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Anomalous dynamic backaction in interferometers

Sergey P. Tarabrin,!>” Henning Kaufer,' Farid Ya. Khalili,> Roman Schnabel,' and Klemens Hammerer'-?
Unstitut fiir Gravitationsphysik, Leibniz Universitit Hannover and Max-Planck-Institut fiir Gravitationsphysik (Albert-Einstein-Institut),
Callinstrafse 38, 30167 Hannover, Germany
2Institut fiir Theoretische Physik, Leibniz Universitit Hannover, Appelstrafie 2, 30167 Hannover, Germany
3Moscow State University, Department of Physics, Moscow 119992, Russia
(Received 7 February 2013; published 6 August 2013)

We analyze the dynamic optomechanical backaction in signal-recycled Michelson and Michelson-Sagnac
interferometers that are operated off the dark port. We show that in this case—and in contrast to the well-studied
canonical form of dynamic backaction on the dark port—optical damping in a Michelson-Sagnac interferometer
acquires a nonzero value on cavity resonance, and additional stability and instability regions on either side
of the resonance, revealing additional regimes of cooling and heating of micromechanical oscillators. In a
free-mass Michelson interferometer for a certain region of parameters we predict a stable single-carrier optical
spring (positive spring and positive damping), which can be utilized for the reduction of quantum noise in

future-generation gravitational-wave detectors.
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I. INTRODUCTION

It is a fundamental result of quantum measurement theory
that in any optomechanical system, where light serves as a
quantum readout agent interacting with a mechanical probe
(test mass) via radiation pressure, the probe is subject to
measurement backaction [1-5]. Already in the simplest setup
comprised of a mirror in “free space” [see Fig. 1(a)], quantum
fluctuations of the electromagnetic field exert backaction noise
on the probe [6] which causes the standard quantum limit
(SQL) of measurement precision [7-9]. This can become
relevant in setups where the optical field is resonantly
enhanced, as in a Fabry-Pérot (FP) cavity [see Fig. 1(d)]. In
this way backaction noise has been observed very recently
both directly [10,11] and indirectly via ponderomotive squeez-
ing [12,13]. In addition, resonant field enhancement causes
dynamic backaction: modulation of the intracavity field by
the motion of the probe produces a ponderomotive force,
which alters the dynamical properties of the probe, as was
first recognized in [14,15]. Dynamic backaction comprises
a shift of the probe’s (i) intrinsic damping rate (optical
damping), and (ii) mechanical frequency (optical spring). Both
effects have been studied and observed in FP cavities (or
equivalent systems) in a regime of dispersive coupling (motion
of the probe modulates the cavity resonance frequency), and
utilized for, respectively, optical backaction cooling [16,17] of
micromechanical oscillators [18-28] and optical trapping of a
gram-scale mirror [29,30].

In this paper we address dynamic backaction in standard
two-path interferometers, such as, e.g., Michelson or Sagnac
interferometers (cf. Fig. 1). High-precision measurements
commonly employ such interferometric topologies because
a path differential measurement in a balanced interferometer
significantly suppresses path common noise, such as laser
noise. The prime example is the Michelson topology of
gravitational-wave detectors (GWDs). State-of-the-art bal-
anced interferometers utilize resonant field enhancement
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techniques, similar to FP cavities [3,31]. For instance, an
additional mirror positioned in the interferometer’s input
and/or output port, referred to as the power-recycling (PR)
and the signal-recycling (SR) mirror, respectively, provides
amplification of the laser power and/or the signal field [32].
Just as in a FP cavity, the resonant field amplification in
recycled interferometers implies dynamic backaction on the
test masses. So far, the associated optomechanical effects
have been considered exclusively in interferometers perfectly
tuned to a dark fringe (vanishing mean power) in the output
port (hence, dark port). The operation on or close to the
dark port is in fact the generic working point as it provides
the most sensitive signal transduction [see Fig. 1(c)], and
on top of this ensures that laser noise is rejected from
the interferometer’s output. On dark port the scaling law
[33] provides a general framework for understanding the
optomechanics of interferometers: it states that the dynamical
and noise properties of any interferometer with high-finesse
signal mode and operated on dark port are equivalent to
the ones derived from the dispersive optomechanics of a FP
cavity with corresponding effective linewidth, detuning, and
circulating optical power. Here we show that the dynamic
backaction in any SR interferometer operated off dark port
exhibits rather surprising, anomalous features as compared to
the canonical one in a FP cavity as derived within the scope of
the scaling law.

We show this for the concrete setups of (i) a Michelson-
Sagnac interferometer (MSI) with a semitransparent mem-
brane [34,35] [see Fig. 1(f)], as relevant to the optomechanical
experiments with micro- and nanomechanical test masses, and
(ii) a free-mass Michelson interferometer (MI), as relevant to
GWDs [see Fig. 1(e)]. We emphasize that our logic applies im-
mediately to other interferometric topologies. In particular, we
found that optical damping in a MSI as a function of detuning
acquires a nonzero value on cavity resonance and additional
cooling and heating regions on either side of the resonance. Ina
MI the optical spring and damping acquire intersecting regions
of positive and negative values. This is of particular interest for
free-mass GWDs as the intricate frequency dependence of the
optical spring has been studied (within the scope of the scaling
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FIG. 1. (Color online) Optomechanical setups. (a) The simplest
setup for measuring the position of the test mass (mirror) via
a reflected laser beam. (b) A Michelson interferometer with end
mirrors performing antisymmetric motion. (c) Field amplitude at
the output port of a Michelson interferometer as a function of
arm-length difference. Points of zero amplitude correspond to dark
fringes in the interference pattern. In a small vicinity near the dark
fringe (marked with thick red) linear signal transduction is possible.
(d) Resonant amplification of the optical field in a Fabry-Pérot cavity.
(e) A signal-recycled Michelson interferometer. (f) A signal-recycled
Michelson-Sagnac interferometer with an oscillating semitransparent
membrane.

law) as a means for increasing the sensitivity via tailoring the
dynamics of the test masses [36—41].

From the viewpoint of cavity optomechanics the anomalous
dynamic backaction can be understood as being caused by
the emergence of dissipative coupling (motion of the test
mass modulates the cavity linewidth) [42—47] and its interplay
with the usual dispersive coupling. Recently some of the
present authors showed that a specially tuned MSI can indeed
exhibit a pure dissipative coupling [46]. Here we show that
the anomalies in dynamic backaction have to be expected
generically for any SR interferometer operated off dark port,
even when no simple description in terms of dispersive and
dissipative coupling is possible.!

II. CANONICAL AND ANOMALOUS
DYNAMIC BACKACTION

We derive the dynamic backaction in a SR MSI (which
covers the MI as a special case) using a transfer matrix
approach to the propagation of fields in the frequency domain
[3]. Details of the calculations are presented in Appendix A.
First we characterize the nonrecycled MSI as an effective
mirror whose reflectance p and transmittance 7 depend on
the position of the membrane x = §1/2, with 8/ being the
imbalance of the interferometer arms [46]:

p = R (Tgse™ — Ryge ") — 2T, Rys Ts,
T = RnRpsTgs (¢™ + e ) + T,,(Tgs — Rys)-

The notions of dispersive and dissipative coupling, defined for in-
stance in [42], being unambiguous for a single-mode optomechanical
cavity, can become ambiguous for a multimode system. In particular,
in a two-arm interferometer, which is a two-mode system, the type
of coupling of the normal mode(s) to the test masses can be different
from that of the partial mode(s).
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Here kg = wo/c = 27 /Xy is the laser carrier wave number,
Rgs > 0 and Tgs > 0 are the amplitude reflectivity and
transmissivity of the beam splitter, and R;;, > Oand 7;,, > 0 are
the amplitude reflectivity and transmissivity of the membrane.
The reflectance p describes reflection of the input vacuum
field from the detector port, while —p* describes reflection
of the input laser field. The dark port condition for the
interferometer is achieved when T = 0, which is satisfied for
dlpp = nip/4 and odd n in the case of a balanced beam splitter,
Rps = Tgs = 1/+/2.

Insertion of the SR mirror (SRM) of amplitude reflectivity
Rsr > 0 and transmissivity Tsg > 0 effectively transforms an
interferometer into a FP cavity whose second mirror is defined
by the MSI. The inverse resonance factor of this effective
cavity,

D=1-— RSR|p|eZik0£+iargp -1= RSR|,0|€2iA£/C,

where £ = L + [ + Igg is the effective cavity length [the total
length between the SRM and the membrane; see Fig. 1(f)],
describes modulation of the cavity resonance frequency and
linewidth by the motion of the membrane, featuring dispersive
and dissipative couplings respectively [46]. In particular, the
total detuning A of the laser carrier frequency wy from the

cavity resonance reads

C
37 8¢,
8¢ = arg p — arg ppp.

A= 8SR + Om, 6SR = Wy — Wcay, Om =

€ N_S
Weay = TN — —;
o 2L
Here N is a fixed integer, ppp = p(8lpp), dsr is the detuning
from the cavity resonance wg,y at the dark port, defined by
the position of the SRM, and &, is the detuning due to offset
from the dark port, defined by the position of the membrane,
and hence describing the dispersive coupling in the effective
cavity. Similarly, the total half-linewidth y of the latter in the
narrowband approximation (Tsg < 1, 7 K 1),

arg ppp,

1 — Rsr|p| cTS2R ct?
= — = + ms = N m = -,
2L)c VSR T V) VSR il Y 4L

accounts for the finite transmittances of the SRM via
ysr, and of the MSI operated off dark port via yy,, the
latter thus describing dissipative coupling in the effective
cavity.

We then compute the fields incident on the membrane
and derive the corresponding radiation pressure force, which
consists of (i) the radiation pressure noise, which is a stochastic
backaction due to vacuum fluctuations entering from the laser
and detector ports, and (ii) the ponderomotive force due to
motion of the membrane x(€2). The unsymmetrized spectral
density of backaction noise exhibits a mixture of Lorentz-
and Fano-like resonances, the latter owing to the interference
between input and intracavity laser fields (see Refs. [42,46]
and Appendix B). The ponderomotive force F,(2) =
—K(2)x(R2), calculated in Appendix C, creates a dynamic
backaction K(S2), comprised of the optical spring K(2) =
Re[/C(2)] and optical damping I'(R2) = —%Im[IC(Q)]/Q,
such that the corresponding shifts of the square of the
mechanical frequency and mechanical damping rate are
K/m and I'/m, with m being the membrane’s (effective)
mass.
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FIG. 2. (Color online) (a) Canonical K and I' defined in Eq. (1)
for &€ =0, normalized to their respective maximum values, for
Q < y. (b) Same for 2 > y. (c) and (d) respectively show the
optical damping and spring in the signal-recycled MSI detuned
from the dark port at §lpp = 34¢/4 by & =~ 0.01A¢, with P, = 200
mW, Ao = 1064 nm, £ = 8.7 cm, R% = 0.17, T =3 x 107*, and
y ~ Q =2 x 133 kHz.

We present the formula for K(€2), which is rather com-
plicated in the general case, using the following simplifying
assumptions: (i) a balanced beam splitter, (ii) a single optical
mode with narrow linewidth y < ¢/L, and (iii) small displace-
ments of the membrane from the position corresponding to the
dark fringe, (x) = £/2 < Ao, with & = 8/ — §lpp. Under these
conditions, ¥, = cern(koS)z/4£, 8m = FcRmTn(ko&)? /4L
and the dynamic backaction reads

4600R§1P1n 1
cl A2+ (y —iQ)?
y { Ssrly? + A2 — 4(y Y + Adm)]
V2 + A2
+ 2i (YsrOm + YmOsr)L + 827 }
yz + A2 ?

K@) =

6]

where Pj, is the input laser power. For £ = 0 (on the dark
port) Eq. (1) reduces to the canonical spring and damping
of a simple FP cavity with pure dispersive coupling [33,37].
These canonical K and I" possess the following characteristic
features: (i) Both are antisymmetric with respect to A and
vanish at A =0, (ii) [ as a function of A crosses zero only
once, being positive for A < 0 and negative for A > 0—these
regions are usually labeled as stable (cooling) and unstable
(heating), and (iii)) K as a function of A crosses zero once
if y > Q (the case of free-mass GWD interferometers) and
(iv) three times otherwise (the case of micromechanical

2The sign of 8, alternates in the sequence of dark ports, starting with
+ for n = 1. Note that shifts in both linewidth (y,,) and detuning (6,)
due to offset from the dark fringe are quadratic in displacement.
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oscillators in the resolved sideband limit). These properties
are illustrated in Figs. 2(a) and 2(b).

Off the dark port for £ # 0, features (i)—(iii) are lost. In this
sense we refer to the dynamic backaction in a MSI operated
off the dark fringe as anomalous. In particular, both K and
I' become highly asymmetric and acquire nonzero values
at A =0 [see Figs. 2(c) and 2(d)], such that for a certain
region of parameters I'|p—g > O—this is cooling on cavity
resonance. Also optical damping can cross zero several times,
acquiring additional regions of stability and instability [see
the inset in Fig. 2(c)], thus allowing other regimes of cooling
and heating respectively. Nonzero K at A =0 implies a
shift of the mechanical frequency on resonance, although for
micromechanical oscillators it is mostly negligible compared
to their intrinsic mechanical frequencies. The influence of the
optical losses can be estimated by the corresponding increase
of TszR.

We note that at fixed mechanical frequency wy, the optical
damping is proportional to the antisymmetric part of the
unsymmetrized spectral density Sy of backaction noise, I' ~
Sr(wm) — Sp(—wn) (see [2]). Since in cavity optomechanics
the transformation of the Lorentzian profile of Sy into the
mixture of Lorentz and Fano types is governed by the interplay
between dispersive and dissipative couplings [42,46,47], one
can argue that the same mechanism leads to the transformation
of canonical dynamic backaction into the anomalous kind.
Dynamic backaction corresponding to pure dissipative cou-
pling in a single-mode cavity optomechanics was considered
in [47], where it was shown that although both the optical
spring and damping remain antisymmetric with respect to A
(and vanish at A = 0), damping acquires additional regions
of stability and instability on either side of the cavity
resonance.

The extreme case of a 100% reflective membrane in a MSI
corresponds to a pure M1, i.e., reproduces the basic topology
of GWDs. The coordinate x of the mechanical degree of
freedom refers then to the differential motion of the end
mirrors in the arms of the MI [see Fig. 1(e)]. For a GWD,
being a free-mass interferometer, the effect of the optical
spring is not negligible, since it transforms (almost) free test
masses into mechanical oscillators with resonance frequencies
lying in the GW observation band, where typically Q < y.
Thus, if a detuned interferometer is operated at dark fringe,
Eq. (1) for £ =0 implies either K >0, I' < 0 for A > 0,
or K <0, ' >0 for A <0. This means that for a single
laser drive a set of canonical K and I' is unstable in both
cases.

However, a M1 also exhibits anomalous dynamic backaction
if operated off the dark port, violating features (ii) and (iii)
of the canonical form: in the limit of a quasifree mass,
€ — 0, which is of particular interest for GWDs, Eq. (1)
reduces to

K 4(1)0Pin A 4)/Vm (2 )
= — 5 a
cL Y24+ A2 Y2+ A2
4o Pi A 32 — A2
r—_ @ ¥ VT2 (b
cL  (y2+ A% y y2+A2

Both K and I' vanish on resonance, and one can check
using Eq. (1) that this feature holds for any €. The
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FIG. 3. (Color online) Anomalous K and I' in a Michelson
interferometer, defined by Eqgs. (2a) and (2b), and normalized to
their respective maximum values. (a) K acquires three zeros starting
from y,, = y /4, or equivalently, 1, = ysg/3. (b) I' acquires three
zeros starting from yy, = ¥ /3 0r Y = Ysr/2.(C) Ym = Ty /3 01 Yy =
3ysr/4 and (d) ym = y/2 or y, = ysg demonstrate the existence
of stable optical spring (K > 0 and I" > 0) in a certain range of
detunings for larger offsets from the dark fringe.

terms in square brackets in Eqs. (2a) and (2b) represent
the deviations from canonical formulas. According to these
terms, the optical spring can have three zeros at A =0
and A = £/y(@4ym — v), if ym > y /4. Similarly, the optical
damping can also cross zero three times at A =0 and
A =2xy/Byn—¥)/¥ + Yw), if ym > ¥ /3. This sequence
of transformations of the canonical K and I', shown in
Fig. 2(a), into the anomalous ones for increasing values
of ym is illustrated in Fig. 3. Since the second-generation
GWDs will be utilizing the single-photodiode homodyne
readout (dc readout), when the offset from the dark port is
created on purpose to transmit a small portion of the mean
power to the detection port, the anomalous optical spring and
damping may have an impact on the control of detectors
in the detuned regime (A # 0). Additionally, in realistic
dual-recycled interferometers (SR and PR) the anomalous
optical spring should be expected at even smaller &, since

anomalies rise at ko ~ v/ T Ty » where T stands for the

power reflectivity of the PR mirror, compared to koé ~ «/ TSZR
for pure SR topologies.

Figures 3(c) and 3(d) show that for a large enough offset
from the dark fringe several intersecting regions of positive
and negative K and I' appear, such that for a certain range
of negative detunings both K and I' are positive, indicating
a possible stable state. An accurate analysis of the stability
in terms of Routh-Hurwitz criteria indeed reveals that there
exists a region of parameters where the set of K and I" makes
a stable optical spring which can be utilized for the increase
of the quantum-noise-limited sensitivity of GWD topolo-
gies, such as traditional detuned-SR topology and promis-
ing intracavity topologies of optical bars [48] and optical
levers [48,49].
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III. CONCLUSIONS

We have shown that the dynamic backaction in interferom-
eters operated off the dark port exhibits anomalous features
as compared to the canonical type in dark-port-operated
interferometers, and should be expected as a generic feature in
optomechanical systems which exhibit a mixture of dispersive
and dissipative couplings. In particular, in a SR MSI with a
translucent micromechanical membrane, cooling and heating
of the latter become possible on resonance. Additionally, as
a generic feature of dissipatively coupled systems, cooling
of the membrane to near the quantum ground state outside
the resolved sideband regime can be in principle achieved.
We have demonstrated that the scaling law—which is the
cornerstone of characterization of the optomechanics of GWD
topologies—is invalidated for interferometers operated off the
dark port. In particular, for a large enough offset from the dark
port in a M1, a stable optical spring, used for the reduction of
quantum noise, becomes possible with a single laser carrier.
The latter condition is important, because the canonical optical
spring (on the dark port) can be stabilized only with either
additional feedback and control loops or a second laser carrier
[50-52], which is undesirable in experiments. Thus, the offset
from the dark fringe makes a useful additional degree of
freedom in shaping of the optical spring, and, in principle,
may help in converting the latter into the so-called optical
inertia [53] which allows broadband reduction of quantum
noise. However, since a large offset from the dark fringe
will couple mean power and technical laser noise into the
detector port, certain changes in the GWD topology will
be required to make use of the stable single-carrier optical
spring, such as, e.g., switching to intrcavity topologies [48,49].
The anomalous aspects of backaction introduced in this
paper, which will be important to estimate the consequences
for next-generation GWDs, can be examined and studied
on the basis of a micromechanical system. Therefore, our
findings represent an example of the fruitful interplay be-
tween cavity optomechanics of micromechanical oscillators
and the optomechanics of ‘“macromechanical” oscillators
as relevant to the high-precision interferometers employed
for GWDs.
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APPENDIX A: PROPAGATION OF FIELDS

Consider a Michelson-Sagnac interferometer (MSI) as
shown in Fig. 4 with a central beam splitter BS having
amplitude reflectivity Rgs = /(1 — dps)/2 and transmissivity
Tgs = /(1 + 8gs)/2, where 0 < égs < 1, two steering mir-
rors M; and M, both having 100% reflectivity, a semitrans-
parent membrane m with amplitude reflectivity R, > 0 and
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FIG. 4. (Color online) Fields in a Michelson-Sagnac interferometer.

transmissivity Ty, > 0, and a signal-recycling mirror SR with
amplitude reflectivity Rsg > O and transmissivity Tsg > 0.
The interferometer is driven by a laser L through laser port.
Photons emanating through the other, detector port impinge
on a detector D (homodyne or heterodyne). We denote the
distance between the SR mirror and BS as Isg, arm length
as L, and the distances between the folding mirrors M;
and M, and membrane as [y =/ —§l/2 and I, =1+ 61/2,
respectively. This means that/, + I, = 2/,1, — [, = 8/ and the
mean position of the membrane on the x axis is (x) = §[/2.
The total length of the SR-m pathis £ = L + [ + Isg.

In any spatial location inside the interferometer we de-
compose the electric field of the coherent, plane, and linearly
polarized electromagnetic wave into the sum of a steady-state
(mean) field with amplitude A and carrier frequency w, (wave
number k) = wy/c and wavelength Ay = 27/ ko), and slowly
varying (on the scale of 1/wy) perturbation field with amplitude
a(t) describing vacuum noises and the contribution from the
motion of the membrane,

2h ‘ .
Alt) =,/ ’;“’0 [Age™ '™ + a(t)e™'] + H.c.,
C

+00
a(t) = / a(wy + Qe ity
oo 2
Here A is the area of the laser beam’s cross section and c is
the speed of light. Unless mentioned explicitly, we will deal
with fields in the frequency domain only and omit frequency
arguments for brevity.

The laser L emits a drive wave Ay, with mean amplitude Aj
and optical fluctuations a; . For simplicity we assume that there
are no technical fluctuations so that the laser is shot-noise
limited, [ap(wy + Q),az(wo + QN =278(2—Q'). The
vacuum field Ap entering through the SR mirror from
the detector port has zero mean amplitude but nonzero
vacuum noise ap, uncorrelated with vacuum noise from
the laser port and obeying the similar commutation relation

lap(wo + R),ap(wo + )] = 278(Q — ). We unite these
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into vector columns of input fields A;, = (A, Ap), so that the
vector of mean input fields is Aj,0 = (Arp,0) and the vector
of perturbation fields is @, = (aL,ap). Due to the linearity
of the system input fields can be propagated throughout the
interferometer as independent Fourier components.

Consider first the case without SRM and with a fixed
membrane. The latter condition allows us to treat mean
and perturbation fields on equal footing. Input fields
(in this case coinciding with the fields incident on the
beam splitter) linearly transform into the output fields:
Aout = MgsPLP[MmP[PLMgsAm = MMSAin- Here

T; —R —Rn Tn
MBs=(RBS TBS), Mm=( o ) (A1)
BS BS m m

are the transformation matrices of beam splitter and mem-
brane, both chosen in real form (this is always possible due to
the Stokes relations), and

eikL 0 eikll 0
PL:( 0 eikL)’ Pl:( 0 eiklz)

are the propagation matrices comprised of the phase shifts
along the horizontal and vertical arms (of length L) and
diagonal half arms (of lengths /; ;). For mean fields one
should apply the substitution kK = kg and for perturbation fields
k = ko + K = ko + 2/c. The matrix Ml thus represents the
transformation matrix of a nonrecycled MSI,

My = eZik(LH)('O] T )
T M

with
o) = Rm(R%SeikSl _ TBzSe—ikaz) 42T, Rps Tis.
p2 = Ru(Tise™ — Ryge ™) — 2Ty Rps T,
T = RnRpsTas(e™ + e + T, (Tys — Rys)-

In Sec. IT we denoted p = p,. Physically p; is the reflectivity
of the input laser field back into the laser port, p = —p7 is
the reflectivity of the input vacuum field back into the detector
port, and 7 is the transmissivity of the laser field into the
detector port and the vacuum field into the laser port. One
can check that the matrix My is unitary; thus a nonrecycled
MSI can be described as an effective mirror with reflectivity
and transmissivity depending on the membrane position via
41, as stated in Sec. II and discussed already in [46]. The dark
port (dark fringe) condition for the interferometer is achieved
when the cross transmittance between input and output ports
vanishes (in particular, no mean power leaks into the detector
port), corresponding to T = 0, or explicitly

T, 8
coskodl = ——=2 BS

Ro [1-

In the case of a symmetric beam splitter (6gs = 0) this is
satisfied for 8/ = nio/4 and odd n.?

(A2)

3For other choices of transfer matrices (A1) the dark port condition
will correspond to a different &/ but this is insignificant, since the
absolute phase does not matter.
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If the SRM is inserted then the outgoing field in the SR port
is reflected back, such that the ingoing fields incident on the
beam splitter are defined by the equation

Aps = PrTrAi{n + PrRRRPrMysAgs. (A3)

Here Ags = (Apsi,Ags2) is the vector column of ingoing
beam splitter fields (see Fig. 4), Rg = diag(0, Rsr) with zero
standing for the absence of the power-recycling mirror in the
laser port, Pg = diag(1,e’*s)) is the propagation matrix in the
BS-SR path, and Tr = diag(1l,Tsg). Thus the first summand
on the right-hand side of Eq. (A3) stands for the input fields
directly incident on the beam splitter, while the second
summand corresponds to a single round trip along the interfer-
ometer with reflection from the SRM. Solution of this equation
yields

Aps = (I — PrRRRPrMys) ™' Pr TrAjn, (A4)

where [ is the 2 x 2 unity matrix. We denote the inverse
matrix in this solution as Kysg,

1 D 0 ‘
Kmsr = E(RSRtez”“ 1), D =1 — Rsgpae”**~.
This tells us that the MSI with a SRM makes an effective
Fabry-Pérot cavity with associated resonance factor 1/D,
as stated in Sec. II. The matrix element Kﬁszli describes
a resonant amplification of the input vacuum field inside
the cavity, while Kﬁ’sll% corresponds to the laser field
being partially transmitted into the SR port (hence the
proportionality to t) and also enhanced inside the cavity. In
the ideal dark-port regime cross transmittance is suppressed,
all the laser field is reflected back into the laser port, and only
the vacuum field from the detector port resonates inside the
cavity.

Note that the effective detuning of the laser carrier from
cavity resonance(s) is not solely defined by the corresponding
shift in frequency (or cavity length), in contrast to the
ordinary Fabry-Pérot cavity. Assume that arg p, = ¢pp + 3¢,
where ¢pp = arg p2|gark porr and 8¢ is the deviation from
it due to offset from the dark fringe via membrane posi-
tioning, and 2kL + ¢pp = 2 N + 28; L, N is integer, and
8L <« 1. Then one can rewrite the inverse resonance
factor as

D=1- RSR|p2|gZik£+z’argpz =1- RSR|p2|82iAL/C,

such that the full detuning

c
A=35+ 7 8¢

is the sum of the “conventional” detuning § = c§; of the carrier

frequency from the cavity resonance at the dark port, and an

additional detuning c8¢ /(2L) corresponding to the offset from

the latter.

The narrowband limit is achieved when both the SRM and
compound “interferometer” mirror possess high reflectivity,
1 — Rp ® T&/2 < 1 and 1 — |py| ~ 12/2 < 1. The half-
linewidth of the cavity is then

_ 1= Rslp| T o7

2L)c ac ac

PHYSICAL REVIEW A 88, 023809 (2013)

Therefore, the total cavity linewidth accounts for finite SRM
transmittance and finite transmittance of the interferometer
operated off the dark port; since T = t(§l), the latter contri-
bution describes modulation of the linewidth by the motion
of the membrane, thus implementing dissipative coupling in
the effective cavity, as stated in Sec. II and discussed already
in [46].

APPENDIX B: STOCHASTIC BACKACTION

In order to determine the radiation pressure force acting
on the membrane we need to determine the fields on the
membrane surfaces. Ingoing fields on the beam splitter (A4)
propagate along the arms and transform into the fields
incident on the membrane (An1,Am) = An = PP, MigsAgs
and reflected from it (B1,Bm2) = Bm = MpAn, (see Fig. 4).
In terms of the input fields

Am = MyAiy; My = PP MpsKmsr Pr TR, (Bla)
B, = MpAjy; Mp = My PP MpsKysrPrTr.  (B1b)
The components of the matrix M 4 are
MS,I) = D [Ts(1 — Ry Rgge K E+01/2)y
+ Rps Ty Ry e E1eikLH=81/2).
MS,Z) — — D' Tgg Rpge ML/,
Mf’l) = D [Rps(1 + Ry Rspe®HE—01/2)y
+ Tys Ty Rsg XKL 1R LH+81/2),
Mfi) — D_ITSR TBSeik(L‘+Bl/2)’
and of the matrix Ml
M(Bl,l) — D[~ Tys(Ry — Rgge2FE+01/2)y
+ T, Rpge' ¥l FL+=31/2)
M(Bl,Z) — D' Ty (Rps Ry + Ty Tage'X)eiHE-31/2),
M(g,l) — D '[Rys(Ryy + Rsge2kE-01/2)
+ T, Tage K0!k L+1+81/2)

M(gvz) — IDilTSR(TBSRm _ TmRBsefikal)E[karél/z).

We denote these transfer matrices separately for the mean fields
as My, = My |x=k,» M, = Mp|i=k, and for the perturbation
fields as M (2) = Mg =k, + &> Mp(2) = Mp|r=tork-

The radiation pressure force exerted on the membrane is
then given by

A
F() = = — (A5 (0) + By () — A5(t) = Bro(®), (B2)
where averaging is performed over the period of electromag-
netic oscillations. Ignoring the dc contribution and linearizing
with respect to perturbation terms, the spectrum of the force
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reads
Fpa(R) = 2fiko RinA$ M3 My (Q)ain (w0 + Q)

+ 2nko RmA T M% M (—Q)a], (wo — ).

1

This is the radiation pressure noise, also addressed as
backaction noise or stochastic back-action, i.e., the time-
varying radiation pressure that is solely caused by the
fluctuations of optical fields. The unsymmetrized spectral
density of stationary backaction noise is compqted from
the equation 278(2 — Q)SF(Q') = (0] Fpa(2) Fy, (2)]0),
yielding

471](0 Ré‘ Py,
¢ DD@P
L(Q) = (1 + R§Re2”(£) + oy RggelitkotKOL

Sp(2) = {ILQ + TR D@1}, (B3)

—2iko L
—i—a;RSRe ok

D(Q) = Bi + PaRsre E,
@y = Ty RpsTas(e™ + e ™) — Ry (T3 — Rs),
= TBZSeikél + R]%Se—ikﬁl’
Br = T (Te™ — R3ge ) 4 2Ry Rys Tis,
/32 — RBSTBS(eik(Sl o e*ikﬁl).

Here P, = ha)0|AL0|2 is the input laser power, Dy = D=y, is
the resonant multiplier for mean fields, and D(2) = D|g=k,+k
is the resonant multiplier for perturbation fields.

The factors £ and © in Eq. (B3) describe contributions of
vacuum noises from the laser (ap) and detector ports (ap),
respectively. The former defines the Fano-line profile in the
shape of S due to interference of input and intracavity laser
fields on the membrane, and is identified with the emergence of
dissipative coupling in cavity optomechanics [42,46,47]. The
latter, vanishing for the 100% reflective SRM [46], describes
a Lorentzian profile of the intracavity vacuum field from
the detector port, and is identified with dispersive coupling
in cavity optomechanics. Therefore, the spectral density of
backaction noise in the general case is the mixture of Fano
and Lorentz resonances, as mentioned in Sec. II. Plots of

4
®

o
o

SF(Q)/SF mazx

0.2

0 0

Q/ Q/y

FIG. 5. (Color online) Normalized (nonsymmetrized) spectral
densities of backaction noise for different membrane positions
& =61 — S5lpp where élpp is defined by Eq. (A2). For better visu-
alization we choose membrane power reflectivity R% = 0.3, beam
splitter asymmetry dgs = —0.3, and detuning A = 0. (a) R%; = 1.
(b) R% =0.7.
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normalized Sp(€2) are presented in Figs. 5(a) and 5(b) for
Tsr = 0 and Tsgr # 0, respectively.

APPENDIX C: DYNAMIC BACKACTION

Consider now a movable membrane with position operator
xm(t) with a corresponding Fourier-transformed operator
xm(€2). According to perturbation theory the fields on
the membrane surfaces will have contributions of zeroth
and first order in the mechanical displacement. One finds
B0 = M,Ano and b, = May, + 2ikgxm RmAmo. Thus the
perturbation fields now contain both optical noises and the
displacement of the membrane. Since the treatment of mean
fields remains unchanged, we consider only the perturbation
terms. The ingoing fields on the beam splitter are defined
by the -equation ags= PrTrai, + PrRRrRPrMuysass +
PRRRPRMES Py P 2i koxm(2) RnAmo, with the solution ags =
KnmsrPr TR@in + 2ikoxmKnsr PRRRPRM P Py RinAmo.
Thus the incident and reflected fields on the membrane
surfaces are

ayn = May, + 2ikoxmMaxAmo,
by = Mypain + 2ikoxm(Rml + MMy )Amo.

(Cla)
(Clb)
The components of the matrix

M,y = PP, MpsKmsr PRRRPRMEPL Py Ry,
are

M) = IDflRmR]ZBSRSReZik(ﬁfBl/D’

M2? = D1 R, T2 Rege?HE+1/),

M? = MG = =D Ry Rps Tas Rspe™*~.

Substituting the mean fields from Eqs. (Bla) and (Blb)
and the perturbation fields (Cla) and (C1b) into Eq. (B2),
ignoring the dc part and linearizing with respect to perturbation
terms, one ends up with F(2) = Fpa(2) + F(2). Here Fpa
is the radiation pressure noise considered in Appendix B,
and F, () = —K(Q)xn(€2) is the ponderomotive force, i.e.,
the dynamical part of the radiation pressure force caused by
the motion of the membrane. The coefficient XC(€2) modifies
the dynamics of the membrane, and therefore represents the
dynamic backaction,

2ik
K(Q) = == R PulK () = Kjj (-],

K(R2) = M3} [03 — 2M ()] M,

with o3 = diag(1,—1). If one denotes K (£2) = Re[/(£2)] and
Q)= —% Im[/C(2)]/ 2, then the corresponding shifts of
the square of intrinsic mechanical frequency and damping
rate are equal to K /m and I'/m.* After applying simplifying
conditions described in Sec. II, one ends up with Eq. (1) for I
presented there.

4 Assuming that the equation of motion of the membrane is of the
following form: X + 2y + w?x = F(t)/m.
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