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Dynamical tunneling-assisted coupling of high- O deformed microcavities using a free-space beam

Qi-Fan Yang,” Xue-Feng Jiang, Ya-Long Cui, Linbo Shao, and Yun-Feng Xiao!
State Key Lab for Mesoscopic Physics and School of Physics, Peking University, People’s Republic of China
(Received 26 March 2013; published 7 August 2013)

We investigate the efficient free-space excitation of high-Q resonance modes in deformed microcavities
via dynamical tunneling-assisted coupling. A quantum scattering theory is employed to study the free-space
transmission properties, and it is found that the transmission includes the contribution from (1) the off-resonance
background and (2) the on-resonance modulation, corresponding to the absence and presence of high-Q
modes, respectively. The theory predicts asymmetric Fano-like resonances around high-Q modes in background
transmission spectra, which are in good agreement with our recent experimental results. Dynamical tunneling
across Kolmogorov-Arnold-Moser tori, which plays an essential role in the Fano-like resonance, is further
studied. This efficient free-space coupling holds potential advantages to simplify experimental conditions and
excite high-Q modes in higher-index-material microcavities.
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I. INTRODUCTION

Over the last two decades, optical whispering-gallery-
mode (WGM) microresonators (or microcavities) [1] with
high quality factors and small mode volumes have promised
laboratory-on-a-chip applications ranging from fundamental
physics to various photonic devices, such as nonlinear optics
[2-5], cavity quantum electrodynamics [6—8], cavity optome-
chanics [9-11], low-threshold microlasers [12—15], and highly
sensitive optical biosensors [16-20]. In these applications,
traditionally light is coupled into the WGM microcavities
by evanescent couplers, such as prisms [21], tapered fibers
[22,23], and angle-polished fibers [24], which have been
validated to be highly efficient. In all of these coupling
configurations, the microcavities are typically separated from
the couplers by a distance of subwavelength because the
evanescent fields of WGMs extend over a very short range. The
use of the evanescent couplers, however, is not suitable in some
important applications. For example, a higher-index-material
microcavity [4,25] cannot be efficiently excited by the tapered
fiber due to phase mismatching. In addition, the external
couplers degrade high-Q factors (defined as wt, where w
denotes the photon frequency and 7 is its intracavity lifetime)
in the case of the overcoupling regime, and they are not
convenient in low-temperature chambers.

It has been demonstrated that WGMs in a specially designed
deformed cavity can be directly excited by a free-space
optical beam [26,27]. This direct free-space coupling is of
importance because it is robust and requires less rigorous ex-
perimental conditions than the evanescent couplers mentioned
above. This efficient free-space coupling originates from the
breaking of rotational symmetry in deformed microcavities,
which produces a highly directional emission assisted by
the dynamical tunneling, different from the isotropic nature
of a circular WGM cavity [26-29]. According to the time
reversion, i.e., the reversibility of light path, free-space beams
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at certain positions are expected to couple into the high-Q
modes via chaotic modes when they are on-resonance. So
far, this type of free-space coupling technique has been
demonstrated experimentally to reach a resonant efficiency
exceeding 50% [30]. A straightforward method to characterize
free-space coupling is to study its transmission property,
e.g., transmission spectrum. In this paper, we investigate the
dynamical tunneling properties between the chaotic modes and
the regular modes in detail, and predict transmission spectra
of the free-space coupling by employing a quantum scattering
theory. It is found that the spectrum can behave asymmetrically
as a Fano-like line shape [31], in good agreement with our
recent experimental observation [32].

This paper is organized as follows. In Sec. II, we present
the mechanism of dynamical tunneling-assisted coupling and
introduce a quantum scattering theory to predict a general
transmission in free space. It is found that the free-space
transmission spectrum includes the contribution from both the
off-resonance background and the on-resonance modulation.
In Sec. III, we study the off-resonance background transmis-
sion in the absence of the high-Q regular mode, corresponding
to the unperturbed scattering. The off-resonance background
transmission spectrum shows periodic modulations, which is
in good agreement with both the numerical simulation and
experimental results. In Sec. IV, the on-resonance transmission
spectra are studied in detail. It is revealed that they depend
strongly on (i) the additional phase when light travels in
chaos trajectories and (ii) the rate of dynamical tunneling.
Section V rigourously explains the chaotic states and the
coupling strength, with which we deduce the condition of
highest excitation efficiency. Section VI further investigates
the Kolmogorov-Arnold-Moser (KAM) barriers, which are
predominant in the dynamical tunneling process. Section VII
is a short summary of the paper.

II. DYNAMICAL TUNNELING-ASSISTED COUPLING

Without loss of generality, here we consider a two-
dimensional deformed cavity made of silica with refractive
index n = 1.45 as shown in Fig. 1, which has the boundary
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FIG. 1. (Color online) Scanning electron microscope (SEM) view
of a deformed silica microtoroid cavity. Here R and ¢ are the polar
coordinates in the cavity plane. The red arrow denotes the laser beam.
Inset: False color illustration of a resonant mode distribution obtained
with wave simulation. The two black arrows denote the dominantly
directional emission toward the 180° far-field direction. The strength
outside the cavity is magnified for a clear view.

defined in polar coordinates as

@) — {RO (L4 nY_;_p3aicos’ ¢) for cos¢p >0

4 (1)
Ro (14 n);_,3bicos’ ) for cos¢ <0,

where Ry and n represent size and deformation parameters,
respectively. Cavity shape parameters are setasa, = —0.1329,
az = 0.0948, b, = —0.0642, and b3 = —0.0224. Whenn = 1,
a highly directional far-field universal pattern of high-Q modes
has been predicted [33] and demonstrated experimentally [34].
This emission characteristic is clearer by plotting the near-field
pattern, as shown in the inset of Fig. 1. It can be seen that the
two major emission positions are at ¢ = /2 and 37/2, corre-
sponding to refractive escape from counterclockwise (CCW)
and clockwise (CW) modes, respectively. Thus, we expect
that in a time-reversed way, an excitation beam focused on the
primary emission position at ¢ = 7 /2, as shown in Fig. 1, can
eventually excite the CW resonant modes. To quantitatively
study this chaos-assisted process, we use a quantum scattering
theory to model the transmission, from which the coupling
characteristic of the high-Q modes can be obtained.

Before studying the transmission spectrum, we first present
the mechanism of dynamical tunneling-assisted coupling.
The Poincaré surface of section (PSOS) provides a simple
and intuitive way to model the ray dynamics in deformed
microcavities by recording the angular position ¢ and the
incident angle x of the rays, similar to billiards in quantum
chaos. Except for an ellipse-shaped cavity, the deformed
microcavity has a mixed phase space including three types of
structures: KAM tori, islands, and chaos sea, corresponding
to quasiperiodicity, periodicity, and chaos motion of ray
trajectories [35], respectively, as shown in Fig. 2(a). KAM
tori separate the PSOS into disjoint regions. As shown in
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FIG. 2. (Color online) (a) A typical PSOS of the deformed
microcavity. The red solid line denotes the critical line defined as
sin x = 1/n. The orange dotted line stands for a KAM torus. (b),
(c) Normalized Husimi projection of the resonant mode and the
excitation state, respectively.

Fig. 2(b), high-Q modes are usually localized in the regular
regions bounded by a KAM torus [36—38]. For such a localized
high-O mode, the excitation by a free-space beam is primarily
attributed to two channels: (i) angular momentum tunneling
and (ii) dynamical tunneling via chaos [39]. It has been
demonstrated that the dynamical tunneling dominates, since
the lifetime of photons that refract into the deformed cavity
greatly increases along chaotic trajectories [26].

In the system consisting of a microcavity and unbounded
medium outside, the state |v,) which describes the elec-
tromagnetic field excited by the incident beam satisfies the
stationary Schrodinger equation

H Vo) = oY), @)

where H stands for the system Hamiltonian. As mentioned
above, not only chaotic modes but also the regular mode can
be excited by an appropriate free-space beam thanks to the
dynamical tunneling. This can be demonstrated by plotting the
Husimi projection [40] of the excitation state |1/,,), as shown in
Fig. 2(c). Thus |¢,,) can be expanded as a linear combination
of chaotic mode |C,,) and regular mode |[WGM) [41], with the
form

) = au|WGM) + / /b (@) Cor), 3)
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where a,, and b, (") are weight coefficients of these states at
frequency w. Throughout this paper, we use regular mode and
chaotic mode to describe uncoupled states, and dynamical
tunneling is the interaction between an uncoupled regular
mode and uncoupled chaotic modes. The system Hamiltonian
satisfies

(WGM|H|WGM) = wy — iy /2, (4a)
(Co|H|Cy) = w8(0 — w), (4b)
(C,|HIWGM) = V. (4c)

Here wp and w are the frequencies of the resonant regular mode
and the incident light, respectively. The coupling coefficient
between |C,) and |[WGM), governed by the dynamical
tunneling, is described by V,,. The decay rate y consists of
the intrinsic loss and the chaos-assisted tunneling loss. In
detail, the intrinsic decay rate y, is attributed to radiation,
material absorption, and scattering losses in the cavity, while
the chaos-assisted decay rate y; describes tunneling into the
chaotic modes other than |C,). We denote them as |Ci).

In this paper, we consider the chaotic modes as a continuum
and use a standard quantum scattering model to interpret the
transmission line shape. Here we assume that |C,,) and |WGM)
are orthogonal [42]. By substituting Eq. (3) into Eq. (2), the
coefficients a and b are determined by

(wo — iy /2)a, + / do'Vib, (o) = way,, (5a)

Ve + @'by(@) = wby(0'). (5b)

On one hand, applying a standard treatment [31], the
coefficient b yields

by(0) = [ + z,8(w — w/)] Vey s (6)

w—o

where

w—wy+iy/2 — F(w)
[Ve|?

The shift of resonant frequency is expressed as F(w) =

P [k/[27(w — @')]dw’, where P denotes Cauchy’s principal

value. The reduced coupling strength « between |C,) and

IWGM) is obtained through the Fermi golden rule under the
first Markov approximation [43], with

K =27 |V,|%. ®)

)

T =

For the high-Q mode in a slightly deformed cavity whose
intrinsic linewidth y is orders of magnitude smaller than the
resonant frequency wy, the bounds of the integral of F(w) can
be extended to infinity, resulting in

+00 1

F(w) = —P / do
2

/
0o 0w—w

—0. 9)

On the other hand, the normalization condition (., |{,) =
8(w' — w) determines the value of a by

N _ s —w).

a2V P + 120 18(0 — @) +aya,——— =
W —w

(10)
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By integrating this equation over @, we have

ja? = — . ;.
2 (@ = w0 + (37)

Y

In Eq. (11), |a,|? describes the excitation probability by the
free-space beam, from which we can deduce that the FWHM
(full width at half maximum) of the regular mode is expressed
as k + y = y;. It should be noted that y, remains unchanged
when the free-space coupling efficiency changes [27], while
in fiber taper coupling the total decay rate will vary.

Finally, the transmission spectrum is calculated as

T(w) = |{¥|S]in)|?
Ve
= |a, |’ [{(WGM + P/dw/ Cy

w—w

(0 —awy+iy/2)V,
|Vol?

where S is a suitable transmission operator connecting |in)
and |C,), and [(C,|S|in)|*> describes the probability of the
transmitted signal [31]. To get a more general expression,
we introduce a dimensionless frequency detuning defined
by € = (w — wp)/(k/2) and the ratio K = y /k = (y, — k) /k.
Therefore, the transmission is simplified to

C.,|Slin)|?, (12)

_lgo+€—iK|?
(14 KP+e
Here g, represents the crucial line-shape parameter of the
transmission spectrum 7 (), taking the form

(@] Sin)
, = —Leld) 14
1o = ZV+(Co\Slin) (14)

T () [(C,|S]in)|*. (13)

where |¢,) = [WGM) + Pfdw/%. To give a clear un-
derstanding, we consider two extreme cases.

(i) In classical mechanics where dynamical tunneling is
forbidden, the regular mode cannot be excited. Thus there
is no interaction between the regular mode and the chaotic
mode (k — 0), and the coefficients €,K o 1/x as well as
gw o 1//k. In this case, the transmission spectra yields to

To(w) = [(Cy|S|in)], (15)

which can be regarded as the unperturbed scattering. In
Sec. III, we will discuss the unperturbed scattering, which
is of importance for the line-shape near resonance.

(ii) In the ideal condition, the regular mode is excited by a
phase conjugation wave of its emission pattern. If its intrinsic
loss is negligible, which indicates that y <« ¥ and K — 0,
the regular mode is “complete excited” (see Sec. V). In such
condition, the transmission yields a standard Fano resonance,

_1go + €l

T(w) = e [(Co| Slin) [, (16)

III. OFF-RESONANCE TRANSMISSION

We now investigate the background scattering in the
absence of the high-Q regular mode. It has been reported
that nonresonant pumping in a deformed microcavity can
be well modeled by ray dynamics [44,45]. In our case,
the unperturbed transmission is studied in wave optics, and
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FIG. 3. (Color online) (a) The schema of the scattering process
described by Eq. (17). (b) Stimulated transmission spectrum of
the free-space excitation process obtained by the boundary element
method. (c) Experimental spectrum (black) and the fitted oscillations
(red).

it results from the interference between two components,
according to the schema shown in Fig. 3(a): (i) the direct
transmitted amplitude E; and (ii) the contribution from the
dissipated amplitude E¢ via diffusing inside the cavity. To give
a clear picture of the interference, we apply the transmission
matrix, and the amplitudes are indicated by

E t ! Ei,
() =C DG o
E, g t Ey
The intracavity fields E¢ and E are related by

Ey = aE,, (18)

where « is a coefficient including the loss and the phase change
in a round trip. The transition matrix element is then given by

. E, ag'e
ColSlin) = — =1
(ColSlin) = 7 =1+ 17— 7
=t+re’. (19)

Here r and 6 can be understood as the equivalent amplitude
factor and phase difference of the forward-emitted field from
the cavity, respectively. Hence, the unperturbed transmission
takes the form

t

r

2
Ty = [{C,|Slin)|* = rz|:1 + ( ) —|—2E cos9:|. (20)
r
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In a wide frequency width, the phase difference 6 can be
simplified as nkL.g, with L. representing the equivalent
chaotic path length of the light inside the cavity. Thus the
transmission spectrum shows periodic modulations, in good
agreement with the numerically simulated transmission, as
shown in Fig. 3(b). In experiment, we focus the incident
beam on the periphery of a deformed microtoroid with the
principle radius 45 pum and the waist of the beam about
3 um [34]. Figure 3(c) reveals that the experimentally detected
transmission also oscillates periodically. Note that the narrow
fluctuations in the transmission are due to the Fabry-Perot
oscillations between two lenses. From experimental results,
the ratio ¢ /r and L.s can be obtained by fitting the large-scale
transmission, as shown in red in Fig. 3(c). In the situation of
Fig. 3(c), t/r = 0.16 and L is about 262.35 pum, while the
cavity size Ry = 45 um.

IV. ON-RESONANCE TRANSMISSION

We turn to the study of the on-resonance transmission. It is
noted that the direct excitation probability of high-Q regular
modes via an evanescent field is negligible due to angular
momentum mismatch. Thus the amplitude (WGM|S|in) has a
minor contribution to the transmission. In this case, the line-
shape parameter g can be reduced to a simplified form. By
substituting Eq. (19) into Eq. (14), we obtain the expression
of the line-shape parameter,

Pfdw’ﬁVj,(deSHn) iet?

do = . = - = 2D
7 V*{C,|S|in) t/r + et
where 6 = nkL.y, as mentioned above. By substituting
Eq. (21) into Eq. (13), the on-resonance transmission can be
deduced. In the following, we will show that the line shape
of the transmission spectrum is determined by ¢,, which
primarily depends on 6, while the modulation depth relies
on the relative coupling strength described by K.

Figures 4(a)-4(h) plot calculated transmission spectra
against the phase difference 6, which experience sym-
metric Lorentz absorption dips, asymmetric Fano-like
line shapes, and symmetric electromagnetically-induced-
transparency (EIT)-like peaks as 6 varies from O to 2.
From Fig. 3(a), the transmission is a result of interference
between two components: the direct transmitted light and
the emitted light from the cavity, and 6 actually describes the
phase difference between them. Interestingly, the on-resonance
transmission appears as a symmetric dip on the background
where the two components constructively interfere [0 = 0
in Fig. 4(a)], while it switches to an ElT-like peak when
they destructively interfere [0 = in Fig. 4(e)]. This is
because when on-resonance, the chaotic modes refractively
excited by the incident beam can couple to the regular mode
via dynamical tunneling, which results in a phase shift as
energy couples back to the chaotic modes. Hence, although
the background components constructively (destructively)
interfere, such counteraction adds a destructive modulation to
the chaotic modes, reflecting a dip (peak) on the transmission.

In experiment, we have observed such Fano resonance as
predicted in this paper. As shown in Figs. 5(a) and 5(b),
high-QO modes can lead to EIT-like peaks and asymmetric Fano
resonances on the transmission spectra. As discussed above,

023810-4



DYNAMICAL TUNNELING-ASSISTED COUPLING OF ...

Transmitted intensity (arb. units)

01 00 01-01 00 04
Frequency detuning (GHz)

FIG. 4. (Color online) Calculated transmission spectra with
k/2m,y /2w = 0.003 GHz and ¢/r = 0.2. The phase shift between
the two amplitudes varies from O to 7 /4.

the Fano-resonance transmission spectra can be regarded as
the modulation of the high-Q mode on the off-resonance
background. Such modulation depends strongly on the cou-
pling strength « between the chaotic modes and the regular
mode according to Eq. (13). Here we study the two special
cases: EIT-like line shapes and Lorentz dips. As shown in
the solid curve in Fig. 6(a), the modulation of the regular
mode to the transmission spectrum is minor when K = 60.
In this case, the excitation probability is extremely low. As
K decreases (i.e., the dynamical tunneling is enhanced),
the height of the EIT peak increases monotonically, where
the off-resonance backgrounds are lifted to the same level.
When the loss described by yy + y1 is negligible compared
with the coupling strength «, i.e., K — 0, the EIT peak
reaches its maximum. Similarly, Fig. 6(b) shows that the

r(a)

Farfield transmitted intensity (arb. units)

-8 0 8

Frequency detuning (GHz)

FIG. 5. (Color online) Experimental transmission spectra. The
on-resonance line shapes are (a) EIT-like and (b) asymmetric Fano
resonance. Insets: Enlarged views of the on-resonance transmission.
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FIG. 6. (Color online) Calculated transmission spectra with
¥/2m = 0.006 GHz and t/r = 0.2, and with K varying from 0O to
60, for (a) EIT-like line shape and (b) Lorentz-like line shape. The
background is set to the same level for each graph.

dynamical-tunneling-induced dips become more obvious by
enhancing the tunneling, as expected.

V. PHYSICAL MEANING OF THE CHAOTIC MODE AND
“COMPLETE EXCITATION”

At the beginning of Sec. II, we have presented the chaotic
mode |C,). In this section, we will further investigate the
meaning of the chaotic mode and the coupling strength to a
regular mode |WGM). To study this case in a general way,
we expand the chaotic mode as a linear combination of an
orthogonal set at a certain frequency. Using | C,,»)) to represent
the normalized nth orthogonal mode, we have

\/T Za(n) | Cw(n)
Ol(n) n

where o, stands for the corresponding weight. From the
coupled-mode theory, we obtain

£ =) gmkam. (23)

|Co) = (22)

Here &, and &, represent the electric field of |C,,) and
IWGM), respectively, with g, being the coupling strength
between them. Thus, the equivalent coupling strength |V,,|
is derived as

Vol = ———=> o8- (24)
\ Zna(n) n

Then the reduced coupling strength between |C,,) and [WGM)
can be obtained as k = 2m|V,,|?, according to Eq. (8).

Once the high-Q regular mode |WGM) is excited, it can
dynamically tunnel into all of the chaotic modes, including
both |C,,) and |Caf>. Since the chaotic modes are a continuum,
with first Markov approximation, this tunneling can be
considered as a spontaneous decay process of the regular mode,
described by the coefficient

w= [ 8 (25)
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Thus the decay rate into |C}) is

2
yl? — Kk Zn“(zmzné’(zn) — (X, @mem) 26)
27 Yo 27 Znagn) :

Hence, to optimize the free-space coupling efficiency, accord-
ing to Cauchy inequality, the coefficients o, satisfy

4!

@2@2...2@ 27
81) 8(2) 8mn)

Under this condition, it is found that y; = 0. Neglecting the
intrinsic loss )y induced by scattering and material absorption,
we have k = y;, which means the incident light is exactly
a time-reversed way of the emission light from the regular
mode [WGM). It is also in agreement with the second extreme
case discussed in Sec. II, in which the “complete excitation”
condition requires the incident light as the phase conjugation
wave of the emission pattern.

VI. KAM BARRIERS

Finally, we discuss how the KAM tori, behaving as barriers
[46,47], can result in a phase shift in dynamical tunneling.
This phase shift is crucial to give rise to the Fano resonance.
As shown in Fig. 2(a), KAM tori separate the phase space into
disconnected regions, between which transport is forbidden
classically, but permitted in quantum mechanics [48,49],
known as dynamical tunneling. To evaluate the barrier effect,
we study the potential of orbits in the PSOS. For the sake
of analytical expressions but without loss of the physics, we
investigate the orbits in a circular microcavity. The wave
function of a WGM with angular momentum number m in
circular cavities takes the form

U(r,¢) = fm(r)e™?, (28)

where f,(r) satisfies the radial wave equation

2(r) — 110> 2 2
LW—QQ%J3+%}mm=%mm (29)

Based on the stationary Schrodinger equation,

hZ

(——V2 + V) Jm(r) = Efin(r), (30)
2u

and substituted with E = hiw, we deduce the effective potential

corresponding to the angular momentum number 1,

_ﬁpﬂﬂtﬂﬁ+ﬁ}

V= 2 — 3D

2 72

Extending m to the range of positive real numbers, from
the classical relation m = nkr sin x and the nonrelativity
approximation u = hw/2c?, the effective potential of the
orbits takes the form

Veir(sin x) = n*hw sin’ x. (32)

The effective potentials for different materials (silica and
GaAs) are plotted in Fig. 7(a). Thus, a photon at critical
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FIG. 7. (Color online) (a) Effective potential V. against sin x.
The solid and dashed curves correspond to the cases of silica
(n = 1.45) and GaAs (n = 3.3) microcavities, respectively. The red
triangles mark the potential at the critical angle, where the potentials
are both Ziw. (b), (c) Husimi projections of the excitation state inside
the cavity at nonresonant frequency with the deformation parameter n
of the cavity setting as 0.5 and 1.5, respectively. These two figures
are plotted in the same scale. Orange dotted curves and red solid lines
denote KAM tori and critical-refraction lines.

refraction line sin x = 1/n has the same potential as a free-
space photon, in agreement with Fresnel’s law. The difference
in the potentials of various orbits leads to tunneling.

In deformed microcavities, KAM tori are the residue of
these invariant orbits, and they perform as barriers in quantum
mechanics. By plotting the Husimi projection of cavities of
different deformations shown in Figs. 7(b) and 7(c), we can
find that the transportation to high-Q modes is governed by
the KAM tori. Besides, the intensity of the Husimi projection
in Fig. 6(c) is far stronger than that in Fig. 6(b). It reveals that
more light is pumped into the cavity with a larger deformation,
thus leading to a higher probability to couple into regular
high-O modes.

VII. SUMMARY

In conclusion, we have presented the dynamical tunneling-
assisted coupling mechanism to interpret how a free-space
laser beam excites the high-Q modes in deformed microcavi-
ties. The deformed microcavity has a mixed phase space, where
the high-Q regular modes lie in regular regions. The lifetime of
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photons refracting into the cavity increases due to chaotic tra-
jectories, which contributes to the enhanced excitation of regu-
lar modes via chaos-assisted dynamical tunneling. A quantum
scattering theory is employed to describe the picture and to
obtain the free-space transmission spectra. Unlike evanescent
coupling with a waveguide where the transmission spectra
behave symmetrically, this model predicts three types of
transmission, i.e., asymmetric Fano-like, symmetric EIT-like,
and Lorentz dip line shapes, depending on the phase difference
related to the fluctuation of background transmission. It is
found that the Fano resonance is attributed to the phase shift
occurring in the dynamical tunneling into classical-forbidden
regions. Our results provide a general method to evaluate the
coupling strength between the chaos and the regular mode from
the transmission spectra, which can be further extended to the
quantitative study of the dynamical tunneling process. The

PHYSICAL REVIEW A 88, 023810 (2013)

efficient chaos-assisted free-space coupling is of importance
to simplify experimental conditions and excite high-Q modes
in higher-index-material microcavities.
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