, ©)
0o iBUA, +iQ@IA + AP +21A, A
at " - me
— (1 +i80)A_, +iALA, (7)
A _ —ifu* A, +iQ21Ao* +21A_, 1P + 1A HA
. m - I Iz

— (1 +i80)A, +iA* A 8)

Assuming that the amplitudes of the sidebands are small, we
follow the classical procedure and linearize the above system
of equations around the steady-state cw solution while looking
for plane-wave perturbations, satisfying A, = ae**, A_, =
A7,. The instability growth rate A(u) is then found to be given
by the dispersion relation

A=—1%£ 1} — Ak, )

where we have introduced the pump-mode intensity Iy = |A|?
and the wave vector mismatch Ak = Bu? + 21y — 8. It is
easily seen from Eq. (9) that the maximum gain occurs when
this mismatch is zero, i.e., for frequencies ,BILZ =&y — 21,
or in the event that this equations lacks real solutions for
u = 0. The growth rate for periodic perturbations is therefore
generally larger, and the system is more unstable with respect
to MI, than with respect to uniform cw perturbations. The
maximum growth rate is found to be Ay = Iop — 1 and the
steady-state solution is always stable for intensities Iy < 1.
The threshold condition corresponding to A = 0 is obtained
when

Bu* =8 — g, (10)

where we have defined g+ = 21y & \/13 — 1. This equation
must have real solutions; i.e., there must exist a u correspond-
ing to a real frequency, in order for an instability to occur.
For anomalous dispersion (i.e., 8 < 0), we require a detuning
8o < g+, while for normal dispersion (8 > 0) the required
detuning is §p > g_. The solution will additionally be unstable
to cw perturbations in the range g_ < §p < g+.

The comb spectrum will consist of a discrete set of
frequencies, due to the periodic boundary condition. This
implies that the above gain spectrum must overlap with the
location of at least one cavity resonance. In certain cases
it may happen that the gain spectrum falls in between two
resonances for a particular pump power level, in which case
there is a stability window where the steady-state cw solution
is stable [14].

Figure 1(a) shows an example of the MI growth rate for the
first three sidebands as a function of the pump-mode amplitude.
The different gain curves correspond to increasing integers of
w with the first gain curve representing the cw instability,
i.e., u = 0. In Fig. 1(b), we see a typical gain curve for a fixed
pump-mode intensity. Only the first sideband is unstable in this
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FIG. 1. (Color online) Modulational instability growth rate for
pump-mode and frequency sidebands. (a) Versus pump-mode am-
plitude: 8o = 3; B = —2; n =0,1,2,3. (b) Versus frequency (mode
index): §o = 3; B = —2; |Ag| = 1.8.

case since the only frequencies that are allowed correspond to
integer 1’s.

IV. THREE-WAVE MIXING

Although the linear MI analysis can be used to predict when
the cw solution becomes unstable and the initial growth rate of
the instability, it does not provide any additional information
about the subsequent dynamics or the stability of the final
state. However, important insight into the dynamics can be
obtained by considering finite mode truncations. The simplest
such truncation is the three-wave model, consisting of the
pump mode and the dominant sideband pair. This allows us
to reduce the infinite dimensional phase space to one of only
four dimensions. The approximation is motivated by the fact
that a substantial part of the comb energy will be contained
in these three modes [3]. While this procedure neglects any
additional sidebands and can thus provide only an approximate
description of comb generation, it is nevertheless useful for
predicting the range of comb stability and the location of fixed-
point curves.

We consider the truncated three-wave model [Eqs. (6)—(8)]
and introduce a new set of dynamical variables, viz.,

n=1A0l*/Py, ¢ =d_.+ du — 2,

2 2 2 (11)
Po= 1Ayl + 140 + 1A, 0=y — 0.

These correspond to the normalized pump-mode intensity (1),
the relative phase between pump mode and the sidebands
(¢), the total intensity (Pp), and the pump phase detuning
(), respectively. The normalized pump-mode intensity, 7,
provides a single scalar parameter that has a constant value
different from one, whenever a stable comb state is reached.

We make the assumption that the sideband amplitudes are
equal, i.e., |A_,| = |A,| = |a|. The difference between the
amplitudes can, in general, be shown to be invariant. The
truncated model is then found to be governed by the following
set of dynamical equations:

on Al
Pl 2n(1 n)[PO sin ¢ mcos@], (12)
3¢

= (2B1% — Py) + 3Pyn — 2Py(1 — 2n) cos ¢

| fol
~/ Pon

0t

-2 sin#, (13)
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IP
3_10 = —2Py + 2| fol/Pon cos b, (14)

90 [ fo
O (89— 2Py) + Porp — Po(1 — _
Y (o 0) + Pon — Po(1 —n)cos¢ Bon

siné.

5)

The limit of the system without pumping and loss was
investigated in [3]. In this limit the system is conservative
and reduces to two dimensions (77,¢) so that the dynamics
follows closed orbits in this plane. Seen as a projection onto
the (1 cos(¢),n sin(¢)) plane, the dynamics takes place within
the unit circle, with n = 1 being a limit cycle representing the
cw solution. However, dissipation is crucial to the dynamics
of frequency combs, since it breaks the invariance laws of the
conservative system and leads to the appearance of temporally
chaotic behavior; see [15].

The stationary states are obtained by determining the fixed
points of the above system, with stable equilibrium states
corresponding to dynamical attractors. We consider fixed
points with n # 0,1 and eliminating 8 and ¢ to obtain the
following two coupled equations for the absolute pump-mode
intensity Iy = |Ag|> = Pyn and the normalized pump-mode
intensity 7:

2 1— 2
L =[(50—10)—( ")gi] +L ae
0 n n
31y (1 —
W:ao—gi—T‘)( 28 (17)
n

Equations (16) and (17) are generalizations of Egs. (4) and
(10), to which they reduce in the limit of  — 1. Itis possible to
obtain a lower limit for the normalized pump-mode intensity n
corresponding to the threshold intensity from Eq. (16), which
shows that

VIfl <n <1 1< T < Ifol*r. (18)
With the limits for the total intensity of the comb being given by
Py = Iy/n. Note that the analysis predicts that 7 may become
less than 1/3, at which point the sidebands become larger than
the pump mode.

Equation (17) gives the same result as before for the
stability of the pump mode when there is no power initially
in the sidebands, i.e., when n = 1. However, in the case when
n < 1 and the sidebands are initially excited, there can now
be additional solutions since the frequency u is real in the
anomalous dispersion regime (8 < 0) whenever §p — g+ <
31o(1 — 1)/2n. The parameter range where solutions can exist
is determined by the right-hand side of the inequality, which
has a minimum of zero for = 1 and a maximum of 3/y(| fo| —
1)/2 for n = 1/| fo|. Note that the parameter range for the
solution in the normal dispersion regime (8 > 0) is smaller
when the sidebands are initially excited since the solutions
must now satisfy the inequality 8o — g+ > 31p(1 — 1)/2n.

Equations (16) and (17) can also be combined to yield a
single implicit equation for Iy, viz.,

3 . 5 2
Sl = |:50 - (% - 2[0>hl?:| F %Y, (19)
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where 8A0 =680 +g+— Iy, Kk =k+2g+ —51y/2, k = Bu?,
and
_ 31y/2
14 (gx —310/2)

The implicit equation is valid under the additional restriction
that 89 — & > 31y/2, corresponding to the requirement that
O<n<landly>0.

(20)

V. REGIMES OF COMB GENERATION

The three-wave model shows that comb generation in
microresonators can display qualitatively different dynamics,
depending on the values assumed by the free parameters and
the applied initial conditions. Stable frequency-comb states
can, as we have argued using the phase space interpretation, be
classified as either soft or hard excitations [2]. A soft excitation
is a comb state which can be reached in an adiabatic manner
when starting from zero initial conditions, with a stable comb
state, which in contrast is not adiabatically reachable from
zero initial conditions, being known as a hard excitation.
To reach a hard excitation state normally requires an initial
condition where the sidebands are already excited but they
may sometimes also be reached by abrupt changes in pump
intensity or detuning.

The maximum growth rate for the MI gives a minimum
threshold intensity for the pump mode, viz., Iy = 1. However,
comb generation will usually not initiate at this point since
the solution is part of a curve of fixed points that lies outside
of the region that is modulationally unstable; cf. [5]. This can
be seen in Fig. 2(a), which shows the amplitude of the mode
pump as a function of the detuning. The blue (thin solid) curve
shows the amplitude variation of the cw solution, while the red
(dark gray) and green (light gray) curves are the fixed-point
solutions of Egs. (16) and (17), with green (light gray) color
denoting stable solutions and red (dark gray) color unstable
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FIG. 2. (Color online) Intracavity pump-mode amplitude as a
function of detuning for fixed external pump amplitude | fy| = 3. The
cw solution is shown by the blue (thin solid) curve. Green (light gray)
curves are stable fixed-point curves while red (dark gray) curves
are unstable. The shaded area is the region where the cw solution
is modulationally unstable. (a) 8 = —1; (b) B = —2; (c) B = —3;

dp=—4
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solutions. The shaded area shows the region where the cw
solutions are predicted to be modulationally unstable. The
threshold intensity is indicated by the line |Ag| = /Ty = 1.
The stability of the solutions is determined by considering the
eigenvalues of the linearization of Egs. (16) and (17) around the
steady-state solution. The first fixed point which overlaps with
a modulationally unstable cw solution of the system Eqs. (16)
and (17) appears when n = 1 and | fo|® = Io[(8o — Io) + 1],
with Iy = [2(8p — k) + /(8o — «)? — 3]/3. The analysis thus
predicts that frequency combs may be generated whenever
8o — k > +/3. The minimum pump intensity for this fixed-
point curve [upper green (light gray) curve in Fig. 2(a)]
is obtained when the detuning 8y = k + /3, which implies
that Iy = 2/+/3 and | fo|> = 2/vV3)[(k + 1/4/3)* + 1], cor-
responding to the critical threshold power found in [5]. The
solution at the threshold intensity Iy = 1 is not predicted by
the linear stability analysis; however, it can still be reached by
first passing through the modulationally unstable region and
has a pump intensity that is found from Eq. (19) to be given by

7+ 8k
5

2 5 ? 1 2
| fol” = ) 8o — +§(3+2/<). 1)

We now consider frequency-comb generation in the anoma-
lous dispersion regime for a fixed pump intensity. Figure 2(a)
shows a case similar to that considered by Matsko et al. in [2].
The upper green (light gray) curve in Fig. 2(a) is a fixed-point
curve of soft-excitation solutions, which can be reached
adiabatically by slowly increasing the frequency detuning
of the pump until the curve of the cw solution intersects
the modulationally unstable region. The lower fixed-point
curve of stable comb states lies outside of the MI region
and can therefore not be reached directly from the cw pump
mode. However, it is still possible to generate a solution
laying on this curve by slowly changing the detuning, at
least for the parameter values considered in the figure. This is
accomplished by first traversing the upper fixed-point curve,
after which the solution will jump to the lower fixed-point
curve. Consequently we have a case where a phase space
trajectory exists which connects one stable solution set with
another. The lower curve of fixed points, which is considered a
hard excitation in [2], can in this way be reached in an adiabatic
manner without the need for abrupt changes in either detuning
Or pump power.

In Fig. 2(b) we consider the same parameters as in Fig. 2(a),
with the exception of the dispersion which is taken to be twice
as large. It is seen that the upper fixed-point curve starts at a
smaller detuning than before, with the discontinuity between
the two curves happening outside of the bistable region. The
lower fixed-point curve can therefore be reached directly from
the cw solution. For example, choosing the pump detuning
to be 89 = 3 shows that the cw solution will be unable to
persist, and spontaneous generation of frequency sidebands
from noise-induced MI will lead to a final state that lies
on the lower fixed-point curve. This shows that changes in
the magnitude of the dispersion can change the character
of the dynamics such that the trajectories of comb states
which are isolated in phase space may become connected
with the modulationally unstable cw solution. The distinction
between soft and hard excitations must therefore be made on
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a case-by-case basis for microresonator possessing different
amounts of dispersion. Figure 2(c), where the dispersion is
now three times as large as in Fig. 2(b), shows this even more
clearly. Here we see that the previous two fixed-point curves
have merged and instead form a single solution curve, which
as before is directly accessible from zero initial conditions.

Continuing to increase the dispersion reveals another
interesting range of dynamics, as demonstrated in Fig. 2(d). A
part of the fixed-point curve is now unstable, at the same time
as the corresponding cw solution, with no steady-state solution
existing within the three-wave model. Numerical simulations
of the three-wave model and the full Eq. (3) for this case shows
the solution to be periodic, corresponding to a breather-type
state.

The three-wave model suggests that stable comb states
could also exist for the zero-dispersion case (k = 0) as long
as the system is bistable, i.e., 5o > /3. These states are not
predicted by the linear analysis, cf. [5], and can be reached
only by hard excitations. Comb generation from MI would
normally not be expected to occur for zero dispersion since
MI is fundamentally an interplay between dispersion and
nonlinearity, which cannot take place without the presence
of both effects. However, the detuning provides an extra
degree of freedom, which enables Eq. (3) to exhibit MI in the
normal dispersion regime [16] and also in the zero-dispersion
case. The theory does not predict stable soft-excitation comb
states close to the zero-dispersion point, which may seem
contradictory to the experimental observations which have
been made of highly equidistant frequency combs [17].
However, one should remember that mode pulling through
thermal and nonlinear effects can change the path length and
the refractive index properties of the resonator so that the
spectrum becomes nearly equidistant. The three-wave model
thus only shows that comb generation cannot be initiated in
a cold resonator through MI unless the dispersion is nonzero,
while the final comb state of the warm and populated resonator
may correspond to a hard excitation state. Moreover, close
to the zero-dispersion point it will also become necessary
to include the effects of higher orders of dispersion, which
will limit the attainable comb width. It should furthermore
be noted that the zero-dispersion case is a limit where
the assumptions behind the three-wave model break down,
since no particular pair of sidebands can be considered to be
dominant. Itis, in fact, easily seen that Eq. (3) does not have any
continuous steady-state solutions for zero dispersion, except
for flat-locked cw solutions; cf. [13].

Regardless, numerical simulations of the driven and
damped NLS equation show that ultrawideband frequency
combs can indeed be generated near the zero-dispersion point
even if a very small anomalous dispersion is present. It is
necessary to include a small amount of dispersion not only
because the zero-dispersion limit is unstable but also because
of numerical limitations which require the comb spectrum to be
finite. For example, using parameters §o = 3,| fo| = 1.85,8 =
—10° and a starting value of |Ag(0)] = 1.2 produces a
frequency comb consisting of nearly 40 000 resonant modes.
Decreasing the dispersion further would allow the generation
of even greater combs.

Comb generation occurs also in the normal dispersion
regime. However, most of these frequency-comb states are
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FIG. 3. (Color online) Hard excitation in the normal dispersion
regime; intracavity pump-mode amplitude as a function of external
pump amplitude for fixed detuning: §o = 5,8 = 0.5. [Same color
(line style) coding scheme as Fig. 2.]

only hard excitations; cf. [18]. A typical example is found
in Fig. 3, which shows the stable fixed-point curve laying
inside the region exhibiting bistability of the cw solution, while
outside of the MI region and not connected in any way with the
cw solution curve. This fixed-point curve represents an isolated
solution set in phase space, whose trajectories do not connect
with the state corresponding to zero initial conditions. They
can therefore not be reached in an adiabatic manner and are
hard excitation states. For the system to reach these solutions
the initial condition needs to be nonzero, which will generally
require the sidebands to already be present inside the resonator.
However, it may sometimes be possible to excite these states
from MI of the cw solution by some abrupt change in either
pump intensity or detuning: A possible route for exciting these
solutions could, e.g., be to rapidly change the external pump
intensity in a manner so that the internal pump-mode power
falls into the MI region when starting from an initial state on
the stable steady-state cw solution above the fixed-point curve.

Using the three-wave model it is found that it is also possible
to generate soft-excitation frequency combs in the normal
dispersion regime. Such a case is demonstrated in Fig. 5,
which shows a stable fixed-point curve located in the region
where the cw is modulationally unstable. It can be rigourously
proved that stable comb generation by means of soft excitations
is possible in the normal dispersion regime within the range
defined by

V34K <8 < L+ 2V + 4 (22)

for §p > 5/«/§ and k > 2/«/5; see Fig. 4.

However, it should be noted that the solution need not
always converge to a stable comb state, even when such
a state is predicted to exist by the three-wave model. The
three-wave model is only capable of predicting local—not
global—stability. As there is often a competition between two
different stable states, one being the frequency-comb state and
the other the steady-state cw solution, it is usually required
that the MI be able to act under a sufficient long time for the
system to end up in the comb state, allowing the amplitude of
the sidebands to build up. This will usually only be the case
if the parameters are sufficiently large; cf. Fig. 5. Figure 6 is
the result of a numerical simulation of a soft excitation in the
normal dispersion regime, showing the intensity and spectrum
of the frequency comb. The comb was generated from noise
using MI for the parameters of Fig. 5. A closer look at the
MI gain spectrum for this case reveals that the gain for the
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FIG. 4. (Color online) Different parameter regions where soft and
hard excitations are possible.

first sideband is separated from the gain of the cw instability
by a sizable stability window which inhibits the system for
jumping to the upper cw solution. The parameter range for
which soft and hard excitations are possible is shown in Fig. 4.
Soft excitations have been found to always be possible in
the anomalous dispersion regime and also within a part of
the normal dispersion region. These soft excitations were not
found by Matsko ez al. in [18] as they only considered a specific
set of resonator parameters laying outside of the range given
by Eq. (22).

VI. DEPENDENCE ON ROUTE IN COMB GENERATION

Frequency combs can have either one or two stable curves
of fixed points for a particular set of parameters. The resonator
thus exhibits bistability and hysteresis not only for the cw
solution but also for comb states when the sidebands are
excited. It therefore becomes important to consider the way
that frequency combs are generated, since variations in the
route may produce different final states.

Figure 7 shows an example where two different fixed-point
curves exist for the same set of comb parameters. We consider
a case where the field inside the resonator is initially zero

[4ol

4

5 10 15 20 25 30|ﬁ)I

FIG. 5. (Color online) Example of soft-excitation frequency-
comb generation in the normal dispersion regime. Intracavity pump-
mode amplitude as a function of external pump amplitude for fixed
detuning: §, = 15,8 = 12. [Same color (line style) coding scheme as
Fig. 2.]
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FIG. 6. (Color online) Numerical solution of the normalized
Eq. (3) for the parameters in Fig. 5: | fo| = 17.
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and the pump intensity is set above the threshold intensity for
bistability of the cw solution. The pump-mode amplitude will
then first rise to a level corresponding to the cw solution on the
upper curve, but since this solution is in the MI region, it will
be unstable and the system will instead approach the stable
upper fixed-point curve (point 1). However, if the external
pump intensity is later slowly reduced beyond the point where
the upper curve ends, then the system will jump down to
the lower fixed-point curve (point 2). If the pump intensity
is now slowly increased again to its original value, then we
find that the system will stay on the lower curve (point 3). A
similar procedure involving the detuning would also allow us
to reach different comb states corresponding to identical comb
parameters in an adiabatic manner.

A numerical simulation showing this is found in Fig. §,
which is a plot of the spectral intensity as a function of the
evolution time. The figure was obtained by solving Eq. (3) with
a time-varying pump intensity | fo|? as illustrated by the green
(light gray) line in the figure (right-hand scale). The frequency
comb is clearly seen to display qualitatively different dynamics
for the first half of the figure as compared to the second half. For
example, even though the external parameters are the nearly
same, we find the comb state at T =~ 60 to correspond to a stable
soliton state with a stationary intensity profile while the comb
at T >~ 5 is found to be a temporally chaotic, breather-type
state. Clearly, these solutions correspond to different fixed
points as predicted by the three-wave model. The dynamics
is also seen to abruptly change when the pump intensity is

[Aol
2.5
1.5 ‘\J—Q
1.0 G
0.5

2 4 6 s 10/

FIG. 7. (Color online) Bistable behavior of comb states. Intracav-
ity pump-mode amplitude as a function of external pump amplitude
for fixed detuning: §o = 5; = —2.5. [Same color (line style) coding
scheme as Fig. 2.]
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FIG. 8. (Color online) Numerical solution of Eq. (3) for the
parameters in Fig. 7 showing the spectral evolution for varying
pump intensity. Logarithmic intensity scale with yellow (white) color
denoting highest intensity. Green (light gray) line shows external
pump amplitude as measured on the right-hand axis.

reduced below the end point of the upper fixed-point curve,
again in good agreement with the model.

VII. CONCLUSIONS

While the three-wave model can only give an approximation
of the full comb dynamics, it often produces remarkably
good agreement. The three-wave model is the lowest order
nontrivial finite mode truncation that can be made. The
inclusion of additional modes could provide an even better
approximation but requires a more involved analysis since
the phase space dimensionality grows quickly. Comparisons
between numerical simulations of both the three-wave mixing
model and the full driven and damped NLS Eq. (3), have
shown that the three-wave model is useful in finding the
location of frequency-comb states as well as helping to predict
where comb generation may be stable. Unfortunately, it is not
possible to use the model to predict absolute comb stability
since higher order sidebands are neglected. Pump-mode and
sideband amplitudes are also not always accurate, especially
for large frequency sidebands.

The three-wave model could be useful as a tool, together
with numerical simulations of Eq. (3), to help design microres-
onator devices capable of generating specific comb states. It
could, e.g., be applied to finding specific routes which generate
soliton trains or octave spanning frequency combs. However,
it should be remembered that if mode pulling due to thermal
and nonlinear effects is significant, it may be necessary to
also consider temporal changes in the dispersion, in order to
accurately model the complete excitation dynamics observed
under experimental conditions.

In this article we have made a study of the dynamics of the
MI of microresonator-based frequency combs in the context
of a formalism provided by the driven and damped NLS
equation. We have demonstrated that the primary path to comb
generation relies on the MI of the cw pump mode, although
other comb excitation routes are also possible and indeed
necessary to reach certain comb states. A linear stability anal-
ysis has been made, which has taken into account the proper
boundary conditions of frequency-selective, high-Q-factor,
microresonators. Additionally, we have derived a truncated
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three-wave mixing model which describes both the dynamics
and long-term behavior of different frequency-comb states in
a reduced, four-dimensional phase space. The fixed points
of the dynamical system have been identified, with stable
states corresponding to either stationary or chaotic frequency
combs. A discussion of different regimes of frequency-comb
generation has been made. This discussion has highlighted
the role of the comb parameters in determining the excitation
dynamics and shown that not only the sign of the dispersion
but also its magnitude is crucial in determining the dynamical
behavior and different excitation routes. We have found that

PHYSICAL REVIEW A 88, 023819 (2013)

soft-excitation comb generation is possible even in the normal
dispersion regime and derived a range which shows where
such excitations can occur. Finally, we have considered the
dependence on route in comb generation and the fact that
resonators may exhibit bistable behavior not only for the cw
solution but also for different frequency-comb states.
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