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Adiabatic quantum metrology with strongly correlated quantum optical systems
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We show that the quasiadiabatic evolution of a system governed by the Dicke Hamiltonian can be described
in terms of a self-induced quantum many-body metrological protocol. This effect relies on the sensitivity of
the ground state to a small symmetry-breaking perturbation at the quantum phase transition, which leads to the
collapse of the wave function into one of two possible ground states. The scaling of the final-state properties
with the number of atoms and with the intensity of the symmetry-breaking field can be interpreted in terms of
the precession time of an effective quantum metrological protocol. We show that our ideas can be tested with
spin-phonon interactions in trapped ion setups. Our work points to a classification of quantum phase transitions
in terms of the capability of many-body quantum systems for parameter estimation.
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I. INTRODUCTION

Experimental progress in the last years has provided us
with setups in atomic, molecular, and optical physics in which
interactions between many particles can be controlled and
quantum states can be accurately initialized and measured.
Those experimental systems have an exciting outlook for the
analogical quantum simulation of many-body models [1–3].
For example, trapped ion setups can be used to simulate the
physics of quantum magnetism [4–7] and quantum structural
phase transitions [8–10] by means of spin-dependent forces.
A more established practical application of atomic systems is
in precision measurements for atomic clocks and frequency
standards. The effect of quantum correlations on the accuracy
of interferometric experiments has been investigated in the
field of quantum metrology [11,12]. Here, entangled states
may yield a favorable scaling in the precision of a frequency
measurement compared to uncorrelated states [13–16]. In view
of this perspective a question arises, namely, whether we
can find applications of strongly correlated states of quantum
simulators for applications in quantum metrology.

A natural direction to be explored is the use of quantum
phase transitions [17] in atomic systems. Intuition suggests that
close to a phase transition a system becomes very sensitive to
small perturbations. In particular, if there is a phase transition
to a phase with spontaneous symmetry breaking, we may
expect that any tiny perturbation leads the system to collapse
to one of several possible ground states. Actually, quantum
states typically considered for quantum metrology, such as
NOON states, have a close relation to ferromagnetic phases of
mesoscopic Ising models. However, frequency measurements
typically rely on dynamical processes, for example, in Ramsey
spectroscopy [13,18]. Thus the conditions under which an
atomic system remains close to the ground state of a many-
body Hamiltonian must be carefully studied in view of possible
metrological applications.

In this work we present a proposal to fully exploit the
spontaneous symmetry breaking of a discrete Z2 symmetry
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to implement a quantum metrology protocol with a system
described by the Dicke Hamiltonian [19,20]. The latter is
the simplest model showing a quantum phase transition, and
remarkably it can be implemented in a variety of experimental
setups in atomic physics, from trapped ions [10] to ultracold
atoms [21,22]. Our scheme relies on an adiabatic evolution
which takes the system across a quantum phase transition
where Z2 is spontaneously broken. We show that the system
is very sensitive to the presence of a symmetry-breaking field,
δ, such that it self-induces a many-body Ramsey spectroscopy
protocol which can be read out at the end of the process. Within
the adiabatic approximation, we show that the ground-state
multiplet of the Dicke model can be approximated by an
effective two-level system, something that allows us to obtain
an analytical result for the measured signal as a function of the
number of atoms N .

Our proposal can work in two ways.
(i) Quasiadiabatic method. Nonadiabatic effects within the

two-level ground-state multiplet lead to variations in the final
magnetization. By reading out the final state we recover the
scalings corresponding to the Heisenberg limit of parameter
estimation.

(ii) Full adiabatic method. Here we consider the informa-
tion that is obtained by a single-shot measurement of the final
magnetization. The system collapses into one of the possible
symmetry-broken states, and this allows us to get the sign
of the symmetry-breaking field within a measurement time
that scales inversely proportional to the number of particles,
tm ∝ 1/N .

This article is structured as follows. In Sec. II we introduce
the Dicke Hamiltonian and the concept of spontaneous
symmetry breaking. In Sec. III we discuss the low-energy
spectrum of the normal and super-radiant phases of the Dicke
model and show that, close to the adiabatic limit, the dynamics
of the system can be described by a two-level approximation.
In Sec. IV we show how the evolution of the gap in the Dicke
Hamiltonian allows us to think of a quasiadiabatic evolution
separated in a (fast) preparation stage followed by a (slow)
measurement stage in which the system is sensitive to a
small perturbation. In Sec. V we discuss the two schemes
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for getting information on the symmetry-breaking field that
can be envisioned from the low-energy physics of the Dicke
Hamiltonian.

Section VI is devoted to the outline of a physical implemen-
tation of our ideas with trapped ion crystals interacting with
lasers that induce spin-phonon couplings. Finally, in Sec. VII
we summarize our results and present an outlook for further
directions of the ideas presented here.

II. DICKE MODEL FOR QUANTUM SPECTROSCOPY

We start by reviewing the celebrated Dicke Hamiltonian
describing an ensemble of N two-level atoms coupled to a
single bosonic mode (h̄ = 1 from now on):

H = HD + Hδ,

HD = ωa†a + �xJx + 2g√
N

(a† + a)Jz, (1)

Hδ = δJz.

HD is the Dicke Hamiltonian, whereas Hδ is an additional
symmetry-breaking perturbation. a† and a are creation and
annihilation operators corresponding to an oscillator with
frequency ω. Collective spin operators �J = (Jx,Jy,Jz) are
defined by

Jβ = 1

2

N∑
i=1

σ
β

i , (2)

where σ
β

i (β = x,y,z) is the Pauli operator for each atom i. g

and �x are the intensive spin-boson coupling and transverse
field, respectively. The term Hδ describes the coupling to a
longitudinal field δ, where we assume the latter to be small in
the sense precisely defined below.

The Dicke Hamiltonian is the simplest many-particle model
with a discrete Z2 symmetry. The latter is implemented by the
parity operator defined by

� = �s ⊗ �b, �s = σx
1 ⊗ · · · ⊗ σx

N,

�b = (−1)a
†a. (3)

Since �HD� = HD, the parity is a good quantum number. The
discrete Z2 symmetry plays a decisive role in the discussion
below.

In the limit N → ∞ the mean-field solution becomes
exact [23,24]. In this work we consider the evolution of the
system with fixed g and ω and varying values of the transverse
field, �x . In this case mean-field theory predicts a quantum
phase transition at the critical point �x,c = 4g2/ω. The latter
separates a normal, or weak-coupling, phase (�x � �x,c)
with 〈Jz〉,〈a〉 = 0, from the super-radiant, or strong-coupling,
phase, (�x � �x,c) with 〈Jz〉,〈a〉 �= 0.

Since �a� = −a, �Jz� = −Jz, the mean-field solution
breaks the parity symmetry. This effect can be understood
in the following way. Consider |�δ〉, the ground state of
Hamiltonian (1) with a finite longitudinal field δ. In the
super-radiant phase (�x < �x,c) the following limit holds:

lim
δ→0

lim
N→∞

〈�δ|a|�δ〉 �= 0. (4)

This implies that in the thermodynamical limit, an infinitesimal
perturbation breaks the parity symmetry. Below we give an
explicit proof of this result, which, however, is implicit in the
fact that mean-field theory becomes exact as N → ∞.

III. LOW-ENERGY SPECTRUM OF THE DICKE MODEL

In this section we show an effective description of the
adiabatic quantum dynamics of HD + Hδ in terms of an
effective two-level system. First, we note that HD commutes
with the total angular momentum operator �J 2. Let us consider
the eigenstates of HD + Hδ in the basis {|j,m〉|n〉b}, where
|j,m〉 are the eigenstates of �J 2, Jz, and |n〉b are the Fock
states of the harmonic oscillator. We study the evolution of
the system starting with a fully polarized state with j = N/2,
such that conservation of �J 2 ensures that we remain within the
j = N/2 subspace. The dimension of the spin Hilbert space
is thus N + 1, and the system is amenable to be studied with
numerical diagonalization.

In the following we study the low-energy spectrum of HD as
a function of �x , something that will allow us to get an effective
description of the full Hamiltonian H = HD + Hδ in the super-
radiant phase. We define the two lowest eigenstates of HD,
|�gs,∓〉, with energies Egs,∓. The energy gap is 	N (g,ω,�x) =
Egs,+ − Egs,−; in the calculations below we write it explicitly
as a function of the parameters in the Dicke Hamiltonian.

A. Noninteracting limit (�x � �x,c)

We study first the limit �x → ∞ or, alternatively, g = 0.
Assuming �x > 0, the lowest energy state is the fully polarized
spin state in the x direction,

∣∣�[g=0]
gs,−

〉 =
⊗

k

|−〉x,k|0〉b, (5)

where |±〉x,k are the eigenstates of σx
k and |n〉b is the Fock state

of the bosonic mode with occupation n. The second lowest
energy state is either a spin wave, if �x < ω,

∣∣�[g=0]
gs,+

〉 = 1√
N

∑
k

|−〉x,1 . . . |+〉x,k . . . |−〉x,N |0〉b, (6)

or an excitation of the harmonic oscillator, if ω < �x ,
∣∣�[g=0]

gs,+
〉 =

⊗
k

|−〉x,k|1〉b, (7)

the gap being 	N (0,ω,�x) = �x or ω, respectively. In any
case the two lowest energy states have opposite parity.

B. Strong-interacting limit (�x,c � �x)

We discuss in more detail the super-radiant phase, which
is the most relevant for our quantum metrology protocol.
Consider first the limit �x = 0. Within the j = N/2 subspace,
the spectrum of HD corresponds to a set of Fock states of the
harmonic oscillator, displaced by an amplitude proportional to
the quantum number m = −N/2, . . . ,N/2,

|
n,m〉 = D

(
− 2g

ω
√

N
m

) ∣∣∣∣N2 ,m

〉
|n〉b, (8)
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where we have defined the displacement operator D(α) =
eαa†−α∗a . The eigenenergies are

En,m = n ω − g2N

ω

(
m

N/2

)2

. (9)

We find two degenerate ground states, corresponding to
m = ±N/2,

∣∣�[�x=0]
gs,±

〉 = D(∓
√

Ng/ω)

∣∣∣∣N2 , ± N

2

〉
|0〉b, (10)

with energies Egs,± = −(g2/ω)N . Finally, using Eq. (9)
we find that the two lowest energy levels are energetically
separated by the next excited states in the spectrum by energy
gap 	′(g,ω,0) = �x,c(1 − 1/N ).

Let us consider now the effect of a small transverse field,
�x , in the low-energy spectrum, see Fig. 1. We expect the
energy gap, 	N (g,ω,�x), to be lifted by the coupling of the
two degenerate states by the term �xJx in HD. However, note
that the operator Jx has to flip all spins to bring |�[�x=0]

gs,+ 〉 to

|�[�x=0]
gs,− 〉, such that〈

�
[�x=0]
gs,+

∣∣JM
x

∣∣�[�x=0]
gs,−

〉 = 0, (11)

if M � N − 1. The first nonzero contribution is thus of order
N . N th-order perturbation theory allows us to estimate the
scaling (see Appendix A)

	N (g,ω,�x) = fN (g/ω) �x

(
�x

�x,c

)N−1

, (12)

where fN (g/ω) is a scaling function that describes the
dependence of the gap on the ratio g/ω. An explicit expression
for fN (g/ω) can be found in the particular case g � ω [25]:

fN (g/ω) = 2e−2( g

ω
)2 NN+1

2NN !
. (13)

The latter corresponds to the limit in which the harmonic
oscillator can be adiabatically eliminated, such that HD is
equivalent to an infinite-range Ising spin Hamiltonian. For
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FIG. 1. Low-energy spectrum (in units of g) of the single-mode
Dicke model for ω = 4g and N = 10 atoms as a function of �x .
The two lowest lying states are separated by energy splitting 	N .
In a super-radiant phase �x < �x,c the gap 	N can be calculated
analytically by N -order perturbation theory. The dashed line is the
third excited energy level.

10-21

10-16

10-11

10-6

10-1

1 3 5 7 9 11 13 15
N

Δ N

10-23

10-19

10-15

10-11

10-7

0 0.025 0.05
Ω

x
 (units of g)

(a) (b)

FIG. 2. (Color online) (a) Energy gap 	N (g,ω,�x) of the Dicke
Hamiltonian as a function of the number of atoms N with ω = 6g

for various �x . The numerical results for �x = 0.02g (circles),
�x = 0.03g (squares), and �x = 0.04g (triangles) are compared with
the analytical solution, (12) (solid lines). (b) Numerical result for
	N (g,ω,�x) as a function of �x for N = 8 atoms and ω = 4g

[(black) circles], ω = 6g [(blue) triangles], and ω = 8g [(red)
squares] compared with (12) (solid lines). Values for 	N are given in
units of g.

other values of g/ω, one can use numerical calculations to
estimate the exact form of the energy gap. Note that the
effect of a finite gap, 	N , is to restore the parity symmetry
by creating ground states that are linear combinations of
|�[�x=0]

gs,− 〉, |�[�x=0]
gs,+ 〉.

The most important feature of the super-radiant phase,
is thus the vanishing of the gap in the thermodynamical
limit, analogously to the situation found, for example, in the
short-range quantum Ising model [17]. In a finite-size system,
	N (g,ω,�x) monotonically decreases as we decrease �x from
the value �x,c, see Fig. 2. The monotonic behavior of the gap
with respect to the transverse field is actually valid along the
whole phase diagram, and not just within the super-radiant
phase. This is shown in Fig. 1, where we present the evolution
of the low-energy spectrum of HD.

Within the super-radiant phase we can thus project the
Hamiltonian H = HD + Hδ into the ground-state multiplet to
get the effective Hamiltonian,

Heff = 	N (g,ω,�x)

2
σx + Nδ

2
σ z, (14)

where Pauli operators act over the Hilbert subspace {|−〉,
|+〉} = {|�[�x=0]

gs,− 〉,|�[�x=0]
gs,+ 〉}. The perturbation δ appears in

the Heff multiplied by N . This effect is the backbone of our
quantum metrology protocol, and it signals the amplification
effect due to the spontaneous symmetry breaking that we use
to detect the δ field.

We note that the term �xJx couples the state |�[�x=0]
gs,∓ 〉 to

the next excited states |
0,∓(N/2−1)〉. In the super-radiant phase
this coupling perturbs the ground-state multiplet, such that

∣∣�[�x=0]
gs,∓

〉 → ∣∣�[�x=0]
gs,∓

〉 + e− 2
N

( g

ω
)2 �x

2�x,c

√
N

1 − 1/N

× |
0,∓(N/2−1)〉, (15)
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up to normalization factor. This perturbation, eventually gives
a correction to the last term in (14),

Nδ

2
σ z → Nδ

2

(
1 − e− 4

N
( g

ω
)2 �2

x

2�2
x,c

1

(1 − 1/N)2

)
σ z, (16)

which can be neglected in the strongly coupled phase
(�x � �x,c).

The validity of Heff , together with the scaling given by
Eq. (12), is an indirect proof of the symmetry breaking of
the parity symmetry anticipated by expression (4). Finally, we
note that the double limit δ → 0 and N → ∞ in (4) is taken
in a such a way that the perturbation term, (16), remains small
with respect to 	′.

IV. SEPARATION OF TIME SCALES FOR PREPARATION
AND MEASUREMENT

Our scheme relies on the adiabatic evolution of the system
by considering a time-dependent transverse field �x(t). Alter-
native versions of this scheme may consider the time variation
of the coupling constant, g. We assume that the system can
be prepared in a linear superposition of low-energy states
during an initial preparation stage (i), which subsequently
evolves quasiadiabatically to perform a self-induced quantum
many-body metrological stage (ii).

(i) Preparation stage. We consider an exponential decay,

�x(t) = �x(0)e−t/τ
(1)
ev , (17)

with �x(0) � �x,c, such that the system can be prepared
initially in the ground state of the noninteracting phase, given
by Eq. (5):

|�(0)〉 = ∣∣�[g=0]
gs,−

〉
. (18)

The system evolves from t = 0 up to t = ti , the latter being
the initial time for the subsequent stage. The transverse field
varies up to �x(ti) = �x,i , with �x,i � �x,c, such that the
system evolves into the strongly coupled regime. Within the
preparation stage the gap is bounded by

	i = 	N (g,ω,�x,i). (19)

We impose full adiabaticity of the evolution of the system
during the preparation stage:

1/τ (1)
ev � 	i. (20)

Finally, we also need the condition

	i � Nδ, (21)

such that the system enters into the super-radiant phase as an
eigenstate of the 	N (g,ω,�x) term in Hamiltonian (14). A
crucial observation is that conditions (20) and (21) imply that
the preparation rate 1/τ (1)

ev is not bounded by the parameter δ.
Thus increasing the precision in measuring δ does not require
increasingly longer τ (1)

ev .
(ii) Metrological stage. Once the system is within the

strongly coupled phase, we can use the two-level system
approximation discussed in the previous section. This is the
part of the protocol where the measurement of δ is performed,
and we require the quantum evolution to be sensitive to Nδ.

Thus, for t > ti , one can choose a second time scale for the
evolution of the system, given by τ (2)

ev :

�x(t) = �x,ie
−(t−ti )/τ

(2)
ev . (22)

Note that within the strongly coupled phase the gap follows
the scaling given by Eq. (12), such that

	N (t) = 	N (g,ω,�x(t)) = 	ie
−γ (t−ti ), (23)

with γ = N/τ (2)
ev . The quantum metrological protocol will rely

now on the quasiadiabatic time evolution of the system, which
holds for

γ � 	′. (24)

Condition (24) ensures that the nonadiabatic transitions to the
other excited states are suppressed. In the strongly coupled
phase and for large N we have 	′ ≈ �x,c, which implies that
the required condition reads γ � �x,c.

Within the two-level approximation the state vector can be
written as a superposition,

|�(t)〉 = c+(t)
∣∣�[�x=0]

gs,+
〉 + c−(t)

∣∣�[�x=0]
gs,−

〉
, (25)

where c±(t) are complex probability amplitudes. The condition
	i � Nδ, ensures that the system is initially in an eigenstate
of σx , with c+(ti) = 1/

√
2, and c−(ti) = −1/

√
2. The system

evolves from t = ti up to a final time t = tf , such that it ends
up in a phase

	N (g,ω,�x(tf )) = ξ Nδ, (26)

with ξ � 1. In view of (23), the latter condition can be
rewritten as

tm = tf − ti = 1

γ
ln

(
	i

ξNδ

)
. (27)

Thus, up to logarithmic corrections, the measurement time,
tm = tf − ti , is directly governed by the rate γ .

V. QUANTUM METROLOGY PROTOCOL

In this section we focus on the description of the quasiadia-
batic evolution of the system during stage ii of the last section.
We have to solve the quantum evolution of a two-level system
with an exponentially decreasing transverse field, which turns
out to be represented by the Demkov model with coupling
	N (t) = 	ie

−γ (t−ti ) and detuning Nδ [26]. Remarkably, the
solution of the time-dependent Schrödinger equation i d

dt
|�〉 =

Heff|�〉 can be found exactly (see Appendix B).
In the limit xe−γ tm � 1, with x = (	i/2γ ), we obtain

|c+(tf )|2 = 1

2
+ i

π

4

x

cosh
(

πNδ
2γ

)
×{Jν(x)J−ν(x) − Jν−1(x)J1−ν(x)}, (28)

where Jν(x) is a Bessel function of the first kind [27] with ν =
1/2 − iNδ/2γ . For large x � 1 we can use the asymptotic ex-
pansion Jν(x) ∼ √

2/πx{cos(x − πν
2 − π

4 ) + O(x−1)}, which
yields for the zth component of the total angular momentum:

〈Jz(tf )〉 = N

(
|c+(tf )|2 − 1

2

)

≈ −N

2
tanh

(
πNδ

2γ

)
+ O(x−1). (29)

023803-4



ADIABATIC QUANTUM METROLOGY WITH STRONGLY . . . PHYSICAL REVIEW A 88, 023803 (2013)

The result represents the measured signal at tf � γ −1, as a
function of δ. For vanishing perturbation field δ = 0 the final
state is an equal superposition of states (10), which yields
〈Jz〉 = 0. However, for δ �= 0, the parity symmetry of HD

is broken, and consequently, the final probability amplitudes
c±(tf ) are different, which allow us directly to estimate δ by
measuring the collective spin population. Depending on the
ratio between typical values of Nδ and γ we have to distinguish
the following two cases.

A. Quasiadiabatic protocol

For Nδ < γ the system evolution is a quasiadiabatic in
the sense that the dynamics is captured within the two-level
subspace, but nonadiabatic effects within that subspace are
used to estimate δ. Because the symmetry-breaking term Hδ

does not commute with the Dicke Hamiltonian, HD results
in entangled superposition of states (10) with probability
amplitudes, depending on the sign and magnitudes of δ. The
measured signal at time tf is given by Eq. (29) and the variance
of the signal is

〈	2Jz〉1/2 = N

2 cosh
(

πNδ
2γ

) . (30)

The uncertainty in measuring δ is given by

δ̄ = 〈	2Jz〉1/2

|∂〈Jz〉/∂δ| = 2γ

πN
cosh

(
πNδ

2γ

)
, (31)

which is approximated with the Heisenberg-limited precision,
δ̄ ≈ 2γ /πN .

B. Full adiabatic protocol

A different scheme can be devised by choosing a quantum
evolution that is slower than typical values of Nδ. If Nδ � γ ,
the system evolution is dominated by the term Hδ in (1), and
we expect the system to follow the ground state adiabatically
up to |��x=0

gs,+ 〉 for δ > 0 or |��x=0
gs,− 〉 for δ < 0. Thus, we expect

the following approximation to hold:

〈Jz(tf )〉 ≈ −N

2

δ

|δ| . (32)

We elaborate on this observation to devise a quantum
metrological protocol that relies on a single-shot measurement
of the spin population to detect the sign of δ. Let us assume that
our initial knowledge of δ is given by a constant probability
distribution within the interval [−	c,	c]:

P (δ) = 1

2	c

if |δ| � 	c,

(33)
P (δ) = 0 if |δ| > 	c.

Let us define the conditional probability P (δ > δc|Sz =
−N/2) as the probability that δ > −δc if we measure the
value −N/2 of the observable Sz, with δc > 0 and δc < 	c. In
this way, δc is related to the accuracy with which the adiabatic
evolution allows us to measure the sign of the detuning δ.
Similar definitions for the probabilities of values of δ are used

below. We can write

P (δ > −δc|Sz = −N/2) =
∫ ∞

−δc

P

(
δ = δ′

∣∣∣∣Sz = −N

2

)
dδ′.

(34)

The following expression can be obtained by means of Bayes’
theorem:

P

(
δ = δ′

∣∣∣∣Sz = −N

2

)

= P

(
Sz = −N

2

∣∣∣∣δ = δ′
)

P (δ′)
P

(
Sz = −N

2

) , (35)

Finally, taking the limit 	c � δc � γ /N , and using Eq. (29),
we find

P (δ > −δc|Sz = −N/2) = 1 − γ

2	cπN
e
− 2πδcN

γ . (36)

Note that this equation predicts that our quantum metrological
protocol allows us to measure by a single-shot measure-
ment the sign of δ with an error of γ /N ≈ 1/(tmN ) (up
to logarithmic corrections), with tm the measurement time,
Eq. (27). We also emphasize that our method allows one to find
a narrow spectral line even when the field is far detuned—in
contrast to the usual Ramsey spectroscopy, where such a
far-detuned field would not give any directional signature, due
to the oscillation of the Ramsey signal [13].

Finally, we present some numerical results to check the
validity of the two-state approximation used for our quantum
metrological protocol. We compare the analytical result for
〈Jz〉 obtained by the Demkov model with the exact numerical
solution of the time-dependent Schrödinger equation with
Hamiltonian (1). Figure 3(a) shows the measured signal as
a function of δ for various γ . In a quasiadiabatic region, the
signal is well approximated with Eq. (29), while in the full
adiabatic limit the signal tends to a step function, Eq. (32).
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FIG. 3. (Color online) (Color online (a) Mean value of Jz as a
function of δ for ω = 3g, �x(0) = 9g, and N = 4 for various γ . We
compare the numerical solution of the time-dependent Schrödinger
equation with Hamiltonian (1) for γ = 0.02g (triangles), γ = 0.03g

(squares), and γ = 0.04g (circles) with the solution of the two-state
problem, Eq. (28) (solid lines). (b) Scaling of the measured signal as
a function of N , for γ = 0.03g, ω = 10g, and δ = 2.0 × 10−3g. The
(red) circles represent the numerical result, while the solid curve is
the analytical solution, Eq. (29).
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FIG. 4. (Color online) Expectation value of Jz as a function of
γ for ω = 10g, �x(0) = 9g, δ = 2.0 × 10−3g, and various N . The
exact solution for N = 4 (circles), N = 6 (triangles), and N = 8
(squares) is compared with Eq. (28) (solid lines).

In Fig. 3(b) we have checked expression (29) with the
numerical exact result for various N . Finally, in Fig. 4 we
plot the measured signal as a function of γ for various N .
Remarkably, the exact solution follows Eq. (32) for a wide
range of γ . In the limit γ � Nδ the system dynamics become
insensitive to δ in the sense that the signal 〈Jz〉 vanishes.

VI. PHYSICAL IMPLEMENTATION WITH TRAPPED IONS

A linear crystal of trapped ions is an ideal system for the
realization of our quantum metrology protocol. Consider a
chain of N trapped ions with mass M confined in a linear Paul
trap along the z axis with trap frequencies ωq (q = x,y,z).
We assume that the effective spins are two internal states
|↑〉 and |↓〉 with frequency splitting ω0. Our protocol is
intended to measure the detuning of the laser with respect
to ω0, for example, to lock the frequency of the laser to the
atomic internal transition. The interaction-free Hamiltonian
describing the ion chain is given by

H0 =
N∑

i=1

ω0

2
σ z

i +
3N∑
p=1

ωpa†
pap, (37)

where ap and a
†
p are the annihilation and creation operators

of the pth vibration mode of the chain with corresponding
frequency ωp.

We consider that the ion chain is addressed collectively
by means of two pairs of laser beams in a Raman config-
uration as shown in Fig. 5. We assume that the first two
noncopropagating laser beams have a wave-vector difference
	�k1 along the transverse x direction and laser frequency
difference 	ω1,L = ωc.m. − ω, tuned near the center-of-mass
(c.m.) vibrational mode ωc.m. with detuning (ωc.m. � ω). Such
a laser configuration generates a spin-dependent force, which
provides a coupling between the effective spins and the c.m.
mode. The second pair of copropagating lasers with frequency
difference 	ω2,L = ω0 − δ (ω0 � δ) induces a two-photon
Raman transition between the spin states. The Hamiltonian

k2(1)
k1(1)

k2(1)
k1(1)

k1(2)

k2(2)
k1(2)

k
kk1(1)

k (1)2(kk
1(1)

k2(2)2kk

n = 1 
n = 0 

n = 1 
n = 0 

virt

0

FIG. 5. (Color online) Realization of model (1) based on a
trapped ion setup. The linear ion crystal is uniformly addressed
with two Raman laser beams with the wave-vector difference
	�k1 = �k1(1) − �k2(1) pointing along the transverse x direction. Spin-
dependent force is created by tuning the laser frequency close to
the center-of-mass vibrational mode with detuning ω. Additionally,
the ion chain interacts with a pair of copropagating laser beams,
i.e., 	�k2 = �k1(2) − �k2(2) = 0 (no motional dependence), which drive
the two-photon-stimulated Raman transition between |↑〉 and |↓〉
spin states. δ is the laser detuning with respect to the frequency
splitting ω0.

describing the laser-ion interaction becomes [2,28]

HI = �

N∑
i=1

(ei(|	�k1|xi−	ω1,Lt) + H.c.)σ z
i

+�x

N∑
i=1

(e−i	ω2,Lt + H.c.)σx
i , (38)

where � and �x are the respective interaction strengths. Next,
we transform the trapped ion Hamiltonian in the rotating

frame by means of U (t) = e−i{ 1
2 (ω0−δ)

∑N
i=1 σ z

i +∑3N
p=1(ωp−ω)a†

pap}

and assume the Lamb-Dicke limit, which yields

H0 + HI
U (t)−→ HD(ω,�x,g) + Hδ(δ) + H ′(t), (39)

where g = η� is the spin-phonon coupling, with η =
|	�k1|/

√
2Mωc.m. being the Lamb-Dicke parameter (η � 1).

Here H ′(t) describes fast-rotating terms that can be neglected
as long as |ω0 + ω2,L| � �x and |ωc.m. − ωp �=c.m.| � g,ω,
respectively [10,28]. The first condition is the usual opti-
cal rotating-wave approximation, which ensures a pure σx

interaction. The second condition ensures that within the
motional rotating-wave approximation, all vibration modes
can be neglected except the c.m. mode. We note that the
energy splitting from the c.m. mode to the energetically nearest
rocking mode ωroc determines the time scale on which the c.m.
can be resolved. For longer ion chains the vibrational levels
become energetically closer, such that the c.m. addressability
imposes a restriction on N . Indeed, for a given aspect ratio
ωz/ωx there is a maximum value of the number of ions, for
which the ion chain undergoes a structural phase transition
into a zigzag phase [29]. We find that the vibrational gap
	c.m = ωc.m. − ωroc scales with the maximum number of
ions like 	c.m./ωx ≈ 0.6228 log(6N )/N2; for more details
see [10]. For example, consider an ion chain with N = 10
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and trap frequency ωx = 10 MHz, which leads to 	c.m. ≈
255 kHz.

Typical values in trapped ion systems could consist of
a spin-phonon coupling g = 30 kHz and effective boson
frequency ω = 90 kHz. This choice corresponds to the results
presented in Fig. 3. For N = 10 and γ = 0.1g we estimate that
the initial state is transformed into the final state, (25), with
probability amplitudes given by Eq. (28) for approximately
23 ms, which is comparable with the experimentally measured
coherence time in typical trapped ion setups [30,31]. Further
increase in the coherence time can be achieved by usin eitherg
magnetic-insensitive clock states [32] or decoherence-free
qubit states [33]. Finally, the collective spin population can
be measured by laser-induced fluorescence, which is imaged
on a CCD camera.

It is essential for our protocol to rely on a σ z spin-phonon
coupling that yields the parity symmetric Hamiltonian HD.
Additionally, ac-Stark shifts have to be reduced to the point
where they are neglected compared to the sensitivity in
the estimation of the detuning δ, but fluctuations in the
laser intensity will limit the cancellation of those terms.
A particularly well-suited configuration to achieve both σ z

coupling and cancellation of ac-Stark shifts is provided by ions
trapped in Penning traps (see, for example, the scheme shown
in [7]), where a σ z interaction together with the cancellation
of ac-Stark shifts is achieved with the proper configuration of
laser polarizations. We also emphasize that a protocol very
similar to the one introduced here could be used for estimation
of a displacement term, δ

∑
j (aj + a

†
j ), the latter playing the

role of a symmetry-breaking perturbation. This could allow
us to devise adiabatic quantum metrological schemes for
ultrasensitive detection of forces [34].

VII. CONCLUSIONS AND OUTLOOK

We have studied the process of symmetry breaking of a
discrete symmetry due to the presence of a small perturbation
field in a system described by the Dicke Hamiltonian. We
have shown that quasiadiabatic evolution in this system
induces a quantum metrology protocol, which is Heisenberg
limited. Our many-body Ramsey spectroscopy protocol can
be implemented with linear ion crystals, where the symmetry-
breaking field is controlled by the laser detuning to the
respective qubit transition. The realization of the proposed
quantum metrology protocol is not restricted to trapped ions
but could be implemented with other experimental setups such
as cavity [35] or circuit QED [36] systems.

We highlight a few advantages of our idea with respect
to current approaches to quantum metrology. (i) Our method
does not require quantum gates, since it is induced by always-
on interactions. (ii) In principle, our work does not rely on
effective spin-spin interactions mediated by auxiliary photonic
or bosonic fields. On the contrary, our adiabatic process may
also work in a regime in which g � ω, such that the final
state is not a pure state of qubits, but an entangled spin-boson
state instead. (iii) Since our method mainly relies on symmetry
considerations, it should be robust with respect to perturbations
to HD that respect the parity symmetry. (iv) We note that our
method allows us to get information about δ with a single-shot
measurement in the full adiabatic scheme.

We also remark that the scheme presented here shares
some of the limitations of standard protocols with quantum
metrology with NOON states [37]. In particular, our method
would not confer any advantage if the measurement time were
limited by decoherence. Also, an important limitation of our
scheme is the fact the spin-boson interactions have to be fully
parity symmetric, any deviation from that symmetry being a
potential source of error in the achieved accuracy.

We finish with an outlook of possible research directions
motivated by this work. We have presented a very specific
study relying on a model belonging to the long-range Ising
universality class. It would be very interesting to explore
scalings related to similar quantum metrology protocols with
different universality classes and symmetries, like those that
can be simulated with trapped ions, for example [4,38,39].
Also, one could study quantum dissipative phase transitions
[40,41] in addition to the evolution of closed quantum
systems presented here. Finally, although we have presented
an example with trapped ions and frequency estimation, one
could also think of applications to measure forces or magnetic
fields, for example.
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APPENDIX A: CALCULATION OF THE GAP
FOR THE DICKE MODEL

For �x = 0, the energy spectrum of the Dicke Hamiltonian
HD can be analytically carried out by a simple canonical
transformation, namely,

H̃ = D†(α)HDD(α) = ωa†a − 4

(
g2

Nω

)
J 2

z , (A1)

with the displacement operator defined by

D(α) = exp (αa† − α†a), α = −2

(
g

ω

)
Jz√
N

. (A2)

The eigenvalues and eigenvectors of HD are

En,m = nω − g2N

ω

(
m

N/2

)2

(A3)

and

|
n,m〉 = D(α)|j,m〉|n〉b. (A4)

Here, the Hilbert space of the system consists of the state
{|j,m〉 ⊗ |n〉b}, where |j,m〉 (m = −j, . . . ,j ) are the Dicke
states, �J 2|j,m〉 = j (j + 1)|j,m〉, Jz|j,m〉 = m|j,m〉, and |n〉b

is the Fock state of the bosonic-field mode with occupation
number n. The energy spectrum of HD is a double degenerate
with ground-state energy Egs,∓ = −N (g2/ω) and correspond-
ing eigenvectors

∣∣�[�x=0]
gs,±

〉 = D(α±)

∣∣∣∣N2 , ± N

2

〉
|0〉b, (A5)

with α± = ∓√
N (g/ω).
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The term �xJx splits the degeneracy of the energy spectrum and thus creates an effective coupling between the
states |
n,±m〉. Assuming �x � g,ω, the effect of the latter can be treated by perturbation theory. The splitting between the two
lowest energy eigenstates is given by

	N (g,ω,�x) = 2�N
x

∣∣∣∣∣
∑

n1,n2,...,nN−1

〈�gs,−|Jx

∣∣
n1,− N
2 +1

〉〈

n1,− N

2 +1

∣∣Jx

∣∣
n2,− N
2 +2

〉 · · · 〈
nN−1,
N
2 −1

∣∣Jx |�gs,+〉(
Egs,− − En1,− N

2 +1

)(
Egs,− − En2,− N

2 +2

) · · · (Egs,− − EnN−1,
N
2 −1

)
∣∣∣∣∣ . (A6)

(We assume �x = 0 for state vectors and energies in the latter expression and in the rest of this Appendix.) For weak coupling
g � ω the bosonic mode is only virtually excited in the sense that it only transmits the effective spin-spin interaction. This allows
us to simplify Eq. (A6) as follows:

	N (g,ω,�x) = 2�N
x

∣∣∣∣∣
〈�gs,−|Jx

∣∣
0,− N
2 +1

〉〈

gs,− N

2 +1

∣∣Jx

∣∣
0,− N
2 +2

〉 · · · 〈
0, N
2 −1

∣∣Jx |�gs,+〉(
Egs,− − E0,− N

2 +1

)(
Egs,− − E0,− N

2 +2

) · · · (Egs,− − E0, N
2 −1

)
∣∣∣∣∣ . (A7)

Using, Eqs. (A3) and (A4) the energy gap, (A7), reads

	N (g,ω,�x) = 2e−2( g

ω
)2 NN+1

2N�(1 + N )
�x

(
�x

�x,c

)N−1

. (A8)

The asymptotic behavior of 	N (g,ω,�x) for large N can be
derived by using Stirling’s formula �(1 + z) ∼ √

2πzzze−z,
which yields

	N (g,ω,�x)

�x

∼
√

2

π
e−2( g

ω )2
(

�x,c

�x

) √
Ne−N{ln( 2�x,c

�x
)−1}.

(A9)

We note that the finite-size correction to the energy gap at the
critical point is presented in [42].

APPENDIX B: EXACT SOLUTION
OF THE DEMKOV MODEL

The two-state problem consists of the following system of
differential equations:

iċ+(t) = Nδ

2
c+(t) + 	N (t)

2
c−(t),

(B1)

iċ−(t) = −Nδ

2
c−(t) + 	N (t)

2
c+(t).

Here Nδ is a constant, while the effective coupling depends on
time 	N (t) = 	ie

−γ t , which reduces the two state-problem to
the Demkov model. We seek the solution of Eq. (B1) assuming
the initial conditions c+(0) = 1/

√
2 and c−(0) = −1/

√
2. The

latter correspond to the ground state of Hamiltonian (14) in the
limit 	i � Nδ.

System (B1) can be decoupled by differentiating with
respect to t , which yields

c̈+(t) + γ ċ+(t) +
{(

Nδ

2

)2

+ i
γNδ

2
+ 	2

i

4
e−2γ t

}
c+(t) = 0,

c̈−(t) + γ ċ−(t) +
{(

Nδ

2

)2

− i
γNδ

2
+ 	2

i

4
e−2γ t

}
c−(t) = 0.

(B2)

Next, we introduce a dimensionless time z = xe−γ t with
x = 	i/2γ , which transforms the set of Eqs. (B3) to

z2c̈+(z) +
{
z2 +

(
Nδ

2γ

)2

+ i

(
Nδ

2γ

)}
c+(z) = 0,

(B3)

z2c̈−(z) +
{
z2 +

(
Nδ

2γ

)2

− i

(
Nδ

2γ

)}
c−(z) = 0.

The solution can be written as [27]

c+(z) = √
z{a1Jν(z) + a2J−ν(z)},

(B4)
c−(z) = √

z{b1J1−ν(z) + b2Jν−1(z)}.
Here Jν(z) is a Bessel function of the first kind [27] with
ν = 1/2 − iNδ/2γ . The constants a1,2 and b1,2 can be
determined by the initial conditions at t = 0. We find

c+(t) = π

2
√

2

e− γ t

2 x

cosh
(

πNδ
2γ

) {a1Jν(xe−γ t ) + a2J−ν(xe−γ t )},

(B5)

with

a1 = J1−ν(x) − iJ−ν(x), a2 = Jν−1(x) + iJν(x), (B6)

and |c−(t)|2 = 1 − |c+(t)|2.
In the limit xe−γ tf � 1 one can derive an asymptotic form

of the probability |c+(tf )|2 by using Jν(z) ∼ 1
�(1+ν) (z/2)ν ,

which yields

|c+(tf )|2 = 1

2
+ i

π

4

x

cosh(πNδ
2γ

)

×{Jν(x)J−ν(x) − Jν−1(x)J1−ν(x)}. (B7)

In the above expression we have used the identities
�(ν)�(1 − ν) = π/ sin(πν) and Jν−1(x)J−ν(x) + Jν(x)
J1−ν(x) = 2 sin(πν)/πx, respectively. Finally, for x � 1 and
x � |ν2 − 1/4| the Bessel function has the asymptotic form
Jν(x) ∼ √

2πx cos(x − πν
2 − π

4 ), which gives

|c+(tf )|2 = 1

2
− 1

2
tanh

(
πNδ

2γ

)
. (B8)

023803-8



ADIABATIC QUANTUM METROLOGY WITH STRONGLY . . . PHYSICAL REVIEW A 88, 023803 (2013)

[1] J. I. Cirac and P. Zoller, Nat. Phys. 8, 264 (2012).
[2] C. Schneider, D. Porras, and T. Schaetz, Rep. Prog. Phys. 75,

024401 (2012).
[3] R. Blatt and C. F. Roos, Nat. Phys. 8, 277 (2012).
[4] D. Porras and J. I. Cirac, Phys. Rev. Lett. 92, 207901 (2004).
[5] A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and

T. Schaetz, Nat. Phys. 4, 757 (2008).
[6] R. Islam et al., Nat. Comm. 2, 377 (2011).
[7] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K.

Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, Nature
(London) 484, 489 (2012).

[8] D. Porras, P. A. Ivanov, and F. Schmidt-Kaler, Phys. Rev. Lett.
108, 235701 (2012).

[9] A. Bermudez and M. B. Plenio, Phys. Rev. Lett. 109, 010501
(2012).

[10] P. A. Ivanov, D. Porras, S. S. Ivanov, and F. Schmidt-Kaler,
J. Phys. B: At. Mol. Opt. Phys. 46, 104003 (2013).

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222
(2011).

[12] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96,
010401 (2006).

[13] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen,
Phys. Rev. A 50, 67 (1994).

[14] J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen,
Phys. Rev. A 54, R4649 (1996).

[15] D. Leibfried, M. D. Barrett, T. Schaetz, J. Chiaverini, W. M.
Itano, D. J. Jost, C. Langer, and D. J. Wineland, Science 304,
1476 (2004).

[16] C. F. Roos, M. Chwalla, K. Kim, M. Riebe, and R. Blatt, Nature
443, 316 (2006).

[17] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, 2001).

[18] E. Peik, T. Schneider, and C. Tamm, J. Phys. B: At. Mol. Phys.
39, 145 (2006).

[19] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[20] B. Garraway, Phil. Trans. Roy. Soc. A 369, 1137 (2011).
[21] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Nature

464, 1301 (2010).

[22] K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger,
Phys. Rev. Lett. 107, 140402 (2011).

[23] K. Hepp and E. H. Lieb, Phys. Rev. A 8, 2517 (1973).
[24] C. Emary and T. Brandes, Phys. Rev. Lett. 90, 044101

(2003).
[25] A. Messina and F. Persico, Phys. Rev. A 13, 367

(1976).
[26] N. V. Vitanov, J. Phys. B: At. Mol. Opt. Phys. 26, L53 (1993).
[27] M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions (Dover, New York, 1964).
[28] P. Nevado and D. Porras, Eur. Phys. J. S. T. 217, 29 (2013).
[29] S. Fishman, G. De Chiara, T. Calarco, and G. Morigi, Phys. Rev.

B 77, 064111 (2008).
[30] J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, Nat. Phys.

4, 463 (2008).
[31] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg,

W. A. Coish, M. Harlander, W. Hänsel, M. Hennrich, and
R. Blatt, Phys. Rev. Lett. 106, 130506 (2011).

[32] L. Aolita, K. Kim, J. Benhelm, C. F. Roos, and H. Häffner,
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