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Whispering gallery modes in hexagonal microcavities
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We investigated the whispering gallery modes (WGMs) of cavities with a hexagonal cross section. We found
two different modes, namely, perturbed and quasi-WGMs, of which the former exhibits a Q of greater than 107

when the corner radii are large and 1.8 × 104 when the corners are sharp. We studied the dependence of Q on
the curvature radius of the polygonal cavities and found that the coupling between the two modes determines the
Q of the cavity.
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I. INTRODUCTION

Optical microcavities such as photonic crystal nanocavities
[1,2], microring resonators [3], toroidal microcavities [4],
and crystalline whispering gallery mode (WGM) cavities [5]
are attractive platforms for studying the optical linear and
nonlinear properties of light [6,7]. These cavities have been
employed in various studies, including work on slow light
generation [1,8,9], an ultranarrow-linewidth laser [10], an
optoelectronic oscillator [11,12], nonlinear switching [3,13],
frequency-comb generation [6,14], optomechanics [15], fre-
quency conversion [16,17], and nanoparticle sensing [18,19].
WGM cavities, which use internal reflection for light confine-
ment, are particularly attractive because they can provide a
very high quality factor Q. Recent progress on the Q factor
in such cavities has been noteworthy. In particular, cavities
made of SiO2 such as toroidal [20] and bottle [21] cavities
exhibit a very high Q exceeding 109 because SiO2 is a low-loss
material and the laser reflow process is well established.
On the other hand, WGM cavities made of crystal materials
also exhibit an ultrahigh Q, because their absorption loss is
even lower than that of SiO2 [10]. Indeed, Savchenkov et al.
achieved a Q over 2 × 1010 with a WGM cavity made by
CaF2. Crystalline materials are also attractive because they
have various unique properties. The large χ (2) nonlinearity
is essential for making building blocks for optoelectronic
modulators [11]. It is transparent at infrared wavelengths,
which is an interesting regime for gas sensing [22]. It also has a
large Young’s modulus, which is attractive for optomechanics
research [23]. With the development of ultraprecise machining,
the properties of microresonators made of crystal materials
have improved, and they are now good candidates, especially
as a platform on which to study nonlinear optics.

However, a high-Q crystalline WGM cavity is still difficult
to fabricate because the material is hard and frangible. In
particular, the fabrication of a small cavity remains a challenge.
Previously, we reported on the fabrication of sapphire (Al2O3)
WGM cavities by employing a modified laser-heated pedestal
growth (LHPG) method to overcome this problem [24]. The
LHPG method was originally developed for manufacturing
fiber lasers [25,26]. It has been applied to various materials
such as Al2O3, LiNbO3, and YAG [27]. In contrast to earlier
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work, in which researchers tried to fabricate crystal rods
with a thinner and uniform radius, we used this method to
fabricate a rod with a locally modulated radius to enable light
confinement in the longitudinal direction and excite the WGM.
Changing the growth rate enabled us to fabricate a swollen
region, in which we obtained a WGM with a Q of 1.6 × 104.
In our previous work, we demonstrated the fabrication of
sapphire WGM cavities that have a hexagonal cross section
but with round edges [24]. The experiment showed that the
controllability of the cross section (the sharpness of the edges)
is the key to controlling the Q factor of such a cavity. Although
this result appears to be straightforward, we need to understand
the physics in order to quantitatively design the required
structure for having high Q.

In this paper, we analyze in detail various WG-like modes
excited in hexagonal cavities with different corner curvatures.
In particular, we study a quasi-WGM and a perturbed WGM.
By understanding the property of the perturbed-WGM and
investigating the coupling between these two modes, we reveal
the limit of the Q of the quasi-WGM and study a possible way
of improving the value.

The polygonal cavity analysis described in this paper is
useful for cavities fabricated with LHPG [24]; moreover it pro-
vides information needed to understand the optical properties
of a polygonal microlasers made by various materials such as
ZnO and InGaAs [28,29]. It is known that these microcavities
have a polygonal cross section as a result of their crystal
structure, and various experimental and numerical studies have
been conducted to understand the mode property of such
cavities. Crystals were grown experimentally with different
deposition temperatures. Dietrich et al. tried to improve the
Q value by rounding the corners of polygons [30]. However,
the reported Q of these microresonators remains on the order
of several thousand, even though the excited modes, which
they call a “quasi-WGM,” seem to satisfy the total internal
reflection in a ray-optics framework [31]. Since we have the
same problem in our sapphire hexagonal cavity, the purpose of
the first half of this paper is to provide a clear understanding
of the limiting Q of this mode in a polygonal cavity.

This paper is organized as follows. In Sec. II we introduce
the structure of the cavity we fabricated for investigation.
We investigate the properties of the perturbed WGM and
quasi-WGM, paying particular attention to the influence of the
coupling between these two modes. In Sec. III we describe the
relationship between Q and the corner radius of the hexagonal
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FIG. 1. (Color online) (a) Side view of the fabricated sapphire
WGM microcavity. (b) TM-mode profile calculated with the finite-
element method (COMSOL MULTIPHYSICS 4.3). (c) Cross section of the
fabricated sapphire WGM microcavity.

shape. Then in Sec. IV we explain the optimal radius in order
to obtain higher Q. We conclude the paper in Sec. V.

II. ANALYSIS OF THE HEXAGONAL CAVITY

A. Shape of the microcavity fabricated by LHPG

Before analyzing a hexagonal cavity with round corners,
we show side and cross-sectional views of our hexagonal
sapphire cavity fabricated by LHPG in Fig. 1. We describe the
fabrication and optical measurement of this cavity in detail in
the Appendix. As shown in Fig. 1(a) the radius of the grown rod
is locally modulated. The light is confined in an area where the
circumference is the largest, as shown in Fig. 1(b). The typical
mode volume is 8.9 × 103 μm3. Figure 1(c) shows an optical
microscope image of the cross section of this cavity. The shape
is hexagonal as a result of the crystal structure of the sapphire.
However, the corners of the cavity are not sharp but round,
and their curvature radius can be controlled by changing the
growth condition. This cavity is of interest in mode analysis.

B. Definition of modes

Figure 2 shows the ray-optics description of the possible
modes in a hexagonal cavity with slightly rounded corners.

FIG. 2. (Color online) Illustrations of ray-optics descriptions of
possible resonant cavity modes in hexagonal geometry. (a) and
(b) Fabry-Pérot modes. (c) and (d) Quasi-WGM. (e) Perturbed WGM.
(f) Higher-order quasi-WGM.

Fabry-Pérot (FP) modes [Figs. 2(a) and 2(b)] are excited by
reflection at the opposing disk facets or at the hexagonal facets.
Figures 2(c) and 2(d) show “quasi-WGMs” in which light
is reflected at the side of the polygon. Since these modes
satisfy the total internal reflection in a ray-optics framework,
the quasi-WGM appears to exhibit an ultrahigh Q. Although
the quasi-WGM has been studied in detail in previous work
[31], we will show below that the discovery of a different
WGM, which is shown in Fig. 2(e), is essential if we are to
understand the low Q of the quasi-WGM. We call this mode a
“perturbed WGM” [32] because this is an ultrahigh-Q WGM
when the cavity is round. A complete understanding of these
modes is the main aim of this paper. In addition, we show that
a different mode, shown in Fig. 2(f), which has usually been
categorized as a quasi-WGM, originates from a higher-order
WGM.

To investigate these modes in detail we perform a two-
dimensional finite-difference time-domain (FDTD) calcula-
tion. Figure 3(a) shows the structure that we used for the
calculation. It is a hexagonal cavity with round corners that
have curvature radii r .

When the microcavity is a perfect circle, an ideal WGM
is excited, as shown in Fig. 3(b). Next, we change r and
make the cavity slightly polygonal. Then we obtain an optical
mode, as shown in Fig. 3(c). This is the quasi-WGM shown
in Fig. 2(d). The light propagates while being reflected at the
side of the cavity. This simple picture leads us to expect that
the resonant wavelength and the Q of the quasi-WGM do not
depend strongly on the edge radius r .

In contrast, we obtained a different mode in a hexagonal
cavity for the same geometry as shown in Fig. 3(d). This is
the perturbed WGM. The original circular WGM is perturbed

FIG. 3. (Color online) (a) Model used for FDTD calculations.
The refractive index of the cavity is 1.74. The cavity radius is 20 μm,
and the edge radius is r . (b) Mode profile of a WGM when the shape
is a perfect circle (r = 20 μm). (c) Mode profile of a quasi-WGM
when r = 16.1 μm. (d) Mode profile of a perturbed WGM when
r = 16.1 μm.
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as a result of the modulation of the structure from circular
to hexagonal. But it retains the WGM characteristics, where
the light propagates close to the surface. Note that if we look
very carefully, we find that the light of this mode propagates
close to the surface at the corner, but it propagates slightly
inwards at the side [32]. In contrast to the quasi-WGM, with
the perturbed WGM we can straightforwardly predict that the
resonant wavelength and Q value change sensitively according
to the corner radius r .

Since this mode exhibits an ultrahigh Q when the corner is
round, we expect the Q of the perturbed WGM to be higher
than that of the quasi-WGM when r is large. However, the r

dependence of Q is larger for the perturbed WGM; therefore,
Q of the quasi-WGM should become higher when the corner is
sharp and the cavity is hexagonal. But this simple description
is insufficient, as we discuss in the following sections.

III. MODE ANALYSIS

A. Resonant modes in a hexagonal cavity

Figure 4(a) shows the resonance wavelength of the per-
turbed and quasi-WGMs with respect to the r calculated using
the FDTD method. As expected, the resonant wavelength
changes much more sensitively in relation to r for the perturbed
WGM than for the quasi-WGM. Most importantly, we know
from Fig. 4(a) that the WGM of the circular cavity shown
in Fig. 3(b) is on the same slope as the perturbed WGM in
Fig. 3(d). This indicates that the mode shown in Fig. 3(d)

FIG. 4. (Color online) (a) Resonance wavelength of the perturbed
WGM and quasi-WGM in relation to the curvature radius r .
(b) Spectrum of the excited modes of a hexagonal cavity when
r = 17.8 μm.

is indeed a perturbed WGM, and the quasi-WGM originates
from a different mode from an ultrahigh-Q WGM when the
cavity is circular.

Next, we investigate the resonance in more detail.
Figure 4(b) shows the resonant spectrum when r = 17.8 μm.
This spectrum shows that not only two modes but also various
other different modes are excited in this hexagonal cavity.
To explain the property of the hexagonal cavity, we need to
understand these modes. Since it is difficult to characterize the
property of this number of modes from this single spectrum,
we need to perform calculations with different r .

The resonant peaks for cavities with different r values are
shown in Fig. 5(a). The plots for the quasi- and perturbed
WGMs shown in Figs. 3(c) and 3(d) are indicated. However,
a number of different peaks appear in addition to these two
modes. Although the behavior of these modes appears very
complicated, they can be classified into two different groups.
We clearly obtained two different slopes.

Figure 5(b) shows a quasi-WGM but with a different
longitudinal mode number. Similar resonance also appears
at an 11.6-nm-longer wavelength, where the interval is the
free spectral range (FSR) of this mode. Indeed, we obtained
a similar FSR value from a simple ray-optics estimation.
Similarly, Fig. 5(c) shows a perturbed WGM with a different
longitudinal mode number. The FSR for the perturbed WGM
is 11.3 nm.

FIG. 5. (Color online) (a) Resonant modes of hexagonal cavities
with different curvature radii r . (b)–(e) Mode profiles of the cavity.
The corresponding resonance points are shown in (a).
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FIG. 6. (Color online) Q of perturbed and quasi-WGMs for a
hexagonal cavity with different curvature radius r values.

However, Fig. 5(c) shows that there are a number of
different modes with a similar r dependence to that of the
perturbed WGM in the hexagonal cavity. One of the modes
is shown in Fig. 5(d). In this mode, the light propagates not
only at the surface of the cavity but also at the inner part
of the structure. This propagation occurs because the light
reflects at the cavity wall with a large incident angle. The
light propagation in this mode is described in terms of ray
optics in Fig. 2(f), where the mode was originally classified
as a quasi-WGM. However, the r dependence of this mode
in Fig. 5(b) suggests that its behavior is similar to that of
the perturbed WGM. Indeed, when we examine the profile at
r = 20 μm for this mode, namely, when the cavity is circular,
we observe a higher-order WGM, as shown in Fig. 5(e). Hence,
we can conclude that the mode shown in Fig. 5(d) is the
perturbed mode of the higher-order WGM.

It is important to understand this picture because it indicates
the difficulty of obtaining an ultrahigh Q for the mode shown
in Fig. 5(e), even though the ray-optics image in Fig. 2(f) gives
the impression that this mode may exhibit a high Q even when
the corner is sharp.

B. Cavity Q of perturbed and quasi-WGMs

Since the quasi- and perturbed WGMs [Figs. 3(c) and 3(d)]
are the fundamental modes of this hexagonal cavity, we now
focus on these two modes and analyze Q. Figure 6 shows Q

for these two modes with different r values. Contrary to our
initial expectation, the quasi-WGM exhibits a lower Q when
the cavity is polygonal, although Fig. 2(d) suggests that Q is
only slightly dependent on r .

To understand this behavior, we pay close attention to
the wavelength crossing between the quasi-WGM and the
perturbed WGM.

C. Coupling between modes

Figures 7(a) and 7(b) show enhanced views of the crossing
points between the perturbed and quasi-WGMs in Fig. 5(a).
These figures show that these two modes exhibit anticrossing
behavior, which indicates the existence of strong mode
coupling between those two modes. We can derive the coupling
coefficient κ from the spectrum splitting width, and we

FIG. 7. (Color online) Wavelength crossing between perturbed
and quasi-WGMs.

obtained κ = 2.99 × 1010 s−1 for Fig. 7(a) and κ = 7.49 ×
1010 s−1 for Fig. 7(b). This explains the low-Q property of the
quasi-WGM when the corners are sharp.

According to the ray-optics description shown in Fig. 2(d),
Q of the quasi-WGM does not depend on the edge radius
r of the hexagonal cavity and should exhibit an ultrahigh
Q. However, the coupling between the quasi- and perturbed
WGMs needs to be taken into account. This coupling is
particularly important when r is small. Coupling between
modes, for example, κ = 2.99 × 1010 s−1, which corresponds
to a Q of about 3 × 103, means that the light energy of the
high-Q perturbed WGM transfers to a low-Q quasi-WGM and
then easily couples to the out-of-cavity radiation. Therefore,
Q of the quasi-WGM is not dependent on Q of the perturbed
WGM, and the values of those two modes become very close.
Since the Q value of the perturbed WGM is low when the
corner is sharp, the Q value of the quasi-WGM also decreases.
The very low Q plots (∼104) of the quasi-WGM in Fig. 6
result from coupling with higher-order perturbed WGMs that
have a low Q.

A numerical analysis revealed that Q of quasi-WGM is
fundamentally dependent on Q of the perturbed WGM. Since
Q of the perturbed WGM is low when the corner radius r is
small, it is not easy to obtain an ultrahigh-Q cavity even when
we excite the quasi-WGM. Therefore, the only method with
the potential to provide an ultrahigh Q in such a crystalline
cavity is to make the shape as circular as possible. In the
Appendix, we show methods for fabricating circular sapphire
WGM cavities by using LHPG to achieve a high Q.
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FIG. 8. (Color online) Q factor of a perturbed WGM as a
function of the radius R of hexagonal cavities with a curvature radius
r = 0.8R.

IV. OPTIMAL SIZE OF POLYGONAL CAVITY

In this section, we discuss the optimal radius of the
hexagonal cavity. We focus on the perturbed WGM in a
hexagonal cavity with a radius R and a curvature radius
r = 0.8R. It is known that Q of a circular WGM cavity
increases linearly as the radius increases [5]. However, this
characteristic has not been studied for a polygonal WGM
cavity.

Figure 8(a) shows the Q factor for the perturbed WGM
for hexagonal cavities with different cavity radii r . It clearly
shows that there is an optimal point at r = 30 μm. The Q value
decreases when d is small because it is difficult for the light
in the cavity to satisfy the total internal reflection condition
when the cavity is small. Moreover, unlike a circular cavity,
the Q value decreases when r > 30 μm, which is difficult to
explain solely in terms of total internal reflection. A careful
investigation revealed that mode coupling plays an important
role. In a large cavity, the mode spacing of the lowest-order
perturbed WGM and that of the higher-order perturbed WGM
are both very small, which results in an easy overlap between
these modes. Since higher-order WGMs have a much lower Q,
the Q of the lowest-order perturbed WGM also decreases for
a large cavity. Therefore, there is an optimum radius in regard
to obtaining a higher Q in a hexagonal cavity.

V. CONCLUSION

We investigated excited modes in polygonal cavities in
detail and found that a perturbed WGM exhibits an ultrahigh
Q when the corner radius of the cavity is large. We found
that a number of lower- and higher-order perturbed WGMs
are present in a hexagonal cavity coupled with a quasi-WGM.
Although the quasi-WGM appears to exhibit an ultrahigh Q

with ray optics, mode coupling with the perturbed WGM limits
Q of this mode. We revealed that we need to understand
the coupling between the modes to explain the low Q of the
quasi-WGM when the cavity is hexagonal. As a result, the only
way to improve Q of the crystalline cavity (with both sapphire
and ZnO cavities) is to make the corner round.

Research using WGM cavities is active in various fields,
including microlaser fabrication, quantum optics, sensing, and

signal processing. However, the fabrication of a crystalline
WGM remains difficult because of its fragility. In our previous
study [24], we showed a method to fabricate WGM cavities
with modified LHPG. This numerical study will help us
understand the characteristics of the cavity modes fabricated
with this method as well as with other crystal growth
techniques [28,29]. Crystal growth technologies are promising
for fabricating small crystalline WGMs, and they may be used
for various applications when we clarify the methods and the
boundary conditions on having high Q in such cavities.
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APPENDIX: EXPERIMENT

1. Experimental setup

Figure 9 shows the experimental setup for the LHPG
method. The input CO2 laser beam (Coherent DIAMOND
C-70) is formed into a doughnut shape by using a pair of axicon
lenses. This minimizes the beam that hits the feed rod before
it is focused with a concave mirror, and it makes the beam
focusing more efficient. The CO2 laser beam is focused on the
feed rod by using a concave mirror with a radius of 50 mm to
heat the rod and form a molten zone. The laser beam spot size
is about 12.2 μm, and the power density is 8.58 × 107 W/m2

when the CO2 laser power is 4.0 W. Both the seed and feed
rods are fixed to a linear translation stage (Oriental Motor
ASM46MA). The radius of the sapphire single-crystal rods is
213 μm for both the feed and seed rods.

FIG. 9. (Color online) Schematic illustration of experimental
setup. AL: ZnSe axicon lens, FR: feed rod, SR: seed rod, M: flat gold
mirror with a hole at the center, CM: concave gold mirror (curvature =
100 mm) with a hole at the center, MZ: molten zone. A CO2 laser
with diameter φ and beam parameter product M2 is used to heat the
crystal rods.
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Then a crystal fiber is grown by pulling the feed rod upwards
at a speed of v1, while the seed rod is moved in the same
direction with a speed of v2 (v2 > v1). In LHPG, we can control
the radius of the grown crystal rods by changing the velocity
rate, whose relationship is given by

R1 = R2

(
v2

v1

) 1
2

, (A1)

where R1 and R2 are the radii of the grown and feed
rods, respectively. LHPG was originally developed to create
crystal rods with a uniform radius. In contrast, by changing
the velocity rate we can create a bulge with which we
can confine light in the longitudinal direction and excite
the WGM.

In the experiment, we changed the velocity rate from 1/6
to 1/3. This corresponds to calculated R1 values of 87 and
123 μm when the feed rod radius R2 is 213 μm. First, we
started with standard LHPG. v1 was set to 2 μm/s, and v2 was
set to 12 μm/s. In brief, v1/v2 was 1/6, and the grown rod
was fabricated with a radius of 87 μm. Next, we reduced v2

from 12 to 6 μm/s and set the v1/v2 ratio to 1/3 to fabricate a
WGM cavity. The grown radius of the WGM cavity was then
larger at 123 μm. Finally, we stopped the seed rod and pulled
the feed rod downward.

A side view and cross section of the fabricated cavity are
shown in Figs. 1(a) and 1(c). The cross section of this cavity is
hexagonal as a result of the crystalline structure of the sapphire.
As discussed earlier, it is essential to develop a method for
controlling the curvature of the edge radius of this cavity in
order to increase Q. We already showed the basic idea of the
preheating method in our previous work [24]. Here, we show
in more detail the controllability of the fabrication.

FIG. 10. (Color online) (a) Optical microscope image of a seed
rod during the preheating process. L is the length of the preheated
region. Optical microscope image of a cross section of the fabricated
sapphire cavity with different L values: (b) L = 0.10 mm, (c) L =
0.70 mm, and (d) L = 0.78 mm.

2. Control of cross-section geometry

We introduce a preheating method to make the cavity round.
The seed rod is heated with a CO2 laser at a power of 8 W prior
to the crystal growth. Figure 10(a) shows the 213-μm-radius
preheating seed rod, where L is the heating length. We changed
L and observed the cross-sectional shape of the fabricated
WGM cavity. Figures 10(b)–10(e) show the cross section of
the fabricated sapphire cavity with different L values. When L

is larger, the cross-sectional shape becomes close to a circle.
This experimental result clearly shows that the preheating

method is a promising way to change the cross-sectional
shape of the cavity. However, we observed that the cross
section often deforms when L is 0.80 mm or larger. The cross
section of the cavity changes because we change the growth
axis by introducing preheating to the seed rod. Indeed, x-ray
diffraction of the fabricated crystals show peaks of high-order
crystal planes, which is an indication of the tilt of the c axis.

3. Optical measurement

We measured the transmittance spectrum of the sapphire
microcavity in Fig. 11(a) by coupling light with an optical

FIG. 11. (Color online) (a) Schematic illustration of optical ex-
perimental setup using a conventional tapered fiber. (b) Transmission
spectrum of a circular cavity fabricated using preheating. (c) Enlarged
image of (b). The dashed line is a Lorentzian fit for the experimental
data, whose width gives a Q of 1.6 × 104. (d) Transmission spectrum
of the hexagonal cavity without preheating. It has a Q of 8.5 × 103.

023807-6



WHISPERING GALLERY MODES IN HEXAGONAL . . . PHYSICAL REVIEW A 88, 023807 (2013)

tapered fiber setup. We can control the coupling between the
resonator and the waveguide in order to measure the cavity
Q. The transmittance spectrum of a circular sapphire WGM
cavity is shown in Fig. 11(b). We observe clear resonance
with an equal free spectral range. Figure 11(c) is an enlarged
view of Fig. 11(b). By fitting the spectrum with a Lorentzian
shape, we obtained a Q of 1.6 × 104. This value is higher
than that obtained from the resonant spectrum of a hexagonal
cavity shown in Fig. 11(d), which has a Q of 8.5 × 103. As
expected, with a numerical analysis, we obtained a higher Q

for a circular cavity than for a hexagonal cavity.

Although theory and experiment both predict a higher Q

for a circular cavity and are in a good agreement, the absolute
Q values are far apart. The surface roughness of the cavity
was 65 nm rms when we grew the crystal at a speed of
12 μm/s. Following Ref. [5], Q is inversely proportional to
the square of the surface roughness. When we substitute the
experimental values, we obtained a Q of about 104. Therefore,
we conclude that the experimental Q is now limited by the
surface roughness. Our preliminary experiments show that
the surface roughness can be reduced to 6 nm rms by reducing
the crystal growth speed to 2 μm/s.
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