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Optical instabilities in a three-level � and V system inside a double cavity
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We obtain optical instabilities in all-optical bistable systems arising from competing cooperative pathways at
low input light levels. In particular, for three-level atomic systems in the � and V configuration interacting with
two independent cavity modes, we identify the necessary conditions related to the incoherent pathways required
to obtain instabilities. The instabilities arise when atomic states involved in the bistable transition are leaky and
have substantial population, where the incoherent processes directly hinder the cooperative preparation of the
atomic ensemble.
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I. INTRODUCTION

Optical instabilities in atom-cavity coupled systems have
been widely studied, particularly in the context of lasers
and optical bistability [1–5]. The phenomenon of all-optical
bistability (AOB) is a cornerstone effect arising from co-
operative atom-field dynamics. This phenomenon has been
extensively studied in order to realize all-optical switching, as
well as nonlinear dynamical effects such as self-pulsing and
chaos [6,7]. We focus our attention on optical instabilities in
AOB systems, particularly at low-light levels. Traditionally,
the occurrence of optical instabilities arises in two well-
known regimes: one involves the atom coupling to multiple
longitudinal modes of the cavity and the other involves a
single-cavity mode coupled to the atom and the instability
occurs in the upper branch (also known as one-atom branch)
of AOB [6–8], where the cooperative effect is nonexistent.
The former class of instabilities, arising from large number of
modes, results from an interplay of a variety of time scales
leading to chaos and self-pulsing. The latter effect involves
an intense intracavity field that saturates the collection of
atoms in absorptive AOB along with optical pumping, and
thus does not involve any cooperative effects. In an effort to
realize controllable optical instabilities in AOB in the regime
where cooperative effects play a central role, we propose
coupling two adjacent transitions in a multilevel atom to
bichromatic fields which experience independent feedback,
leading to competing cooperative behavior and the resulting
optical instabilities. In our previous work, we have shown the
existence of instabilities and negative hysteresis in a three-level
ladder (�) system with such double-feedback AOB [9,10].

Earlier, a three-level atom in the �-type configuration
operated under an electromagnetic induced transparency (EIT)
regime was exploited to obtain instabilities using single-cavity
feedback [11]. Recently, controlled optical switching using
a double cavity having a K-type multilevel system was
proposed [12]. We seek to determine if instabilities can be
obtained universally in every few-level atomic configuration.
It appears that the nature of the incoherent process plays a
central role in the cooperative regime. So far, the three-level
atom in the V- and �-type configurations has not been
explored in the context of double-feedback AOB to observe
optical instabilities. However, the three-level V-system AOB
has been studied in the context of spontaneous-emission-
induced quantum interference, leading to variation in the

AOB switching thresholds [13] as well as multistability [14].
In the absence of such quantum interference, the V system
exhibits regular switching devoid of any optical instability
[15,16]. In this paper, we study both the � and V system in
double-cavity AOB and are able to pin down the precise nature
of the decay processes that could lead to controlled optical
instabilities such as self-pulsing and chaotic output at low-light
levels in the cooperative branch. Such instabilities can be
obtained in conventional optical switches by providing an extra
coupling, for applications in secure communications [17] and
synchronization of chaos [18].

The organization of the paper is as follows. In the next
section, we describe the necessary theoretical model, which is
followed by results and discussion associated with the � and
V system, respectively. We conclude in the last section.

II. THEORETICAL MODEL

The schematic in Fig. 1 indicates the three-level � and
V configurations and the setup involving the double-cavity
feedback, wherein two optical fields simultaneously interact
with the atomic medium. We present the density matrix
equations that govern the evolution of the atoms accompanied
by the field equations that capture feedback in the slowly
varying envelope approximation [19]. We confine ourselves
to the mean-field approximation, widely used in the context
of AOB, thus ignoring any spatial dependence of the field
within the cavity. The propagation of the two fields inside the
active medium (atomic vapor) are chosen to be copropagating
in order to eliminate the first-order Doppler effect and the
associated broadening [20].

The two coherent fields having amplitude E1 and E2

at frequencies ω1 and ω2 couple to the atom in the �

configuration along the transitions |2〉 ↔ |1〉 and |2〉 ↔ |3〉,
respectively, and are shown in Fig. 1(a). The density matrix
equations are obtained under the rotating-wave approximation
and are given as

∂ρ11

∂t
= 2γ1ρ22 − 2νρ11 + iG1ρ21 − iG∗

1ρ12,

∂ρ12

∂t
= −(γ1 + γ2 + ν − i	1)ρ12 − iG1(ρ11 − ρ22)

− iG∗
2ρ13,

∂ρ13

∂t
= − [ν + i(	1 − 	2)] ρ13 + iG1ρ23 − iG2ρ12,
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FIG. 1. (Color online) (a), (b) Schematic of three-level atom in �

and V configuration interacting with the two coherent fields having
amplitudes E1 and E2 at frequencies ω1 and ω2, respectively. In the
case of a V system, the solid arrow from level |3〉 to |1〉 indicates
incoherent pumping of rate r . (c) Two independent unidirectional
ring cavities where the active medium contained within the length L

interacts simultaneously with the two fields.

∂ρ22

∂t
= −2(γ1 + γ2)ρ22 + iG∗

1ρ12 − iG1ρ21

+ iG2ρ32 − iG∗
2ρ23,

∂ρ23

∂t
= −(γ1 + γ2 + i	2)ρ23 + iG∗

1ρ13 − iG2(ρ22 − ρ33),

∂ρ33

∂t
= 2νρ11 + 2γ2ρ22 + iG∗

2ρ23 − iG2ρ32, (1)

where 	1 = ω21 − ω1 and 	2 = ω23 − ω2 are the atomic
detunings, G1 = �d21 · �E1/h̄, G2 = �d23 · �E2/h̄ are the Rabi
frequencies, and 2γ1 and 2γ2 are the spontaneous-emission
decay rates from the levels |2〉→|1〉 and |2〉→|3〉, respectively.
The ground-state decoherence arising from the nonradiative
decay associated with the transition |1〉 ↔ |3〉 is described by
the decay rate 2ν.

The three-level atoms in the V configuration couple to two
fields having amplitude E1, E2 at frequencies ω1, ω2 along
the transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉, respectively, which
is shown in Fig. 1(b). The density matrix equations in the
rotating-wave approximation are given as

∂ρ11

∂t
= −2γ1ρ11 − 2νρ22 + rρ33 + iG1ρ31 − iG∗

1ρ13,

∂ρ12

∂t
= −[γ1 + γ2 + ν + i(	1 − 	2)]ρ12 + iG1ρ32

− iG∗
2ρ13,

∂ρ13

∂t
= −(ν + γ1 + i	2)ρ13 − iG2ρ12 − iG1(ρ11 − ρ33),

∂ρ22

∂t
= −2γ2ρ22 + 2νρ11 − iG∗

2ρ23 + iG2ρ32,

∂ρ23

∂t
= −(γ2 + i	2)ρ23 − iG2(ρ22 − ρ33) − iG1ρ21,

∂ρ33

∂t
= 2γ1ρ11 + 2γ2ρ22 − rρ33 + iG∗

2ρ23 − iG2ρ32

+ iG∗
1ρ13 − iG1ρ31, (2)

where 	1 = ω13 − ω1 and 	2 = ω23 − ω2 are the atomic
detunings, G1 = �d13 · �E1/h̄, G2 = �d23 · �E2/h̄ are the Rabi
frequencies, and 2γ1 and 2γ2 are the spontaneous-emission
rates from the levels |1〉 → |3〉 and |2〉 → |3〉, respectively.
Excited-state decoherence resulting from a nonradiative decay
pathway from |1〉 to |2〉 is indicated with a decay rate 2ν.
An incoherent pump applied to transfer atomic population
from level |3〉 to |1〉 plays an important role in the nonlinear
dynamical behavior of the V system, whose strength is
described with rate r [21].

Here, the optical fields having amplitudes E1 and E2

circulate within two independent ring cavities, which provide
sufficient feedback that leads to cooperative phenomena. The
equations of motion of the fields consisting of information
of boundary conditions as well as cavity feedback associated
with the individual cavities are given as follows:

∂xi

∂t
= κi [−xi(1 + iθi) + yi + 2iCiρmn] , (3)

where the index “i” refers to the fields 1 and 2 at frequencies
ω1 and ω2, respectively, and which involves normalized
input fields yi = �dmn · �Ein

i /h̄γi

√
Ti and output fields xi =

�dmn · �Eout
i /h̄γi

√
Ti , where �Ein(out)

i is the amplitude of the
input (output) field associated with the i th field that couples
to the transition |m〉 ↔ |n〉 whose dipole moment is �dmn.
The subscripts m and n denote the appropriate transition
involving the atomic levels |1〉, |2〉, and |3〉, as shown in
Figs. 1(a) and 1(b). The other terms in the above equation
are the cavity decay κi = cTi/Li , the scaled cavity detuning
θi = δc

i /Ti , and the cooperative parameter Ci = αiL/2Ti ,
where δc

i = (ωc
i − ωi)L/c is the normalized cavity detuning,

L is the extent of the region which contains the active atoms, αi

is the absorption coefficient associated with field at frequency
ωi , Li is the total length of the corresponding cavity whose
resonant frequency is ωc

i , and the transmission coefficient of
the input and output mirrors is Ti . All the frequency units
are normalized with respect to the spontaneous decay rate
γ2, unless specified otherwise. The derivation of the above
equations and the details of the numerical techniques are along
the lines discussed extensively in Ref. [10].

We have self-consistently solved the above set of nonlinear
atom and field equations in the steady state. We have under-
taken a linear stability analysis, which allows us to map out
the various regions of stability such as those involving stable
switching, self-pulsing, or chaotic output. The bifurcation
diagram is also obtained in order to understand the various
nonlinear dynamical features exhibited in these AOB double-
cavity systems.

III. RESULTS AND DISCUSSION

The double-cavity AOB system interacting with three-level
atoms exhibits a variety of nonlinear dynamical effects which
seem to occur in all three types of atomic configurations (�, V,
and � systems) in appropriate regimes. It is such comparative
analysis that provides insight into the optical instability and
its dependence on decay channels. Earlier studies with three-
level atoms have adopted a simplified approach wherein the
intermediate level is adiabatically eliminated [22,23] and the
effective interaction encompasses the two-photon transition
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without taking into account the effects of the intermediate state.
This assumption effectively rules out any optical instability
[24,25]. Such simplified treatment leads to normal stable
switching. In this paper, we focus our attention on nonlinear
dynamical effects associated with the cooperative (lower)
branch of AOB in the � and V atoms, which have not been
presented earlier [9,10]. Our earlier study of the � system in
the double cavity exhibits AOB, and we found that the variation
in the ratio of the cooperative parameter along the two adjacent
transitions and the variation of the decays results in behaviors
such as self-pulsing, chaos, and negative hysteresis. However,
the � and V system are quite distinct in their behavior with
regard to double-cavity AOB.

It is important to bring out the difference between the
instabilities presented here and the single-mode instabilities
that arise in the upper branch under strong-field conditions,
which are known to be well understood in the literature [6–8].
The conventional upper-branch instability invariably results
from an intense nonlinear atom-field interaction and a phase-
mismatched feedback arising from nonzero cavity detuning.
The fast nonlinear response and slow optical pumping are
known to be the two competing time scales that result in
self-pulsing. In contrast, our double-cavity instabilities arise in
the lower cooperative branch of AOB without involving finite
cavity detuning. The cooperative branch, which intrinsically
involves different physical processes, is responsible for the
instability.

In the case of the single-feedback AOB system having
a multilevel atomic medium, the instability associated with
the cooperative branch arises from the leaky population of the
lower atomic level involved in the AOB transition [26]. The
preparation of the atoms in the lower state such that they exhibit
cooperative (or collective) phenomena is necessary to observe
normal switching. A leakage of atomic population from such
a coherently prepared lower atomic level leads to instability.
Such an effect is easily realized in the three-level ladder
system with AOB along the upper transition. The leakage of
population occurs via spontaneous emission into the ground
state, leading to the instability in the lower cooperative branch.
Such an arrangement can also occur in the � system wherein
incoherent decay coupling the pair of ground states is essential
to obtain instability in the cooperative branch. This situation
cannot arise in a V system, as the AOB field directly couples to
the ground state. Hence, a V system does not exhibit instability
in the lower cooperative branch.

The various incoherent decay processes, including sponta-
neous emission, relaxation of the ground-state coherence, as
well as any incoherent pumping pathways to and from different
atomic states, play a critical role in dictating the nonlinear
dynamical behavior of the double-cavity AOB system. Before
taking the discussion further, we recall some of the important
results reported in our previous work [9,10], which are perti-
nent in developing our understanding of the current system.
The three-level � system is coupled to a pair of coherent fields
that simultaneously experience feedback in two independent
ring cavities, apart from normal stable switching, where the
cavity fields exhibit either periodic self-pulsing or chaotic
nonlinear dynamical behavior in the cooperative branch. The
system exhibits a period doubling route to chaos. Another
interesting effect is the presence of negative hysteresis at
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FIG. 2. (Color online) � system. (a), (b) Bistable response of
output fields x2 and x1 while the input field y2 is varied and y1 is held
constant. The thin red and thin green lines indicate stable steady states,
while the dashed black line indicates unstable steady states which are
physically inaccessible. The thick blue line indicates unstable steady
states associated with instability. The parameters are |y1| = 0.5, C1 =
200, C2 = 2000, γ1 = 1, γ2 = 1, ν = 0.1, κ1 = 1, κ2 = 1, 	1 = 0,
	2 = 0, θ1 = 0, and θ2 = 5. All the frequency quantities are in units
of γ −1

2 .

low-light levels, whereas the conventional (positive) hysteresis
continues to occur at higher incident intensities.

A. � system

The three-level � system in a double-cavity configuration
is presented here. We fix the strength of one of the input
fields, say y1, coupling the atomic transition |2〉 ↔ |1〉 to a
constant value, and then vary the other input field, y2 (which
couples the adjacent atomic transition |2〉 ↔ |3〉), to obtain
the bistable response of y2 versus x2, as well as y2 versus x1,
as shown in Fig. 2. The variation of the cavity output field
x1 due to the change in y2 indicates the strong coupling and
mutual dependence between the cavity fields x1 and x2 aided
by the atom. We have undertaken the linear stability analysis
about the fixed points (steady state) and identified the unstable
regions in the lower branch (indicated as a thick blue line)
as shown in Fig. 2. The usual unstable states associated with
the negative slope of the S-shaped bistable response continue
to exist (indicated as a dashed black line). The dynamical
evolution of both fields occurs simultaneously and they mimic
each other to a large extent. One can also obtain unstable states
on the top branch by introducing finite cavity field detuning,
akin to the instability obtained earlier [6,7]. We further analyze
these unstable states through the bifurcation diagram and
these can be associated with either periodic self-pulsing or
chaotic dynamics (see Figs. 2 and 4). The stability of the
periodic self-pulsing behavior is examined through the Floquet
analysis, whereas the existence of the chaos is confirmed
through the Lyapunov exponents (Ly) which take positive
values corresponding to the chaotic regime [see Fig. 3(b)].
As we vary the input field y2, the chaotic instability arises
through a period doubling (PD) route, as shown in the inset
of Fig. 3(a), wherein at least one of the Floquet multipliers
(Fl) crosses out of the unit circle along the negative real
axis [27]; specifically, for |y2| = 83.131 the dominant Fl is
1, and for |y2| = 83.146 the dominant Fl is −1.0025. In
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FIG. 3. (Color online) � system. (a) The bifurcation diagram
corresponding to the AOB curve shown in Fig. 2(a), where the
stable steady states and unstable steady states correspond to normal
switching and self-pulsed or chaotic output, respectively. (b) The
corresponding largest Lyapunov exponent. The parameters are the
same as in Fig. 2.

order to obtain instability on the top branch, it is essential
to have finite cavity detuning, and we have chosen θ2 = 5. In
this regime, the output amplitude of the chaotic oscillation
extends from the lower branch to the top branch of the
AOB response. The coexistence of chaotic and normal stable
solutions occurs for higher input field strengths. The temporal
evolution and the frequency spectrum of the cavity output fields
for two input field strengths (having two different |y2| values)
corresponding to periodic self-pulsing and chaotic behavior are
shown in Fig. 4. The presence of the double feedback plays
a crucial role in creating these instabilities. This instability is
suppressed if the feedback for one of the fields is removed.
The competition between atom-field nonlinear interaction
along the two cooperative branches and the associated decay
pathways within the atom play a critical role in obtaining
these instabilities, which are quite robust and occur over a
wide parameter range. The parameter space associated with
this system is extremely large, with 14 independent physical
parameters involving decays, detunings, and couplings. In
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FIG. 4. (Color online) � system. Top: The temporal evolution
indicating periodic self-pulsing and chaotic dynamics are shown
in the left and right panels, respectively. Bottom: The associated
frequency spectral density plots. The operating point |y2| = 83.1 for
periodic self-pulsing and |y2| = 95.2 for chaotic behavior, and the
other parameters are the same as in Fig. 2. Time t is in units of κ−1
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FIG. 5. (Color online) � system. Stability domain map indicating
the stable-fixed-point region (blue), the self-pulsing region (green),
and the chaotic region (red) as the atomic detuning (	2) and the cavity
detuning (θ2) are varied. The other parameters are the same as given
in Fig. 2 with |y1| = 0.5 and |y2| = 91.9.

order to steer the system systematically across the variety
of instabilities, we take recourse to stability domain maps
between two system parameters such as detunings θ2 and 	2,
which are shown in Fig. 5 with |y2| = 91.9 corresponding to
the lower (cooperative) branch of the AOB curve. One can
identify islands of chaos (red) within the periodic self-pulsing
domains (green), as well as regimes of normal switching
(blue). Note that the instability in the cooperative branch
exists even in the purely absorptive limit of atomic and
cavity detunings (θ2 = 	2 = 0), and it is very sensitive to
the variation of detunings around the resonance point.

B. V system

We would like to explicitly bring out the importance of the
incoherent (decay) pathways within the atom that are crucial
to the occurrence of instability. The absorptive AOB relies
on collective absorption in the cooperative (lower) branch, in
contrast to a saturation of independent atoms in the one-atom
(upper) AOB branch. Thus, the preparation of the collective
state in the atomic ground state is crucial for realizing regular
switching in AOB. The incoherent processes that directly affect
this collective preparation of the atoms leads to instability, such
as self-pulsing and chaos. A slow time scale can be associated
with the decay of the initial preparation of the atom in the
ground state, whereas a nonlinear interaction of the atoms and
the fields within the cavity provides the fast time scale, and a
competition between these time scales leads to the self-pulsing
behavior. We note that in the � and � configurations, the
intermediate-state decay and the ground-state decoherence,
respectively, provide the incoherent decay pathways that turn
the state that is responsible for collective absorption leaky,
leading to instability. However, in the V system, the shared
ground state across the two transitions cannot be leaky and does
not lead to any instability in the lower (cooperative) branch
of the AOB. Essentially, it behaves like a pair of two-level
atoms interacting independently with coherent cavity fields,
coupled to a common ground state. Thus, in order to produce
instability, we again address the collective state and introduce
an incoherent pump between the ground state to one of the
excited states [i.e., from |3〉 to |1〉, as shown in Fig. 1(b)].
The introduction of this incoherent pathway leads to unstable

023814-4



OPTICAL INSTABILITIES IN A THREE-LEVEL . . . PHYSICAL REVIEW A 88, 023814 (2013)

0 20 40 60 80
−2

4

10

16

22

28

|y
2
|

|x
2|

0 20 40 60 80
0

3

6

9

12

|y
2
|

|x
1|

(a) (b)

FIG. 6. (Color online) V system. (a), (b) Bistable response of
output fields x2 and x1 while the input field y2 is varied and
y1 is held constant. The thin red and thin green lines indicate
stable steady states, while the dashed black line indicates un-
stable steady states which are physically inaccessible. The thick
blue line indicates unstable steady states associated with instabil-
ity. The parameters are C1 = 200,C2 = 200,|y1| = 15, γ1 = 1,γ2 =
1,ν = 0.2,κ1 = 1,κ2 = 1,	1 = 0,	2 = 4.5,θ1 = 0,θ2 = −2.5, and
r = 2. All of the frequency quantities are in units of γ −1
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steady states over the lower branch of the AOB curve, shown
in Fig. 6 (indicated with a thick blue line), and is essential
for obtaining optical instability. The associated bifurcation
diagram is given in Fig. 7, and again indicates the transition of
the cavity output field from normal stable switching to chaos
through a period doubling route, as shown in the inset. We
also determined the Lyapunov exponents [see Fig. 7(b)] to
demarcate the range of input field |y2| which lead to these
instabilities.

In general, with variation in the system parameter (|y2|
in the present case), the nonlinear dynamical self-pulsing
behavior is expected to occur beyond the Hopf (H) bifurcation
point that separates the normal switching from periodic self-
pulsing. Interestingly periodic self-pulsing behavior coexists
with stable switching for a range of |y2| (see region around
|y2| = 37 shown in Fig. 7). To understand such coexistence,
we use the limit-cycle continuation from the Hopf point using
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FIG. 7. (Color online) V system. (a) The bifurcation diagram
corresponding to the lower branch of the AOB curve shown in
Fig. 6(a), where the stable steady states and unstable steady states
correspond to normal switching and self-pulsed or chaotic output,
respectively. (b) The corresponding largest Lyapunov exponent. The
parameters are the same as in Fig. 6.
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FIG. 8. (Color online) V system. The limit cycle continuation
from the Hopf (H) point at the very onset of instability on the lower
branch of the AOB curve shown in Fig. 6(a). The limit point of cycles
(LPC) as well as the period doubling (PD) point are indicated as thick
magenta loops. The parameters are the same as in Fig. 6.

the MATCONT continuation package [28]. The continuation
diagram is shown in Fig. 8 and indicates that the limit-cycle
continuation initially occurs in the direction of decreasing |y2|
up to |y2| = 35, and then turns around at a limit point of
cycles (LPC); this is also known as the fold bifurcation point
(indicated in magenta).

The dominant Floquet multipliers plotted on the complex
plane indicate that the periodic self-pulsing behaviors (limit
cycles) associated with continuation in the increasing and de-
creasing variation of |y2| are stable and unstable, respectively.
Therefore, all three possible behaviors (normal switching and
stable and unstable periodic self-pulsing) coexist in the lower
AOB branch region within the interval |y2| = [35,36]. Hence,
depending on the initial condition, the appropriate behavior
will be observed. The period doubling route described in the
above bifurcation diagram is also corroborated by the presence
of the period doubling (PD) cycle indicated as a magenta loop
in Fig. 8. Such bifurcation phenomena could be promising for
the appearance of oscillating cavity solitons in a V system,
once diffraction is included in the model equations [29,30].
However, we do not invoke any transverse field dependence
for obtaining the instabilities. The connection between the two
seems potentially rich and needs to be explored.
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FIG. 9. (Color online) V system. Top: The temporal evolution of
periodic self-pulsing and chaotic dynamics are shown in the left and
right panels, respectively. Bottom: The associated frequency spectral
density plots. The operating point |y2| = 38 for periodic self-pulsing
and |y2| = 47 for chaotic behavior, and the other parameters are the
same as in Fig. 6. Time t is in units of κ−1

2 and f is in units of κ2.
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FIG. 10. (Color online) V system. Stability domain map indi-
cating the stable-fixed-point region (blue), the self-pulsing region
(green), and the chaotic region (red) as the atomic detuning (	2) and
the cavity detuning (θ2) are varied. The other parameters are the same
as given in Fig. 6 with |y1| = 15 and |y2| = 50.

In Fig. 9, we present the temporal evolution of the cavity
output field corresponding to stable periodic self-pulsing and
chaotic operating regimes, and the corresponding frequency
spectrum in the bottom panels. The domain map plotted
between the detunings θ2 and 	2 (see Fig. 10) portrays the
various regions such as normal switching (blue), periodic
self-pulsing (green), and chaotic behavior (red) associated with
cavity output. Before we conclude, we indicate the possible
experimental system, where these effects can be realized,
using rubidium (87Rb, D1 line) atomic vapor in the �- and
V-type configuration along the transitions 5S1/2(F = 2) ↔
5P1/2(F ′ = 2) ↔ 5S1/2(F = 1) and 5P3/2 ↔ 5S1/2 ↔ 5P1/2,
respectively. Considering temperatures of about 60 ◦C, one
would obtain a number density of ≈1011 atoms/cm3 and, with
transmission coefficient Ti ≈ 10−2, it would result in coop-
erative parameter Ci ≈ 1000. The input power levels can be
varied from ≈0–20 mW across a spot size of 100 μm to observe
effects we have mentioned in this paper. The different values
of cooperative parameter can be realized by changing either
the number density of atoms or the transmission coefficient of
the cavity. The range of parameters is explicitly enumerated

TABLE I. Parameters and their range. All of the frequency
parameters are scaled with γ2 = 36 MHz.

Parameters Symbol Range

Atomic detuning 	1,2 −10 ↔ 10
Cavity decays κ1,2 0 ↔ 1
Cavity detuning θ1,2 −10 ↔ 10
Cooperative parameters C1,2 100 ↔ 1000
Input field strengths |y1,2| 0 ↔ 150
Nonradiative decay ν 0 ↔ 1
Incoherent pumping rate r 0 ↔ 1

in Table I. The 4D3/2 ↔ 5P3/2 ↔ 4D5/2 transitions in 87Rb
offer promising implementation of these effects in the optical
communication wavelength range of 1.5 μm with degenerate
fields [31].

IV. CONCLUSION AND REMARKS

We have demonstrated methods of generating periodic
self-pulsing and chaotic instability using a double-cavity AOB
system having a three-level atomic medium in the � and V
configurations. These instabilities occur in the lower branch
of the bistable curve and are intrinsically related to the
competition of cooperative behavior of the atomic collection
along the two adjacent transitions as well as the details of
the incoherent pathways within the atom. The ground-state
decoherence is sufficient for the � system to exhibit instability;
however, by introducing an appropriate incoherent pathway
(incoherent pump), we induce instability even in the V-system
double-cavity AOB. Hence, the incoherent pathway needs to
deplete the collection of atoms involved in the cooperative
effect to exhibit instabilities. All of the instabilities are
obtained under the mean-field approximation.
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