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High-efficiency cascaded wavelength conversion based on adiabatic evolution
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We demonstrate that the frequency conversion in the cascaded processes can be mapped uniquely to an
associated three-wave mixing processes in adiabatic evolution. After solving the coupling wave equations
of three-wave mixing processes, we immediately find the solutions of the corresponding cascaded coupled
equations. Furthermore, we introduce a rather simple model, which displays the main features of the optical
stimulated Raman adiabatic passage (STIRAP) but allows for analytic evaluation of all quantities. It performs
two simultaneous three-wave mixing processes efficiently and without significant generation of an intermediate
frequency. At last, we consider in detail the effects of the phase mismatch to the optical STIRAP efficiency,
which show that the analytic bounds are seen to describe the transfer region very accurately.
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I. INTRODUCTION

Mid-infrared lasers in the 3 to 5 μm wavelength region
have many applications, such as military countermeasures and
remote monitors of the special environment, spectrum, and
so on [1,2]. Combined with quasi-phase matching (QPM)
and based on optical parametric oscillators (OPO) [3] or
difference frequency generation (DFG) [4], nonlinear optical
frequency conversion can effectively produce an infrared
source. However, recent advances in quasi-phase-matching
(QPM) technology, which is based on periodically poled
nonlinear crystals, have motivated great interest in the physics
and applications of multistep optical parametric processes
[5–7]. By using an analogy to stimulated Raman adiabatic
passage (STIRAP) in atomic physics [8], Porat et al. [9,10]
proposed a scheme in which the input frequency (ω1) is directly
converted into an output frequency (ω4) without significant
generation of the intermediate frequency (ω3). A unique
feature of optical STIRAP is that the intermediate frequency ω3

will never generate. The reason is that throughout the adiabatic
evolution the multistep parametric processes remain trapped
in a dark vector, C0(z), which is only a superposition of the
frequencies ω1 and ω4 and does not involve the intermediate
frequency ω3. If the modulations’ order is counterintuitive,
then the dark vector is initially associated with frequency ω1

and finally with frequency ω4, thus providing an adiabatic route
from ω1 to ω4. Because the existence of the dark vector C0(z)
is vital for optical STIRAP, and utilization of the adiabatic
elimination procedure can also directly generate frequency ω4,
maintaining the perfect phase matching is usually considered
crucial for optical STIRAP. This is indeed correct when the
pump and Stokes couplings possess approximately equal peak
values, which is favorable for optical STIRAP and which is
also the assumption stated in Ref. [10].

In this paper, we introduce a model which displays the main
features of the optical STIRAP situation but allows analytic
evaluation of all quantities. It is based on the fact that the
cascaded conversion processes can be mapped uniquely to
an associated three-wave mixing processes. We formulate a
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general result and introduce the analytic approximations from
the adiabatic theory of three-wave mixing processes. This
could provide us with the solution to a nontrivial case of
the STIRAP process in the adiabatic frequency conversion
situation. Moreover, the sensitivity of the optical STIRAP to
phase mismatch has been analyzed. The method is suggested
in Ref. [11], in which the STIRAP technique is a function of
the two-photon detuning. By analyzing the emerged adiabatic
basis crossings and the positions of the nonadiabatic couplings,
we are able to derive accurate bounds of the efficient
frequency conversion region and estimate the width of the
phase mismatching. Finally, a technologically feasible method
for carrying out such a process is proposed and numerically
demonstrated to be effective.

II. DYNAMICAL EQUATIONS

We consider two simultaneous three-wave mixing (STWM)
processes, as shown in Fig. 1. The two simultaneous DFG
processes are simultaneously realized in a single super
lattice.

Under the plane-wave approximation and considering the
QPM condition, the coupling equations for the dimensionless
field amplitudes ψj which describe the cascaded interactions
are as follows:
d

dz
ψ1 = −iω1deff

n1c
f1ψ2ψ3e

i�k1z, (2.1a)

d

dz
ψ2 = −iω2deff

n2c
(f1ψ1ψ

∗
3
e−i�k1z + f2ψ3ψ4e

i�k2z), (2.1b)

d

dz
ψ3 = −iω3deff

n3c
(f1ψ1ψ

∗
2
e−i�k1z + f2ψ2ψ

∗
4 e−i�k2z),

(2.1c)

d

dz
ψ4 = −iω4deff

n4c
f2ψ2ψ

∗
3
e−i�k2z, (2.1d)

where z is the position along the propagation axis. Dif-
ference frequency ω3 = ω1 − ω2 and difference frequency
ω4 = ω2 − ω3. The electric field at frequency ω is E =√

P ω
0 /2ε0cnψ(z) exp(iωt − ikz) + c.c., where P ω

0 is the input
power of the frequency ω field. c is the speed of light
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FIG. 1. Schematic illustration of cascaded difference frequency
generation process.

in vacuum, f1 and f2 are the magnitudes of the Fourier
coefficients, and deff is the second-order nonlinear coefficient.
nj is the refractive index and the phase mismatches are �k:

�k1 = n2ω2/c + n3ω3/c − n1ω1/c + 2π/�1,

�k2 = n3ω3/c + n4ω4/c − n2ω2/c + 2π/�2.

Undepleted pump approximation. The undepleted pump
approximation is when the incident signal field E2 is much
stronger than the other fields and therefore its amplitude
is nearly constant (undepleted) during the evolution. So the
coupled equations that govern the evolution of the two STWM
processes can be written in three linear equations [10]:

i
d

dz
ϕ(z) = M(z)ϕ(z), M(z) =

⎡
⎣�k1

	p

0

	∗
p

0
	s

0
	∗

s

−�k2

⎤
⎦ ,

(2.2)

ϕ(z) = [ϕ1,ϕ2,ϕ3]T , 	p = ψ2
√

g1g31, 	s = ψ2
√

g4g32,

ϕ1(z) = ψ1(z)ψ2(z)e−i�k1z
√

g31g4/2,

ϕ2(z) = ψ2(z)ψ3(z)
√

g1g4/2,

ϕ3(z) = ψ2(z)ψ4(z)e−i�k2z
√

g1g32/2.

Here g1 = −iω1deff
n1c

f1, g31 = −iω3deff
n3c

f1, g32 = −iω3deff
n3c

f2, and

g4 = −iω4deff
n4c

f2. Equations (2.2) have the same form as the
dynamics of the quantum mechanical three-level � system.
The off-diagonal elements 	p and 	s provide couplings
between the optical fields, which correspond to the pump
and Stokes Rabi frequencies of the three-level � system,
both of which are proportional to the signal field E2 and the
magnitudes of the Fourier coefficients.

It is convenient to single out the phase mismatch terms of
matrix M(z) by dividing it into two parts:

M(z) = M0(z) + M�(z), M0(z) =
⎡
⎣ 0

	p

0

	∗
p

0
	s

0
	∗

s

0

⎤
⎦ ,

M�(z) =
⎡
⎣�k1

0
0

0
0
0

0
0

−�k2

⎤
⎦ , (2.3)

where the matrix M0(z) corresponds to the usual STIRAP
Hamiltonian H0(t), and M�(z) accounts for the two-photon
detuning δ. We suppose that at z = 0 the optical field is
ϕ1(z = 0) = 1, ϕ2(z = 0) = 0, and ϕ3(z = 0) = 0, and
we are interested in the power at z = L (crystal length) and
Pn(z = L) = |ϕn(z = L)|2 (n = 1, 2, and 3).

We first consider the case of perfect phase matching �k1 =
�k2 = 0. The eigenvalues of matrix M(z) are

ε0(z) = 0, ε+(z) =
√

	2
p + 	2

s , ε−(z) = −
√

	2
p + 	2

s .

(2.4)

The corresponding eigenvectors of M(z) that form the adia-
batic basis are

λ0 = [−	∗
s ,0,	p]T , λ+ = [

	∗
p,−

√
	2

p + 	2
s ,	s

]T
,

λ− = [
	∗

p,

√
	2

p + 	2
s ,	s

]T
. (2.5)

Next, let us define the mixing angle θ : tanθ (z) = 	p/	s ; then
the adiabatic basis is as follows:

C+(Z) = sin θ√
2

ϕ1(Z) − 1√
2
ϕ2(Z) + cos θ√

2
ϕ3(Z), (2.6a)

C0(Z) = cos θϕ1(Z) − sin θϕ3(Z), (2.6b)

C−(Z) = sin θ√
2

ϕ1(Z) + 1√
2
ϕ2(Z) + cos θ√

2
ϕ3(Z). (2.6c)

The optical STIRAP technique is based on the zero-eigenvalue
of the dark vector C0(Z), which is a coherent superposition of
the initial optical fields ϕ1(z) to the final optical fields ϕ3(z)
only. When the coupling order is counterintuitive, it means
that the optical fields ψ3(z) and ψ4(z) are first coupled, and
the coupling between ψ1(z) and ψ3(z) is introduced at a later
point:

lim
z→0

	p(z)

	s(z)
= 0, lim

z→L

	s(z)

	p(z)
= ∞. (2.7)

During the conversion, the mixing angle θ (z) rotates from
θ (z = 0) = 0 to θ (z = L) = π/2. When the system can
be forced to stay in the dark vector during all conversion
processes, all of the optical power will be transferred from
ϕ1(z) to ϕ3(z) without ever going through ϕ2(z). In order to
ensure the adiabatic evolution, the coupling between each pair
of adiabatic vectors must be negligible compared with the
difference between the energies of these states, so the adiabatic
condition is

∣∣∣∣
〈

d

dz
C0(Z)

∣∣∣∣ C±(Z)

〉∣∣∣∣ � |ε0 − ε±| . (2.8)

The adiabaticity condition simplifies and becomes
|dθ/dz| �

√
	2

p + 	2
s ; this requires the changes of the

coupling coefficients to be very gradual [10].
When the adiabatic limit or perfect phase-matching condi-

tion can’t be satisfied, the analysis is more difficult. Next we
develop a method in which the cascaded conversion processes
can be mapped uniquely to an associated three-wave mixing
process. After solving the coupling wave equations of the
three-wave mixing process, we immediately find the solutions
of the corresponding cascaded coupled equations.
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III. OPTICAL BLOCH EQUATIONS FOR DIFFERENCE
FREQUENCY GENERATION

A. Theoretical model

Comparing the undepleted pump approximation of the DFG
process and the dynamics of a two-level atomic system, it
has been found that the equations possess the same forms
[13,14]. Moreover, the coupled equations for complex-valued
amplitudes can be recast as three coupled equations for real-
valued variables; the result is the optical Bloch equation.

Under the undepleted pump approximation, the DFG
coupled equations can be simplified as [14]

i
d

dt

[
A1(z)
A3(z)

]
= 1

2

[−�k(z) 2 |q|
2 |q| �k(z)

] [
A1(z)
A3(z)

]
. (3.1)

By using rotation transformation, we can obtain the dressed
fields (adiabatic amplitudes):

i
d

dz

[
Ã1(z)

Ã3(z)

]
= 1

2

[−	(z) −i2θ̇ (z)
i2θ̇ (z) 	(z)

] [
Ã1(z)

Ã3(z)

]
. (3.2)

The adiabaticity condition for Eq. (3.2) is|θ̇ | � 	, where
q(z) = 2πω1ω3deffA2/

√
k1k3c

2, tan θ (z) = 2 |q| /�k(z), and
	(z) = 0.5∗√�k2(z) + 4 |q|2; the overdot indicates a space
derivative. The two complex-valued amplitudes can be recast
as three coupled equations for real-valued variables [15–17].
We now define the new unit vectorB(z) = [u(z),v(z),w(z)]T ,

and the components of this vector are u(z) = 2Re(A1A
∗
3),

v(z) = 2Im(A1A
∗
3), and w(z) = |A1|2 − |A3|2.

The final result is the optical Bloch equation:

i
d

dz
B(z) =

⎡
⎣ 0

	1

0

−	1

0
	2

0
−	2

0

⎤
⎦B(z). (3.3)

Here, 	1 = �k(z) and 	2 = 2 |q|. After replacing the am-
plitudes v(z) and w(z) by the amplitudes ṽ(z) = iv(z) and
ũ(z) = −u(z), and exchanging the places of w(z) and u(z), the
Bloch equation takes the form [17]

i
d

dz

⎡
⎣w

ṽ

ũ

⎤
⎦ =

⎡
⎣ 0

	2

0

	2

0
	1

0
	1

0

⎤
⎦

⎡
⎣w

ṽ

ũ

⎤
⎦ . (3.4)

Equation (3.4) is exactly of the form of Eq. (2.2), when we set
M�(z) = 0, 	1 = 	s , and 	2 = 	p.

The optical field amplitudes ϕ(z) of the two STWM
processes are related to the DFG process amplitudes A(z)
by [15,16]

ϕ1(z) = |A1|2 − |A3|2, ϕ2(z) = 2iImA1A
∗
3,

ϕ3(z) = −2ReA1A
∗
3, (3.5)

and to the adiabatic amplitudes Ã(z) by [15,16]

ϕ1(z) = (|Ã1(z)|2 − |Ã3(z)|2) cos θ (z)

+ 2Re[Ã1(z)Ã∗
3(z)] sin θ (z), (3.6a)

ϕ2(z) = −2iIm[Ã1(z)Ã∗
3(z)], (3.6b)

ϕ3(z) = 2Re[Ã1(z)Ã∗
3(z)] cos θ (z)

− (|Ã1(z)|2 − |Ã3(z)|2) sin θ (z), (3.6c)

These relations hold for any coupling order. When we have
solved the adiabatic DFG functions (3.2), we immediately

found the solutions to the corresponding two STWM coupled
equations (2.2). Such a one-to-one relation between the
solutions holds only for restricted sets of initial conditions.

Because the DFG optical field starts at pump field A1 and
goes to signal field A3 at the end, the initial conditions are the
normalized intensities |A1(z = 0)|2 = 1 and |A3(z = 0)|2 =
0. Now we define the two nonlinear coupling coefficients as
follows:

	1(z) = 	0(z) cos(πz/2L), 	2(z) = 	0(z) sin(πz/2L).

(3.7)

It can be easily seen that for all propagation processes the
amplitude 	 stays constant (	 = 	0); its behavior is shown in
Fig. 2(a). When the adiabatic condition |θ̇ | � 	 is maintained,
the adiabatic solutions for counterintuitive coupling are exactly
given by

ϕ1(z) = {1 − θ ′2[1 − cos(zη)]/η2} cos θ + [θ ′ sin zη/η] sin θ,

(3.8a)

ϕ2(z) = 	0θ
′ sin2(zη/2)/η2, (3.8b)

ϕ3(z) = [θ ′ sin zη/η] cos θ + {θ ′2[1 − cos(zη)]/η2 − 1} sin θ,

(3.8c)

where η =
√

(	2
0/4) + θ ′2 . It is more difficult to achieve

analytic evolution for the two STWM equations (2.2). A useful
feature of this model is that it allows a simple analytic solution
not only for the final wave energy but also for its spatial
evolution.

B. Numerical simulation under ideal conditions

As an example, we considered the four wavelengths is
1.06 μm, 1.31 μm, 4.3 μm, 1.7 μm respectively, and use
PPLN crystal which length is 50 mm. The temperature to be
set 25 ◦C in our model. Using the PPLN dispersion relation
and neglecting the thermal expansion, the other structural
parameters can be calculated from the Sellmeier equation.
By numerical integration of Eq. (2.1), Fig. 2(b) shows the
normalized intensities of the interacting waves along the
nonlinear crystal.

By numerical simulation, we conclude that the final
intensities |ϕn(z = L)|2 (n = 1, 2, and 3) can only depend on
the combination L	0. Within the adiabatic limit, L	0 → ∞,
the energies of the optical fields ϕ1(z) and ϕ3(z) are exchanged
in an expected adiabatic manner; the results are shown in
Fig. 2(b). The figure is close to adiabatic, where less than
0.6% of the energy has been transformed into the intermediate
wave, and the total energy has been transferred to the final
wave. In addition, when the pump intensity is high enough, the
intermediate frequency ω3 is almost never generated. Last, we
also show the transfer efficiency as a function of the interaction
length L and the interaction amplitude 	0, for the special case
when 	p and 	s have equal maximum value; simulation results
for Eq. (3.8) are displayed in Fig. 3.

We can see that the energy on the intermediate wave ϕ2

oscillates, when L	0 is not very large; In the ideal case,
L	0 → ∞, the energy on the intermediate wave tends to zero,
and the energy on the final wave tends to unity. Numerical
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FIG. 2. (Color online) Numerical simulation of the intensities of the interacting waves along the nonlinear medium in the above model.
The field intensities are calculated from Eq. (2.1) for f1 = 5 sin(πz/2L) and f2 = 5 cos (πz/2L). (a) Normalized coupling coefficients of
the two nonlinear processes. (b) Normalized intensities of the interacting waves with counterintuitive order modulation. The inset shows the
intermediate-wave intensity.

modeling results which exhibiting a clear ‘STIRAP signature’
are shown in Fig. 2. Figure 3 clearly shows the variation
tendency of the intermediate optical filed intensity and final
conversion efficiency following the change of adiabatic pa-
rameter, which could be helpful for us to utilize the STIRAP
technology to design the system at the last step.

It is worth pointing out that the effects of the two coupling
order are crucial for the perfect phase-matching �k1 = �k2 =
0 case. By exploring the application of the STIRAP in the
realm of frequency conversion, we must consider the realistic
situation; the shift of the parameters which affect efficiency
of the processes will cause deviation from the condition of
perfect phase match, so we must also take into account the
effects of the phase mismatch �k1 = �k2 	= 0.

IV. EFFECTS OF PHASE MISMATCH
TO THE OPTICAL STIRAP

When the condition of perfect phase match cannot be
satisfied, the coupled equations in the adiabatic basis (2.6)

read as follows [11]:

idC(z)/dz = Mad(z)C(z), (4.1)

where

Mad(z) = Mad
0 (z) + Mad

� (z), (4.2)

Mad
0 (z) =

⎡
⎣ 	/2

−iθ̇/
√

2
0

iθ̇/
√

2
0

iθ̇/
√

2

0
−iθ̇/

√
2

−	/2

⎤
⎦ , (4.3a)

Mad
� (z) = �

2

⎡
⎣ cos 2θ/2

− sin 2θ/
√

2
cos 2θ/2

− sin 2θ/
√

2
− cos 2θ

− sin 2θ/
√

2

cos 2θ/2
− sin 2θ/

√
2

cos 2θ/2

⎤
⎦ .

(4.3b)

As is shown in Eq. (4.3), the phase mismatching induces
nonadiabatic couplings between the dark basis C0(Z) and
the other two adiabatic basis, C+(z) and C−(z). The coupling

FIG. 3. (Color online) Numerical simulation of the intensities of the interacting waves along the nonlinear medium. (a) Final intensity for
the intermediate wave plotted as a function of L and 	0. (b) Final conversion efficiency for the final wave plotted as a function of L and 	0.
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FIG. 4. (Color online) Spatial evolution of the energy splitting ε+0 (ε−0) and the nonadiabatic coupling ρ for trigonometric model (3.7). (a)
Spatial evolution of energy splitting with different signs of �k. (b) Evolution of the energy splitting ε+0 (ε−0) and the nonadiabatic coupling ρ

for different values of |�k|.

expression is

ρ+0(z) = [2iθ̇ (z) − � sin 2θ (z)]/
√

2, (4.4a)

ρ−0(z) = ρ+0(z), (4.4b)

where ρ+0(z) is the coupling of basis C0(z) and C+(z), and
ρ−0(z) is the coupling of basis C0(z) and C−(z). These cou-
plings will reduce the optical STIRAP conversion efficiency.
In addition, the phase mismatching will lead to the energies of
all adiabatic basis shifts [11]:

ε+0(z) = [	(z) + 3� cos 2θ (z)/2] /2, (4.5a)

ε−0(z) = [3� cos 2θ (z)/2 − 	(z)]/2 (4.5b)

where ε+0 = ε+ − ε0 and ε−0 = ε− − ε0, are the energy shifts
between the dark basis C0(z) and the other two adiabatic bases
C+(z) and C−(z). For ε+0 = 0 (or ε−0 = 0), it represents
the energy as crossing, as illustrated in Fig. 4(a) where the
energy splitting is plotted versus the mixing angle. Obviously,
no matter whether �k < 0 or �k > 0, the energy shifts ε−0(z)
and ε+0(z) always crosses zero. Hence, the energies of basis
C0(z) and C−(z) or C+(z) always cross.

As far as STIRAP is concerned, the main loss occurs at
the crossings of the adiabatic basis C0(z) with C−(z) and
C+(z). When the crossing is close to the maximum of the
nonadiabatic couplings [assume the maximum is ρ(Zmax)],
there is a significant nonadiabatic interaction at this crossing
and hence a significant energy loss from the dark basis C0(z)
[11,18–20]. So the crossing of the energies with relation to the
maxima of the nonadiabatic couplings determines two bounds
of phase matching �. As is shown in Fig. 4(b), the shifts in
ε−0(z) are larger than those in ε+0(z). This implies that the
crossing in ε−0(z) is shifted farther from Zmax than that in
ε+0(z), so the main energy losses from the dark basis C0(z)
take place through the crossing in ε+0(z).

For � > 0, the place of crossing in the ε+0(z) occurs after
Zmax(z+0 > Zmax), and z+0 approaches Zmax as � increases;
consequently, the transfer efficiency approaches zero. In order
to simplify the results, we choose the place of the pump
couplings 	p maxima (Zpmax) as a reference point for the
crossing place, then

cos 2θ (zp max) = −1, 	(zp max) ≈ 	p(zp max). (4.6)

From Eq. (4.5a) we can obtain � = 2	(z)/3. For � < 0,
the place of crossing z+0 in ε+0(z) occurs before
Zmax(z+0 < Zmax), and z+0 approaches Zmax as |�| increases.
We choose Zsmax which is the place of maxima of the Stokes
couplings 	s as a reference point for the crossing place, then

cos 2θ (zs max) = 1, 	(zs max) ≈ 	s(zs max). (4.7)

By setting ε+0 = 0 from Eq. (4.5a), we can obtain � =
−2	(z)/3. So the bounds of phase mismatching � in optical
STIRAP are

−2	s(z)/3 � � � 2	p(z)/3. (4.8)

Hence, the phase mismatching width is proportional to 	(z).
For the (3.7) triangle model, 	(z) = 	0(z). We show in Fig. 5
the optical STIRAP evolution for different numbers of phase
mismatching �. In all cases the energy is converted from
frequency (ω1) to frequency (ω4) in the end in a stepwise
manner. The transient generation of the intermediate frequency
(ω3) is enhanced and the transfer efficiency is damped as �k

increases: from �kL = 0 without significant generation of
the intermediate frequency (ω3) to �kL = 1.5 with oscillates
for the output wave. So the above conclusions are confirmed

FIG. 5. (Color online) Numerical simulation of the normalized
intensities of the interacting waves along the nonlinear medium with
different numbers of phase mismatching �, with amplitude 	0 = 40,
under ideal conditions.
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FIG. 6. (Color online) Numerical simulation of the intensities of the interacting waves along the nonlinear medium with the phase-reversal
quasi-phase-matching technique. The field intensities are calculated from Eq. (2.1). (a) Phase-matching results. (b) Final conversion efficiency
for �k having different values.

completely, and the analytic bounds are seen to describe the
conversion region very accurately. We note that although the
example in Fig. 4 uses a trigonometric model, the analysis
method is equally suitable for nonlinear coupling coefficients
of Gaussian modulation or any other shape.

V. NUMERICAL SIMULATION OF OPTICAL STIRAP
IN A NONPERIODIC OPTICAL SUPERLATTICE

At the end of the section we briefly discuss the use of
nonperiodic optical superlattice for the generation of optical
STIRAP in a cascaded parametric oscillator. To achieve this
purpose, both processes were phase matched and the coupling
coefficients were modulated as desired. Porat and Arie [10]
propose using a phase-reversal quasi-phase-matching tech-
nique. For example, we can construct a product of two binary
functions as follows:

G(z) = sgn

[
sin

(
2π

�1
z + π

�1
l2

)
− sin

(
π

�1
l2

)]

× sgn

[
sin

(
2π

�2
z + π

�2
l′2

)
− sin

(
π

�2
l′

2

)]
, (5.1)

where �1 = l1 + l2, �2 = l′
1
+ l′

2
is the period, l1(l′1) is the

length of the positive domains, and l2(l′2) is the length of the
inverted domains. Using simple Fourier analysis yields

GQPM(z) ≈ 1

π
(2D2 − 1) sin(2πD1) exp(±i�k1)

+ 1

π
(2D1 − 1) sin(2πD2) exp(±i�k2), (5.2)

Where Di = l1/�i is the duty cycle. This is the modulation of
the second-order nonlinear coefficient χ (2). If we choose �1 =
�k1 and �2 = �k2, and only keep phase-matched terms, then

f1 = (2D2 − 1) sin(2πD1), and f2 = (2D1 − 1) sin(2πD2).

D1 and D2 determine the magnitude of the effective coupling
coefficient for each process. Varying the two duty cycles
along the crystal achieves the required modulation. The
simulation results are presented in Fig. 6(a); good corre-

spondence is obtained with the ideal case results. We also
explored the conversion evolution for different numbers of
phase mismatching �. Simulation results are depicted in
Fig. 6(b). Obviously, for �kL � 1.5, the transient genera-
tion of the intermediate frequency (ω3) is significant, and
the output wave shows strong oscillation. In order to use
phase-reversal quasi-phase-matching for phase matching and
coefficient modulation, here we do not take into consideration
technological restrictions. Actually, the adiabaticity condition
requires the changes of the coupling coefficients to be very
gradual, which means a domain lengths need to be as small as
possible; otherwise, the intermediate frequency (ω3) would
be generated obviously. This has been discussed in detail
in Ref. [10].

It is worth pointing out that the effects of the two coupling
order are crucial for the perfect phase-matching �k1 = �k2 =
0 case, but are not required for large phase mismatch. By
analogy with the adiabatic elimination procedure, it can also
directly generate frequency ϕ4 from frequency ϕ1 assuming
that both of the DFG processes exhibit a very large phase
mismatch but their sum is rather small. This approximation
has been discussed in Ref. [9], but due to inherently large
phase mismatches, high conversion efficiency was difficult to
achieve.

VI. CONCLUSION

In this paper, we have shown that the cascaded wavelength
conversion process in the undepleted pump approximation can
be mathematically formulated and geometrically visualized
in complete analogy with the framework of atomic STIRAP.
We have developed an approximate analytical trigonometric
model to describe two STWM processes, which are based
on the adiabatic DFG process, wherein the pump amplitude
is assumed constant along the nonlinear crystal. This model
holds the advantage that it does allow a complete solution. The
trigonometric model, which is analytically solvable, enables us
to show explicitly that, as the adiabaticity increases, the con-
version efficiency for the counterintuitive coupling sequence
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approaches unity, while it oscillates for the nonadiabatic
transition. By analyzing the achieved adiabatic evolution, we
were able to derive surprisingly simple and accurate bounds
of the high-conversion efficiency region and simple estimates
of the adiabatic parameters’ magnitude.

Moreover, we also take into account the effects of the phase
mismatch to the optical STIRAP technique. By analyzing the
emerging adiabatic basis crossings and the positions of the
nonadiabatic couplings, we were able to derive simple and
accurate bounds of the high-conversion efficiency region and
estimates of the width of the phase mismatching. We point
out that other approaches (e.g., those based on coherence
length maps [21] for the involved nonlinear processes) are
also useful to analysis the effects of the phase mismatch, but
the analysis processes were too complicated to be of use here.
Finally, a technologically feasible method for carrying out
such a process was proposed and numerically demonstrated to
be effective.

The results in this paper also have potential significance in
applications of STIRAP where the two couplings, pump and
Stokes, are of different physical natures, such as in the DFG
process wherein the Stokes coupling is replaced by phase
mismatching �K . Suitably extended, we here draw upon a
mathematical equivalence of the STIRAP STWM processes
with an adiabatic DFG process to suggest a potentially useful
technique, DFG-STIRAP, which may allow the complete
transfer of energy from one wavelength to another in a single
three-wave mixing process.
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