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Quadrupolar second-harmonic generation by helical beams and vectorial vortices
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We study the optical second-harmonic radiation (SHG) generated by scattering from a homogeneous
centrosymmetric thin composite material illuminated by higher-order Gaussian laser beams. The induced
second-order source polarization is taken as of quadrupolar type (E · ∇)E, which depends on the inhomogeneity
of the incident electric field E. This nonlinear source has the same form as that responsible of the SH signal
observed in a composite made of Si nanocrystals embedded uniformly in a SiO2 matrix and that calculated for
a thin disordered array of nanospheres. We calculate the SH radiation angular patterns generated by several
incident combinations of spatial modes and states of polarizations. In particular, excitation with radially and
azimuthally polarized doughnut modes and helical beams carrying orbital angular momentum with linear or
circular polarization are considered. We found that this quadrupolar SHG depends sensitively on the transverse
structure and polarization of the driving field. The response to ∇E introduces a factor E(E · K) in the Fourier
component of the SH scattering amplitude, absent in electric-dipole-allowed SHG, that can give additional nodal
lines or rings in the SH angular patterns, changes of the state of polarization, or additional azimuthal phases in
the harmonic radiation. For circularly polarized beams with helical phase wave front, we found a selection rule
according to which the nonlinear scattering of an optical vortex with charge lω and spin σ = ±1 induces a SH
vortex field with a spin-dependent charge doubling l2ω = 2lω + σ . These features may be useful to identify SHG
processes of quadrupolar nature and suggest a way to produce scattered SH radiation with a desired angular
pattern and state of polarization.
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I. INTRODUCTION

Second-harmonic generation (SHG) is a well-known non-
linear optical probe of planar surfaces and interfaces of
centrosymmetric systems [1–7]. The surface sensitivity stems
from the strong suppression of the dipolar second-order bulk
polarization due to symmetry. At the surface the inversion
symmetry is broken and an electric dipolar SH response P

(2)
i =

χs
ijkEjEk then becomes allowed. There is, however, a residual

bulk contribution of quadrupolar character originated from the
inhomogeneity of the incident electric field P(2)

Q ∝ (E · ∇)E.
Besides flat surfaces, SHG scattering has recently been

introduced to study the surface of micro- and nanoparticles [8].
For a spherical nanoparticle the centrosymmetry is locally lost
at its surface and therefore a nonlinear surface polarization
is induced. However, centrosymmetry is globally recovered,
leading to a null total dipole moment unless the field were
inhomogeneous [9,10]. Thus, to leading order in the field
gradient, the nonlinear induced dipole has the nonlocal form
p(2) = γ e(E · ∇)E + γ mE × (∇ × E) whose radiation may be
comparable to that of the nonlinear quadrupole polarization
P(2)

Q = γ q∇ · EE, where the γ ’s are given functions of the
dipole surface susceptibilities and quadrupole bulk suscepti-
bilities of the constitutive material. This is in contrast to the
dipolar SHG from planar geometry.

Si nanocrystals (NCs) embedded in glass provide an-
other relevant example where quadrupole contributions (field
gradient) also play an important role in the SHG surface
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response. The observation of SHG from a thin composite
layer made up of Si spherical NCs (∼5 nm) within a SiO2

matrix demonstrated the sensitivity of this nonlinear optical
process to the Si/SiO2 interface, even for a macroscopically
centrosymmetric system [11,12]. To explain the measured
angular distribution of harmonic radiation, a theory of SHG
from a thin homogeneous slab of a composite medium made up
of an array of centrosymmetric spheres excited by an arbitrary
nonhomogeneous electromagnetic field was developed [10]. It
was found that the leading radiating part of the macroscopic
quadratic polarization of the nanocomposite can be written as
P(2) = �′(E · ∇)E, where �′ = nb(γ e − γ m − γ q/6) and nb

is the number density of nanospheres. Under illumination with
a simple Gaussian beam, the scattered SH intensity distribution
consisted of two narrow lobes within the divergence angle
of the beam, around the forward direction, with an absence
of emission exactly along it, in a very similar profile to
the observed angular pattern. Further experiments using two-
beam SHG [13] support the mechanism (E · ∇)E behind the
nonlinear response of the composite.

These investigations show that the study of quadrupolar
SHG becomes important in its own right. The nonlinear re-
sponse of nanoparticles is of nonlocal character and illustrates
well the dependence of SHG on the nature of the exciting field.
The SH radiation is determined by the transverse gradient of
the incident field, which is null for a plane wave but finite
∼E/w0 for a Gaussian beam (w0 is the radius of the beam
waist). This suggests the use of finite beams to further explore
the SHG from centrosymmetric particles and composites.
In a previous paper [14] we calculated the SH radiation
angular patterns generated by scattering from a homogeneous
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centrosymmetric thin composite film, as the one mentioned
above, illuminated by a weakly focused laser beam with a
transverse field distribution described by linearly polarized
Hermite-Gauss (HG) modes. We concentrated mainly on the
possibility of SH scattering along the forward direction for a
proper combination of two such HG modes in the fundamental
field. Beyond the paraxial approximation, SHG of a single
centrosymmetric nanosphere excited with tightly focused
linearly polarized beams [15] or cylindrical vector beams [16]
have been recently reported. Far-field intensity patterns of SHG
from a nonlinear crystal with electric-dipole second-order
susceptibility tensor were calculated considering excitation
with vortex beams with radial and azimuthal polarizations
under strong focusing conditions [17–19]. Dipolar SHG with
vector Gaussian beams propagating through a nonlinear crystal
[20] and surface SHG induced by polarization vortices [21]
are additional examples where finite-size beams with inho-
mogeneous transverse spatial structure and polarization were
employed. Recently, multipolar SHG with a focused Gaussian
TEM00 beam from a thin nonlinear film have been reported
[22]. It was shown that electric-dipole-allowed surface SHG
can be interpreted in terms of Mie-type multipoles arising
from the atomic-level light-matter interactions and that the
interference between these multipoles when excited with a
simple Gaussian beam leads to a directional SH emission.

In this paper we study the SHG from a thin composite
film with an induced nonlinear quadratic polarization taken
as of quadrupolar type (E · ∇)E, excited with higher-order
Gaussian beams. We extend the study of Ref. [14] to include
the excitation with beams having transversely inhomogeneous
states of polarization like radially and azimuthally polarized
doughnut modes (which are proper combination of HG
modes) [23] and helical beams carrying spin and orbital
angular momentum (Laguerre-Gauss modes) [24]. These
modes are of particular importance for many applications in
nano-optics [25], and here we employ them in the context
of SH light scattering. Following the theory developed in
Ref. [10] we calculate the angular distribution of SH light
scattered and show the sensitivity of the quadrupolar SHG to
the spatial nature of the polarizing field and to its state of
polarization. Bulk quadrupolar SHG under phase matching
conditions in an isotropic media excited by HG beams was
first considered by Bethune [26]. As for the laser beams
with orbital angular momentum (OAM) in the context of
second-order nonlinear optical processes, the studies have
been restricted to wave mixing in the dipolar approximation.
Dipolar SHG by Laguerre-Gaussian beams was observed,
evidencing mode transformation to twice the OAM (l2ω = 2lω)
and conservation of OAM in the light beam, in addition to
frequency doubling [27,28]. Also, generation of optical vortex
beams from a nonvortex fundamental beam via three-wave
mixing in a noncentrosymmetric nonlinear photonic crystal
[29] and interaction of optical vortices in a Kerr-like medium
[30] were recently reported.

Here we find that the presence of ∇E in the nonlinear
polarization leads to OAM transformation of the type l2ω =
2lω + σ , where σ = ±1 is the spin angular momentum of a
circularly polarized Laguerre-Gauss exciting field with OAM
per photon lωh̄. On the other hand, excitation with polarization
vortices, such as azimuthally or radially polarized doughnut

modes, leads to transformation of the state of polarization
(azimuthal −→ radial) or to the appearance of additional
concentric rings in the SH radiation patterns.

II. THEORY

Consider a thin film of width � and lying on the z = 0 plane
with a nonlinear source polarization [10],

P(2)(r) = �′(ω)E · ∇E + nonradiating, (1)

where E is the driving field and �′ is the material response
function. The scattered SH field in the far zone is given by

E2ω(r) = 2q(2q�)[P(2)(K)]T
ei2qr

r
, (2)

where q = ω/c is the wave number of the incident field
oscillating at the fundamental frequency ω. Assuming that
the film is much narrower than the wavelength, q� � 1, and
ignoring phase matching effects, the scattering amplitude at 2ω

is determined by the transverse (T ) part of the two-dimensional
Fourier transform,

P(2)(K) =
∫

dr‖ P(2)(r‖,z = 0)e−iK·r‖ , (3)

with wave vector K = 2qn̂‖ = 2q sin θ (cos ϕx̂ + sin ϕŷ),
where r‖ = xx̂ + yŷ. We assume that at z = 0 the driving field
is given by the waist of a Gaussian beam and that its width w0

is much larger that the wavelength, qw0 � 1. The beam diver-
gence half-angle θ0 = 2/qw0 � 1, so that the incident light
travels paraxially around the nominal propagation direction z,
and thus small variations of order θ0 in its polarization direction
are ignored. We consider x,y as transverse coordinates and
then approximate [P(2)(K)]T ≈ P(2)(K) [10]. The SH radiated
intensity per unit solid angle into direction n̂ is

dI2ω(n̂)

d

= c

8π
(2q)2(2q�)2|�′|2 |Q(2)(K)|2, (4)

where

Q(2)(K) =
∫

dr‖ e−iK·r‖ E · ∇E, (5)

is the vector characterizing the SH scattering amplitude.

A. SH scattering amplitude for a single-mode incident beam

For a single-mode incident beam, we write the exciting
field at z = 0 as E(r‖) = E(x,y)ê in Cartesian coordinates,
or E(r‖) = E(ρ,φ)ê in polar coordinates, where the constant
unitary vector ê ⊥ ẑ gives the polarization of the mode along
the xy plane.

Using E · ∇E = 1
2 ê(ê · ∇E2) and integrating by parts, the

vector (5) can be written

Q(2)(K) = ê (ê · K)
i

2

∫
dr‖ E2(r‖)e−iK·r‖ . (6)

The problem has been reduced to the calculation of the in-
plane Fourier transform of the square of the field. Note that, in
contrast to the case of a dipolar nonlinear polarization ∼E2,
there is an additional factor (ê · K) arising from the gradient
of the field.
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If the field is a Gaussian beam of the form

E(x,y) = E0e
−(x2+y2)/w2

0 f (x)g(y), (7)

then the integral in (6) becomes∫
dr‖ E2(r‖)e−iK·r‖ = E2

0 If (x)(Kx) Ig(y)(Ky), (8)

with

Ih(x)(Kx) =
∫

dx e−iKxxe−2x2/w2
0 h2(x). (9)

If the field is expressed in polar coordinates as

E(ρ,φ) = U (ρ)eilφ, (10)

then∫
dr‖ E2(r‖)e−iK·r‖ = 2πi2lei(2l)ϕ

∫ ∞

0
dρ ρU 2(ρ)J2l(Kρ),

(11)

where Jn(x) is the Bessel function of the first kind of order n

and we have used the identity [25]∫ 2π

0
dφ ei2mφe−ix cos(φ−ϕ) = 2πi2mei2mϕJ2m(x). (12)

B. SH scattering amplitude for a two-mode incident beam

For a superposition of two Gaussian modes, at the beam
waist z = 0, E(r‖) = E1(r‖)ê1 + E2(r‖)ê2, the integral (5)
gives

Q(2)(K) = i

2

∫
dr‖ E(E · K) e−iK·r‖ + 1

2
(ê1 × ê2)

×
∫

dr‖ e−iK·r‖ (E1∇E2 − E2∇E1). (13)

The first term arises from terms involving only ∇E2
i or

∇(EiEj ) in (E · ∇)E and has the same form as (6), while
the second one comes from terms of the form Ei∇Ej . Note
that when ê1 = ê2, the last term vanishes and the expression
(13) simplifies to (6) with E taken as E1 + E2.

III. RESULTS

We consider excitation with laser beams in different higher-
order transverse modes. The beams of interest in this study are
the Hermite-Gaussian modes HGlm and Laguerre-Gaussian
modes LGl

p [31]. At z = 0 the former are given by [see Eq. (7)],

E(x,y) = E0
lm

w0
e−(x2+y2)/w2

0 Hl

(√
2x

w0

)
Hm

(√
2y

w0

)
, (14)

where Hl(x) is the Hermite polynomial of order l, w0 is the
radius of the beam waist, and E0

lm is the corresponding mode
amplitude. The latter are modes LGl

p in cylindrical coordinates
(ρ,φ), which at the beam waist are of the form (10)

E(ρ,φ) = E0

w0

(√
2ρ

w0

)l

Ll
p

(
2ρ2/w2

0

)
e−ρ2/w2

0 eilφ, (15)

where Ll
p(x) is an associated Laguerre polynomial, the integers

l and p are azimuthal and radial mode numbers. This beam

carries a well-defined OAM of lh̄ per photon [24]; p + 1 gives
the number of radial nodes.

In each case, we find that the SH scattering ampli-
tude takes the form Q(2)(δ) = A0e

−δ2/4F(δ), where A0 =
(E0/w0)2iπw0/2

√
2. Accordingly, in the figures below we

plot the function |Q(2)(δ)/A0|2, which determines the angular
distribution of the SH radiated intensity.

A. Hermite-Gauss and doughnut modes

For a single mode (14) Eω = HGlmê, the integrals (9) can
be evaluated to obtain

Q(2)(δ) =
(

E0
lm

w0

)2
i

2

πw0√
2

e−δ2/4[C11(δ)êê] · δ, (16)

where we have introduced the dimensionless wave vector δ =
Kw0/

√
2 ≈ √

8(θ/θ0)(cos ϕx̂ + sin ϕŷ), giving the angular
position of a detector in the far zone. The function C11(δ)
is calculated from

Cij (δ) = Climi ,lj mj
(δ) = (−i)ζ 2l<+m<l<!m<!δl>−l<

x

× δm>−m<

y L
l>−l<
l<

(
δ2
x/2

)
Lm>−m<

m<

(
δ2
y/2

)
, (17)

i,j = 1,2, with p>(p<) =max(min){pi,pj }, ζ = (l> − l<) +
(m> − m<). The SH scattering amplitude (16) may be written
in terms of HGlm modes after using the formula [24]

2n∑
k=0

(2i)kP (n−k,n−k)
k (0)H2n−k(x)Hk(0) = 22n(−1)nn!L0

n(x2),

(18)

where

P
(n−k,m−k)
k (0) = (−1)k

2kk!

dk

dtk
[(1 − t)n(1 + t)m]

∣∣∣∣
t=0

;

note that the sum involves only real terms and polynomials of
even order, given that Hk(0) = 0 for odd k. We obtain

(−2)l+mC11 =
l∑

p=0

m∑
q=0

alm(p,q)H2l−2p(δx/
√

2)

×H2m−2q(δy/
√

2), (19)

where alm(p,q) = (−4)p+qP
(l−2p,l−2p)
2p (0)P (m−2q,m−2q)

2q (0)
H2p(0)H2q(0), with p,q = 0,1,2,3, . . . . This means that
the quadrupolar SHG process “transforms” a single-mode
incident HGlm beam into a scattered SH field with the same
polarization state and an amplitude given by a combination
of HG modes of even order, in addition to the gradient factor
(ê · K); schematically,

e−(x2+y2)/w2
0 Hlm(x,y)ê

shg−→ e−(K2
x +K2

y )w2
0/8

×
⎡
⎣ l∑

p=0

m∑
q=0

alm(p,q)H2l−2p,2m−2q (Kx,Ky)

⎤
⎦ (ê · K)ê,

(20)

with Hlm(x,y) = Hl(x)Hm(y). For example, the SH pattern
corresponding to the HG01x̂ incident mode is a superposition
of HG00 and HG02, similar to the dipolar case [18,19], but
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MIGUEL G. MANDUJANO AND JESÚS A. MAYTORENA PHYSICAL REVIEW A 88, 023811 (2013)

with an extra nodal line given by x̂ · K = 0, as can be seen in
Fig. 1(b) of Ref. [14].

For the incident superposition E = HGl1m1 ê1 + HGl2m2 ê2,

E(x,y) = e−(x2+y2)/w2
0

2∑
i=1

êi

E0
limi

w0
Hli

(√
2x

w0

)
Hmi

(√
2y

w0

)
,

(21)

we obtain from (13) [14], assuming equal amplitudes, E0
l1m1

=
E0

l2m2
= E0,

Q(2)(δ) = E2
0

w2
0

i

2

πw0√
2

e−δ2/4

×
⎡
⎣

⎛
⎝ 2∑

i,j=1

Cij (δ)êi êj

⎞
⎠ · δ + C12T12(δ)

⎤
⎦ , (22)

where

T12(δ) = 2(ê1 × ê2) × [
(l2 − l1)δ−1

x x̂ + (m2 − m1)δ−1
y ŷ

]
.

(23)

In Ref. [14] we focused on some asymmetric combinations
of HG modes in the incident field with ζ = 1 to explore the
possibility of SH radiation along the forward direction. This is
illustrated in Fig. 1, which shows the SH angular patterns
[Figs. 1(b) and 1(d)] produced by the single-mode beam
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FIG. 1. (Color online) Amplitude patterns |Eω(x,y)|2 of fun-
damental beam and angular intensity distribution |E2ω(θ,ϕ)|2 ∝
|Q(2)(δ)|2 of SH light scattered from a thin composite film with
the nonlinear polarization source (E · ∇)E. (a) Linearly polarized
single-mode incident beam Eω = HG21x̂ and (b) its corresponding
SH radiation pattern. (c) Cross-polarized two-mode incident beam
Eω = HG21x̂ + HG11ŷ and (d) its corresponding SH radiation pattern.
The dimensionless angular coordinates in the far zone are δ =√

8(θ/θ0)(cos ϕx̂ + sin ϕŷ). Here and in the following figures we plot
the square modulus of Q(2)(δ)/A0 = e−δ2/4F(δ) (see text).
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FIG. 2. (Color online) (a) Intensity distribution of a fundamental
field given by a radially polarized doughnut mode E = HG10x̂ +
HG01ŷ and (b) the corresponding intensity pattern of the scattered
SH field. (c) Intensity distribution of a fundamental beam given by
an azimuthally polarized doughnut mode Eω = HG01x̂ − HG10ŷ and
(d) the SH radiated pattern.

E = HG21x̂ [Fig. 1(a)] and the cross-polarized superposition
E = HG21x̂ + HG11ŷ [Fig. 1(c)].

For a radially polarized doughnut mode E = HG10x̂ +
HG01ŷ ∝ e−(x2+y2)/w2

0 (xx̂ + yŷ)/w0 [Fig. 2(a)] we obtain
from (22)

Q(2)(δ) = E2
0

w2
0

i

2

πw0√
2

(4 − δ2)e−δ2/4δ. (24)

The corresponding SH angular pattern shows two annular rings
with alternate radial polarization and radial nodes at angular
displacements θ = 0 and θ = 0.3θ0, as can be seen in Fig. 2(b).

An azimuthally polarized doughnut mode E = HG01x̂ −
HG10ŷ ∝ e−(x2+y2)/w2

0 (yx̂ − xŷ)/w0 [Fig. 2(c)] generates a
vector scattering amplitude with a pure radial dependence,

Q(2)(δ) = E2
0

w2
0

i

2

πw0√
2

4e−δ2/4δ. (25)

In this case the SHG process gives an annular SH distribution
with a single ring, but changes the state of polarization from
azimuthal to radial [Fig. 2(d)].

B. Laguerre-Gauss modes

Under excitation with a Laguerre-Gauss mode (15) E =
LGl

p ê, the harmonic vector amplitude (6) can be obtained by
evaluating the integral (11),

Q(2)(δ) = ê
E2

0

w2
0

i

2

πw0√
2

(ê · δ) ei2lϕ(−1)l2

×
∫ ∞

0
dx x2l+1e−x2[

Ll
p(x2)

]2
J2l(xδ); (26)
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FIG. 3. (Color online) SH intensity distributions generated by
scattering from a thin composite film for linearly polarized single-
mode LG beams: (a) Eω = LG1

0x̂ and (b) Eω = LG1
1x̂.

this can be done analytically for arbitrary mode numbers l and
p [32]. Here we present expressions corresponding to p = 0
and p = 1. Given that LGl

0(x) = 1, the integral (11) when
p = 0 simplifies to yield

Q(2)(δ) = E2
0

w2
0

i

2

πw0√
2

(−1)l

22l
δ2lei2lϕ e−δ2/4(ê · δ)ê. (27)

When Eω = LGl
1ê, an additional factor appears in the trans-

verse structure of the SH far field,

Q(2)(δ) = E2
0

w2
0

i

2

πw0√
2

(−1)l

22l
δ2lei2lϕ

× 1

2

[
l + 1 − L2l

2 (δ2/2)
]
e−δ2/4(ê · δ)ê. (28)

Figure 3 shows the SH radiation patterns generated by the
linearly polarized doughnut modes (a) E = LG1

0x̂ = HG10x̂ +
iHG01x̂ and (b) E = LG1

1x̂. In contrast, for circular polar-
ization ê = σ̂± = 1√

2
(x̂ ± iŷ), the gradient factor becomes

(ê · K) = 1√
2
(Kx ± iKy) = 1√

2
Ke±iϕ and introduces an addi-

tional phase in the SH field. This means that for a circularly po-
larized input beam with a spiral phase wave front, with orbital
helicity (or topological charge) l and spin helicity σ = ±1, the
SHG via ∇E process generates a circularly polarized vortex
field E2ω with charge l2ω = 2l ± 1 and the same spin. Invoking
conservation of total angular momentum per photon energy,
J2ω = 2Jω = 2(lω + σ ), this mode transformation via SHG
corresponds to J2ω = l2ω + σ with a spin-dependent selection
rule l2ω = 2lω + σ for the OAM doubling. This is in contrast
to the case of linear polarization ê = cos αx̂ + sin αŷ, where
(ê · K) = K cos(ϕ − α), which merely introduces a nodal line
at ϕ = α + π/2, as can be seen in Fig. 3. In particular, the
above rule then implies that an incident simple Gaussian
beam without OAM, LG0

0σ̂±, would produce a SH vortex
with l = ±1, depending on the polarization handedness (spin)
of the fundamental field; the case p = l = 0 and σ = +1 is
shown in Fig. 4. This particular case of mode transformation
(l = 0 → l = 1) was observed in SHG in air and explained in
terms of the inhomogeneous distribution of the electron density
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FIG. 4. (Color online) (a) Intensity pattern of an incident simple
Gaussian field Eω = LG0

0σ̂+, without OAM. (b) The corresponding
scattered SH field is a circularly polarized optical vortex with charge
l = 1.

created by a ponderomotive force associated to a transverse
gradient ∇⊥E2 [33,34].

IV. CONCLUSIONS

We have calculated the vector scattering amplitude of the
far field at the second harmonic generated by a thin composite
film with a nonlinear polarization source of quadrupolar
type (E · ∇)E. The exciting field is a higher-order Gaussian
beam with a transverse spatial structure given by Hermite or
Laguerre modes. For a single-mode incident beam the presence
of ∇E introduces the factor E(E · K) in the Fourier component
that gives the scattering amplitude. This factor is absent in
electric-dipole-allowed SHG and we showed that it can give
additional nodal lines or rings in the SH angular patterns,
changes of the state of polarization, or additional azimuthal
phases in the SH radiated field, depending on the transverse
structure and polarization of the fundamental beam. We show
that, for a linearly polarized HGlmê beam, the quadrupolar
SH scattering gives a SH field which can be written as a
superposition of HG modes of even order, with the overall
gradient factor ê · K. For a two-mode incident beam, the
SH radiated field contains an additional contribution given
by the 2D Fourier transform of mixed terms like Ei∇Ej

in the nonlinear polarization and which is null for modes
with collinear polarization. For radially polarized doughnut
mode, the angular intensity distribution of the scattered
SH field shows two concentric rings with alternate radial
polarization, while for an azimuthally polarized beam it shows
a single annular ring pattern but with radial polarization. These
examples illustrate well the sensitivity of quadrupolar SHG
to the state of polarization of the exciting field, besides the
transverse spatial structure. When a circularly polarized vortex
beam LGl

pσ̂± is used, we find a SH scattered field with an
azimuthal phase structure of the form ei(2l±1)ϕ , evidencing the
generation of a frequency-doubled helical beam with OAM
per photon (2l ± 1)h̄. This suggest a selection rule where
a fundamental field given by an optical vortex with charge
lω and spin helicity σ = ±1 induces a SH vortex field with
charge l2ω = 2lω + σ and the same state of polarization σ .
In the quadrupolar SHG studied here, the nonlinear scattering
of a circularly polarized beam with spiral phase wave front
results in a spin-dependent doubling of the OAM. This is
in contrast to the process l2ω → 2lω, observed in dipolar
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SHG [27,28], and it represents an alternative way to double
the OAM. The distinctive features of the patterns shown
here become characteristic signatures which may be useful
to identify a SHG process of quadrupolar nature or to produce
directional SH emission with a particular state of polarization
in a desired radiation pattern. Creation of vortices by a
quadrupolar nonlinear light scattering could find application

in vortex-control mechanisms. We hope that this work will
stimulate further experiments and theory.
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