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Dissipative optomechanical coupling between a single-wall carbon nanotube
and a high- Q microcavity
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We theoretically investigate optomechanical coupling between a single-wall carbon nanotube and a high-Q
whispering gallery microcavity. The anisotropy in the refractive index of the nanotube results in polarization-
sensitive optomechanical coupling. Moreover, the band structure of the nanotube leads to a strong dependence
of the coupling strength on wavelength. In particular, strong and pure dissipative coupling can be achieved at the
absorption resonance frequency of the nanotube, and the single-photon coupling strength can exceed 10 kHz.
This strong coupling induces dissipative cooling of the nanotube oscillation, and ground-state cooling can be
achieved.
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I. INTRODUCTION

Interactions between optical fields and mechanical res-
onators have been developing rapidly [1,2]. This type of
light-matter interaction allows the manipulation of mechanical
and optical quantum states at the same time. On the one
hand, ground-state cooling of the mechanical mode has been
achieved with recent developments in nanofabrication [3],
leading to intense studies on the generation and measurement
of mechanical quantum states at the mesoscale [4–7], and
recent developments are pushing the cooling limit forward
while accelerating the cooling process [8,9]. On the other
hand, the nonlinear optical response of microcavities due
to the interaction with mechanical resonators has also been
investigated recently. Nonlinear optical effects such as optome-
chanically induced transparency [10–12], four-wave mixing
[13,14], and photon blockade [15,16] were analyzed, all
of which are of central importance in both fundamental
studies of nonlinear optics and applied fields such as quantum
information processing [17,18] and various high-resolution
sensing protocols [19].

There are two types of optomechanical coupling, the
dispersive coupling, where the displacement of the mechanical
resonator modulates the resonant frequency of the optical
cavity, and the dissipative coupling, where the displacement
of the mechanical resonator modulates the damping rate of
the optical cavity. Recent studies have found that dissipative
coupling can cool the mechanics at blue detuning, and is able
to achieve ground-state cooling without the resolved sideband
limit [20,21]. Moreover, when the strength of both types of
coupling are properly tuned, the destructive interference allows
the backaction to mimic a zero-temperature environment [21].
A recent study has also shown the application of dissipative
coupling in particle sorting and speed rectification [22].
However, it is difficult to construct systems in which dissipative
coupling dominates, since dispersive coupling is usually much
stronger than dissipative coupling in traditional systems.
Current proposals on this issue are limited to waveguide-cavity
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coupling [23] and the Michelson-Sagmac interferometer [20].
Here we propose an optomechanical system comprising a
semiconducting carbon nanotube (CNT) and a whispering
gallery mode (WGM) microcavity. CNTs have characteristic
band structures and a strong reliance of polarizability on
wavelength [24]. The variable refractive index and absorp-
tion of CNTs in the range from the near infrared to the
ultraviolet open up a new toolbox for tunable dispersive
and dissipative optomechanical coupling, and enable pure
dissipative coupling at the absorption resonance frequency.
Moreover, with the sensitivity of the CNT band structure and
optical conductivity on the external static fields, it is possible
either to manipulate the coupling by applying a static field,
or to use the system as a sensitive detector. Experimentally,
CNT-based mass sensors and strain sensors have been inves-
tigated [25,26], with the detection limit down to a proton’s
mass.

Previous investigations on CNTs in optomechanical sys-
tems mainly exploit the phonon-exciton coupling along with
the photon-exciton interaction to produce optomechanical
coupling [27,28]. This approach requires a strong static inho-
mogeneous electric field, and the coupling is dispersive. Here
we investigate the coupling of CNTs to WGM microcavities,
where distance-dependent polarization and absorption induces
a strong tunable optomechanical interaction. CNT mechanical
resonators are favorable for achieving the strong-coupling
regime because of their ultrasmall weight and large zero-
point fluctuation. The performance of dissipative cooling
and heating is investigated and ground-state cooling can be
achieved under cryogenic temperature.

This paper is organized as follows. In Sec. II, we introduce
the optomechanical system, and present the mechanical eigen-
frequency and electron band structure of the semiconducting
zigzag carbon nanotube. Section III describes the frequency
and linewidth modulation induced by the carbon nanotube, and
the optomechanical coupling therein. Factors which determine
the coupling strength, including the chiral index and length
of the single-wall carbon nanotube (SWNT), pump frequency,
and polarization, are discussed. The full quantum Hamiltonian
for the optomechanical system is derived at the end of this
section. In Sec. IV the dissipative optomechanical coupling is
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FIG. 1. (Color online) Schematic of the optomechanical system.
Inset: Illustration of the CNT lattice. Yellow (light gray) and blue
(dark gray) dots denote sublattices A and B, respectively.

applied to cool the nanotube. We demonstrate that ground-state
cooling is achievable with a pump power of 10 mW.

II. MODEL

The proposed system consists of a microtoroid optical
resonator and a single-wall carbon nanotube (SWNT), as
shown in Fig. 1. The axis of the nanotube lies along the
Z axis in the vicinity of the optical resonator. The microtoroid
resonator has a major diameter of 20 μm and a minor diameter
of around 3 μm, and the fundamental modes possess a quality
factor on the order of 108. The SWNTs that we consider
are semiconducting zigzag ones with a diameter below 1 nm.
The mechanical flexural modes have frequencies ranging from
10 MHz to 1 GHz depending on the radius and length of the
nanotube, as predicted by the classical beam model [29]

fn = β2
n

4π

R

L2

√
E

ρ
, (1)

where β2
1 = 22.37, β2

2 = 61.74, . . . , R and L are the radius
and length of the nanotube, E = 1 TPa is the Young’s module,
and ρ = 2.2 g/cm3 is the density.

To obtain the optical properties of a SWNT, we need to
investigate the SWNT electron band structure. A SWNT is a
rolled-up single-layer graphene, in which each atom forms
three σ bonds with its neighbors and keeps one electron
unpaired. The unpaired electrons interact with each other to
form a delocalized π orbital. Since the excitation energy is
smaller for π electrons than for σ electrons, for an optical field
in the visible and infrared regimes we can only take π electrons
into consideration. Under a tight-binding approximation the
Hamiltonian of π electrons in a SWNT can be expressed
as [30]

H0 = −γ0

∑
i,j

(α†
i βj + H.c.), (2)

where α
†
i , αi , β

†
j , and βj are the creation and annihilation

operators for electrons from sublattices A and B (yellow and
blue dots in Fig. 1), respectively. The subscripts i and j refer
to nearest neighbors. γ0 is the electron hopping rate which
characterizes the interaction strength between electrons, γ0 =
2.89 eV.

The eigenfunctions of H0 for valence and conductance
bands, respectively, are denoted as |�v(μ,k)〉 and |�c(μ,k)〉,

|�c,v(μ,k)〉 = C
c,v
A (μ,k)

1√
N

∑
rA

eik·rAPz(r − rA)

+C
c,v
B (μ,k)

1√
N

∑
rB

eik·rBPz(r − rB), (3)

where k = μ 2π
na

eθ + kez is the wave vector, a = 0.246 nm
represents the length of the translation vector in graphene,
n denotes the number of atoms in the circumference of
the nanotube, and μ = −(n − 1), − (n − 2), . . . ,0, . . . ,n. Pz

is the localized orbital for π electrons, N expresses the
number of graphene unit cells in the nanotube, and CA,CB

are the coefficients in the expansion of the eigenstates. The
corresponding eigenenergy for the conductance and valence
bands, Ec and Ev, are

Ec,v = ±γ0

∣∣∣∣∣∣
3∑

j=1

eik·(rBj−rA)

∣∣∣∣∣∣ , (4)

where Bj (j = 1,2,3) are the nearest neighbors of atom A.

III. CAVITY-NANOTUBE COUPLING

When the SWNT is positioned in the vicinity of a WGM
optical cavity, it will be polarized by the optical field, and
will modify the resonance frequency and linewidth of the
optical cavity. This process is described by the semiclassical
interaction Hamiltonian Hi = er · E. Using the perturbation
theory, the diagonal components of the susceptibility of the
SWNT are [24]

χii(ω) = 2

ε0V

∑
μ′,μ,k′,k

|〈�c(μ′,k′)|eri|�v(μ,k)〉|2

× Ecv

E2
cv − (h̄
)2

, (5)

with Ecv = Ec(μ′,k′) − Ev(μ,k), 
 = ω + i/τ , and τ ≈
10−13 s is the lifetime of electrons in the conductance band. ε0

represents the vacuum permittivity and V the volume of the
SWNT.

As the axis of the nanotube lies along the Z axis, the
matrix element 〈�c(μ′,k′)|z|�v(μ,k)〉 is nonzero only when
μ′ = μ, and 〈�c(μ′,k′)|x|�v(μ,k)〉, 〈�c(μ′,k′)|y|�v(μ,k)〉
are nonzero only when μ′ = μ ± 1. This selection rule leads
to the differences between χzz(ω) and χxx(ω), as shown in
Fig. 2. The peaks correspond to resonances of the interband
transitions, and their positions differ for χzz and χxx. The
magnitude of χxx(ω) is usually smaller than that of χzz(ω) since
the dipole moment 〈�c(μ′,k′)|x|�v(μ,k)〉 is generally smaller.
Moreover, the real part of the susceptibility goes to zero at
a wavelength that is slightly shorter than that at which the
imaginary part reaches the maximum, and the tiny difference
is proportional to the square of the electron decay rate 1/τ . At
these points, we can realize pure dissipative coupling of the
optomechanical system.

The polarization of SWNT will modulate the local electric
field and will therefore alter the photon energy and lifetime.
The resulting frequency shift and extra linewidth of the cavity
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FIG. 2. (Color online) Real (black solid lines) and imaginary
(blue dashed lines) parts of (a) χxx(ω) and (b) χzz(ω). The parameters
are γ0 = 2.89 eV and τ = 10−13 s.

mode can be expressed as

�ω + i�κ = ωc

2

∑
i

∫
V

ε0[εr,ii(ω) − 1]|Ei(r)|2dr∫
V0

ε|E(r)|2dr
, (6)

where V0 is the volume of the optical cavity. The real part
corresponds to the frequency shift while the imaginary part
corresponds to extra broadening of the line shape. The relation
between the dielectric function ε and the susceptibility χ

is [31]

εr,zz(ω) = 1 + χzz(ω),

εr,xx(ω) = 1 + χxx(ω)

1 + χxx(ω)/2
, (7)

εr,yy(ω) = 1 + χyy(ω)

1 + χyy(ω)/2
.

It is different for parallel and perpendicular polarization
because the screening effect is negligible for parallel po-
larization but not for the perpendicular case. The screened
dielectric function εr,xx,yy is almost a constant εr,xx,yy ≈ 3
and is much smaller than εr,zz. As a result, the SWNT-cavity
coupling depends on the polarization of the cavity mode. In
the transverse electric (TE) mode, Ey dominates while the Ex

and Ez components are negligible. Therefore, the contribution
of εr,yy plays the leading role, which means constant dispersive
coupling, while in the transverse magnetic (TM) mode, Ex and
Ez have approximately the same magnitude and Ey is much
weaker. As εr,xx is much smaller than εr,zz, we only need to
take εr,zz into consideration.

Since the susceptibility of SWNTs is irrelevant to tube
length, the coupling between nanotubes and the microtoroid
cavity will increase with tube length, because the interaction
volume will be enlarged. When the tube is much shorter
than the size of the cavity, the electric field around the
nanotube can be treated as constant, thus �ω and �κ will
increase linearly with tube length. When the tube length is on
the same order with, or much longer than, the major diameter
of the cavity, the electric field decreases at the ends of the

FIG. 3. (Color online) Frequency shift (black solid line) and extra
linewidth (blue dashed line) of the optical mode coupled to SWNTs
with chiral index (7,0), (8,0), (10,0), respectively. The length of
the SWNTs is 1 μm. The distance between the SWNT and the
microcavity is 30 nm.

nanotube, and therefore the increase in �ω and �κ slows
down and approaches zero.

A comparison of �ω and �κ for a series of zigzag
nanotubes is provided in Fig. 3. Nanotubes with different
chiral indices possess different resonance peaks. For zigzag
nanotubes (n,0), the absorption resonance will generally
redshift with increasing tube diameter. This can be explained
by the nanotube band structure, as the band gap decreases
with increasing chiral index. This special property of SWNTs
allows for strong dissipative coupling in a wide range of
wavelengths using different nanotubes in the SWNT family.
In addition, when external fields are applied to modify the
nanotube band structure, we can fine tune the coupling between
the SWNT and the microcavity.

When we take the vibration of the SWNT into consid-
eration, the frequency shift and extra linewidth depend on
the displacement of the SWNT. We focus on the case of
pure dissipative coupling between nanotubes and the cavity
TM mode. This kind of coupling can be achieved when
Re[χzz(ω)] = 0 and the absorption is near its maximum (e.g.,
see the red arrow in Fig. 3). Due to the evanescent nature of
the optical field outside the cavity, the field amplitude at the
nanotube E(x) decreases exponentially with its displacement
x, E(x) = E(0) exp(−x/d0). Therefore, qualitatively, the extra
linewidth induced by the SWNT scales with exp(−2x/d0).
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FIG. 4. (Color online) (a) Extra linewidth and (b) static coupling
strength induced by distance-dependent SWNT absorption. SWNT
chiral index (8,0), length L = 1 μm. Microcavity major diameter
D = 20 μm, minor diameter d = 2.7 μm. Inset: Illustration of the
distance x.

The extra linewidth �κ and static coupling strength Gs =
|d(�κ)/dx| for several dissipative coupling modes are shown
in Fig. 4. Typically, at a distance x = 15 nm and wavelength
λ = 510 nm, the coupling strength is Gs ≈ 0.4 MHz/nm.

Realistically, each part of the SWNT will not have a uniform
displacement due to clamping at the ends of the nanotube.
Therefore, to be more quantitative, we need to consider the
displacement field for the nanotubes’ fundamental flexural
mode, U (l,t) = u0(t) cos(πl/L), where l is the coordinate
along the nanotube’s axis and L is the length of the nanotube.
In this case the extra linewidth of the cavity mode is

�κ = iωc

2

Im[χii(ω)]ε0πR2
∫ L/2
−L/2 |Ei(x + U (l,t))|2dl

ε|Emax|2Vcav

= iωc

2

Im[χii(ω)]ε0V

ε|Emax|2Vcav

[
Ei

(
x + 2

π
u0(t)

)]2

. (8)

Here Vcav = ∫
V0

|Er|2dr/|Emax|2. Therefore the effective dis-

placement for an oscillating nanotube is 2
π
u0(t), and the

dynamic coupling coefficient is Gd = d�κ/du0 = 2
π
Gs. The

single-photon coupling rate is given by g1 = x0Gd, and x0 =√
2h̄/mωm is the zero-point fluctuation. For a nanotube with

chiral index (8,0) (diameter 0.63 nm) and length L = 1 μm,
the mechanical resonance frequency for the fundamental
flexural mode is ωm = 2π × 12 MHz, m = 1.5 × 10−6 pg,
x0 = 43 pm, thus achieving g1 ≈ 11 kHz at a distance of
15 nm and wavelength 510 nm.

Based on the above analysis we can derive the full
quantum Hamiltonian for the optomechanical system. Under
a TM-polarized field, the eigenstate of the free SWNT
Hamiltonian |�c(μ,k)〉 will couple selectively to the eigen-
state |�v(μ,k)〉. Therefore the semiclassical photon-electron
interaction Hamiltonian Hi = er · E is equivalent to

Hi = eE(x)
∑
μ,k

〈r(μ,k)〉

×[|�c(μ,k)〉〈�v(μ,k)| + |�v(μ,k)〉〈�c(μ,k)|]. (9)

We model each pair of eigenstates sharing the same wave
vector as the ground state and excited state of a two-level atom,
and define the operators σω = |�v(μ,k)〉〈�c(μ,k) and σ z

ω =
1
2 [|�c(μ,k)〉〈�c(μ,k)| − |�v(μ,k)〉〈�v(μ,k)|], where ω =
Ecv(μ,k)/h̄. In addition, we quantize the optical field of the

microcavity E = 1
2 [âu(r) + â†u∗(r)], and thus the Hamilto-

nian becomes Hi = √
κω(x)(a + a†)

∑
ω(σω + σ †

ω). Here we
approximate the slowly varying function r(μ,k) as a constant,
and κω is only dependent on the SWNT displacement x.
Expanding κω to first order and retaining only the near-
resonant processes, we obtain the full Hamiltonian for the
optomechanical system, which also comprises the energy of
optical field, mechanical oscillation, and electrons:

H = ωca
†a + ωmb†b +

∑
ωσ z

ω

+
∑ √

κω(a†σω + σ †
ωa)[1 + gκ (b + b†)]

+
∫

ωa†
ωadω + √

κc

∫
(a†

ωa + aωa†), (10)

where b†,b are the creation and annihilation operators of the
SWNT mechanical mode, gκ = 2

π
1
E

dE
dx

x0√
2d0

= 2
π

1√
2

x0
d0

. The
last term in the Hamiltonian describes the optical pumping.
Since the relaxation rate of electrons in the carbon nanotube
is around 1013 Hz [32], the pump light is usually not strong
enough to change the population of electrons, i.e., σ z

ω ≈ −1/2.
Using the input-output formalism, which is similar to the
perturbation theory approach taken above, the Hamiltonian
can be simplified to

H = ωca
†a + ωmb†b + √

κc(a†
ina + aina

†)

+√
κω(a†σin + σ †

ina)[1 + gκ (b + b†)]

−i
{
κc + 1

2�κ0[1 + 2gκ (b + b†)]
}
, (11)

where �κ0 is the induced extra linewidth when the SWNT is
at its static position, plotted in Fig. 4(a). gκ�κ0 = g1 is the
single-photon coupling rate obtained earlier in this section.
ain = ∫ ∞

0 aω(t = 0)dω and σin = ∫ ∞
0 σω(t = 0)dω are the

pump light and electron coherence, respectively.

IV. DISSIPATIVE COOLING OF NANOTUBES

In the following, we explore the dissipative cooling of the
nanotube. In the rotating frame, the Langevin equation of the
optomechanical system can be written as

ȧ = −(iδ + κc)a − i
√

2κcain − i
√

κωσin[1 + gκ (b + b†)]

−ζa[1 + 2gκ (b + b†)],

ḃ = −(iωm + γm)b − i
√

2κmbin − igκ

√
κω(a†σin + σ †

ina).

(12)

Here ζ = 1
2�κ0. The steady-state solution of the intracavity

field is

ā = −i
√

2κcāin − i
√

κωσ̄in

iδ − κc − ζ
. (13)

We extend this formalism by writing a = ā + δa, and after
transforming the differential equation to the frequency domain,
i.e., a(ω) = ∫ +∞

−∞ δa(t)e−iωtdt , Eq. (12) becomes

(iδ − iω + κc + ζ )a(ω) = −i
√

2κcain(ω) − i
√

κωσin(ω)

− i
√

κωσ̄ingκ [b(ω) + b†(ω)]

− 2ζ āgκ [b(ω) + b†(ω)],

(iωm − iω + γm)b(ω) = −i
√

2κmbin(ω) − ix0F (ω),
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FIG. 5. (Color online) Force noise spectral density for pure
dissipative or dispersive coupling. The black solid line corresponds
to pure dispersive coupling with δ = −ωm,κc = ωm, the short-dashed
blue curve to pure dissipative coupling with δ = −ωm,κc = ωm,
and the long-dashed red curve to pure dissipative coupling with
δ = −3ωm,κc = ωm. Each spectrum has been scaled by its maximum.

F (ω) = gκ

√
κω

x0
[ā∗σin(ω) + a†(ω)σ̄in

+ āσ †
in(ω) + a(ω)σ̄ ∗

in]. (14)

Here F (ω) is the backaction force on the nanotube, and the
force noise spectrum SFF (ω) = 〈F (ω)F (−ω)〉 determines the
damping and heating of the mechanics. When the optomechan-
ical coupling is weak, the optically induced damping is given
by γo = x2

0 [SFF (ω) − SFF (−ω)]. According to Eqs. (13) and
(14), the force noise spectrum is

SFF (ω) = g2
κ

x2
0

{
2κcκω

(ω − δ)2 + κ ′2
c

|σ̄in|2

+ κω

δ2 + κ ′2
c

∣∣∣∣ i(ω − 2δ)

i(ω − δ) − κ ′
c

√
κωσ̄ ∗

in + i
√

2κcā
∗
in

∣∣∣∣
2}

,

(15)

where κ ′
c = κc + Re(ζ ). Since |āin| 
 |σ̄in|, the first term in

the force noise spectrum can be omitted. The force noise
spectrum shows a Fano-like line shape which is typical for a
dissipative optomechanical coupling [21], as demonstrated in
Fig. 5. Recall that SFF (ω) is a simple Lorentzian for dispersive
coupling, and this difference accounts for the cooling and

FIG. 6. (Color online) Optical damping as a function of de-
tuning δ. The blue (γo > 0) and pink (γo < 0) areas correspond
to cooling and heating, respectively. Input power P = 5 pW
and other parameters are gκ = 1.77 × 10−4, [ζ,κc,ωm,γm,κω] =
[7.5 MHz,1 MHz,2π × 12 MHz,2π × 80 Hz,2.58 × 1018 Hz].

FIG. 7. (Color online) Steady-state phonon number as a function
of detuning δ and pump power.

heating regions shown in Fig. 6. At small detunings, γo =
x2

0 [SFF (ωm) − SFF (−ωm)] has opposite signs for the Fano-
like line shape and Lorentzian line shape, thus dissipative
coupling cools the mechanical oscillation at blue detuning,
which is different from pure dispersive coupling. However,
at large detunings δ > 2ω, the maximum of SFF (ω) moves
toward large |ω|, as demonstrated by the red line in Fig. 5, and
γo has the same sign as that of pure dispersive coupling, thus
cooling occurs on the red detuned side.

The steady-state phonon number can be termed as n =
(nthγm + noptγo)/(γm + γo), where γo is the optical damping,
and nopt denotes the phonon number induced by the optical
force. Under the condition

√
2κcāin 
 √

κωσ̄in, the optical part
can be derived and simplified to

nopt = g2
κ2κc|āin|2

γo
(
κ ′2

c + δ2
)κωD, (16)

where D denotes the density of states near the pump light fre-
quency. For a 2-μm-long (8,0) SWNT at wavelength 510 nm,
D = 1.64 × 10−13 Hz−1. Other parameters in our system
are ζ = 15 MHz, gκ = 2.5 × 10−4, κc = 1 MHz, ωm = 2π ×
3 MHz, γm = 2π × 20 Hz [33], κω = 2.58 × 1018 Hz. Under
cryogenic temperature Tenv = 0.15 K, ground-state cooling
can be achieved with a pump power of around 10 mW, as
shown in Fig. 7. Under room temperature, the phonon number
can also be greatly suppressed from nth to several hundred.

In addition, the absolute value of optical damping at red
detuning will be much larger than mechanical damping even
with a pump power below P = 1 pW, resulting in regenerative
oscillation. In this way we can explore the mechanical
properties of nanotubes at the nonharmonic oscillation regime
through its signature in the transmission of the optical cavity.

V. CONCLUSION

We have studied optomechanical coupling between a
single-wall carbon nanotube and a WGM microcavity. The
anisotropy in the polarizability and absorption of the nanotubes
lead to polarization-sensitive optomechanical coupling. For
the TE mode of the cavity, optomechanical coupling is
approximately dispersive. For the TM mode, both dispersive
and dissipative coupling can be realized, depending on the
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pump wavelength. Since the ratio between these two kinds
of coupling is tunable, various interference effects can arise
in this system [21]. Particularly, pure dissipative coupling
can be achieved at the absorption resonance frequencies, and
the single-photon coupling strength is up to g1 = 11 kHz.
Dissipative cooling and heating of the nanotube oscillations
are analyzed using linearized quantum Langevin equations.
With a 2-μm-long (8,0) SWNT, ground-state cooling can be
achieved, and regenerative oscillation can be achieved with a
pump power well below 1 pW.

ACKNOWLEDGMENTS

This work was supported by the 973 program
(2013CB328704), the NSFC (Grants No. 11004003,
No. 11222440, and No. 11121091), and the Research
Fund for the Doctoral Program of Higher Education
(No. 20120001110068). M.Y.Y., H.K.L., and W.L.J. were
supported by the National Fund for Fostering Talents of Basic
Science (No. J1030310 and No. J1103205). M.Y.Y. and W.L.J.
were supported by the National Undergraduate Innovational
Experimentation Program.

[1] F. Marquardt and S. M. Girvin, Physics 2, 40 (2009).
[2] M. Aspelmeyer, P. Meystre, and K. Schwab, Phys. Today 65 (7),

29 (2012).
[3] J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill,
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