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Phase transition to spatial Bloch-like oscillation in squeezed photonic lattices
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We propose an exactly solvable waveguide lattice incorporating an inhomogeneous coupling coefficient. This
structure provides classical analogs to the squeezed number and squeezed coherent intensity distribution in
quantum optics where the propagation length plays the role of a squeezed amplitude. The intensity pattern is
obtained in a closed form for an arbitrary distribution of the initial beam profile. We have also investigated the
phase transition to the spatial Bloch-like oscillations by adding a linear gradient to the propagation constant of
each waveguide (α). Our analytical results show that the Bloch-like oscillations appear above a critical value for
the linear gradient of the propagation constant (α > αc). The phase transition (in the propagation properties of
the waveguide) is a result of competition between discrete and Bragg diffraction. Moreover, the light intensity
decays algebraically along each waveguide at the critical point while it falls off exponentially below the critical
point (α < αc).
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I. INTRODUCTION

Waveguide lattices provide an inexpensive experimental
tool to study some physical phenomena in several branches of
physics such as condensed matter, quantum optics, atomic,
and molecular physics [1–6]. Nowadays these lattices can
be realized by several methods such as optical induced
technique, lithographic pattern, and laser writing methods
[7,8]. In the weak coupling regime, the coupling strengths
between adjacent waveguides can be adjusted by an appro-
priate change in the distance between guides [1]. Recently
an exact solvable Glauber-Fock photonic lattice has been
proposed in Refs. [9–12], in which the coupling coefficients
are inhomogeneous and proportional to the square root of
waveguide labels (assuming an incremental sequential label).
These waveguide arrays provide an experimental tool to
investigate interesting phenomena such as quantum random
walk, photon bunching, and antibunching [10,12].

In the context of condensed matter physics, the energy
levels of a superlattice form the Wannier-Stark ladders [5,13]
when a constant external force is applied on its electrons. The
extended Bloch wave function of electrons is converted to the
localized Wannier states [5,13]. Moreover, the electrons show
a periodic motion in these localized states, known as Bloch
oscillation. Similar periodic motions have been observed for
the light propagation in periodic waveguide arrays [14–18]. In
such arrays the propagation direction plays the role of time,
therefore the periodic motion is known as the spatial Bloch
oscillations [14–18]. The effect of a constant external force
can be simulated by exerting a linear transverse gradient on
the propagation constants of the waveguide array [14–18]. To
this end, the transverse temperature gradient in thermo-optical
waveguides, transverse current in photorefractive waveguides,
or a fixed curvature on a waveguide array during the fabrication
process can be implemented [14–18].

In this paper we propose an exactly solvable semi-infinite
optical waveguide lattice with inhomogeneous coupling coeffi-
cients. This array provides the classical analogs to the squeezed
number and squeezed coherent intensity distribution in which

the squeezed amplitude is proportional to the propagation
length [19–22]. However, this is a classical simulation of the
probability distribution of the squeezed state in the Fock space.
Let us consider a cross section of the waveguide lattice as
shown in Fig. 1, where each waveguide is corresponding to a
state (|n〉,n = 0, . . . ,∞) in Fock space, i.e., |n = 0〉 represents
the vacuum state. The occupation probability of each Fock
state is given by the light intensity of the corresponding
waveguide. The propagation of light within each waveguide
(along the z direction) corresponds to the time evolution of
the occupation probability of a Fock state. The squeezed
number intensity distribution can be simulated classically by
injecting a light beam into a single guide, while the Poisson
distribution is applied to obtain the squeezed coherent intensity
distribution.

We have also investigated the spatial Bloch oscillation
in the proposed squeezed array. Surprisingly, we obtain the
critical value of the strength of the linear gradient index to
observe the Bloch-like oscillation (α � αc). We discuss the
long distance behavior of light intensity along the waveguides
which shows three different behaviors, namely, exponential
decay for α < αc, algebraic decay at α = αc, and Bloch
oscillation for α > αc. This oscillation comes from the
interplay between discrete diffraction and Bragg diffraction.
Here both the coupling coefficients and propagation constants
are approximately proportional to the waveguide labels (n)
which makes a competition between discrete diffraction
and Bragg diffraction. Such a critical value does not exist
in the Fock-Glauber and homogeneous lattices where the
couplings are proportional to

√
n and a constant, respec-

tively, while the propagation constants are proportional to
n which leads to the dominant Bragg diffraction and Bloch
oscillation.

The paper is organized in four sections. Section II is
devoted to the theoretical model and the exact solution which
has been presented in our work. In Sec. III the spatial
Bloch-like oscillation in the proposed waveguide lattices is
investigated. Finally, we conclude and summarize our results
in Sec. IV.
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FIG. 1. (Color online) Cross section of the squeezed array of
optical waveguides.

II. THEORETICAL MODEL

The nondegenerate squeezed operators depend on the
square of annihilation and creation operators which prohibits
the squeezed operators to be coupled to the even and odd Fock
states simultaneously. Therefore, to simulate the squeezed
states, as shown in Fig. 1, two different decoupled linear array
of waveguides are taken into account. The upper waveguide
array is labeled by odd numbers, while the lower array is
labeled by even ones. The distance between the odd and even
arrays of waveguides is large enough to decouple the odd and
even waveguides, while the even-even and odd-odd nearest
neighbor waveguides are coupled with nonzero coefficients.
Although only one array (upper or lower) would be enough
to simulate the vacuum squeezed and number squeezed states,
both upper and lower arrays are necessary to be taken into ac-
count for simulating the coherent squeezed states, classically.

The slowly varying envelope approximation (SVEA) is
implemented to write the light propagation equations in two
linear waveguide arrays of Fig. 1. In this approximation the
appropriate equations for light propagation in each waveguide
is reduced to the common tight-binding (TB) model [1] as
follows:

i
dEn(z)

dz
+ KnEn + CnEn−2 + Cn+2En+2 = 0, (1)

where En and Kn are the amplitude of the electric field and
the propagation constant of the nth waveguide, respectively.
In this section we consider identical waveguides and assume
Kn = K0. Moreover, Cn is the coupling coefficient between
the nth waveguide and its preceding neighbor n − 2. In the
weak coupling regime, the coupling coefficients depend on
the distance between neighboring waveguides such that Cn =
C1 exp[− dn−d1

κ
], where C1 and d1 are the coupling coefficient

and distance between the first coupled waveguides in the upper
(odd labeled) or lower (even labeled) arrays, respectively. κ

is a free parameter which is determined from coupled mode
theory or experimental data [9,10,23]. In our model we assume
that the coupling coefficients between even-even or odd-odd
waveguide arrays are determined by Cn = C1

√
n(n − 1)

(n > 1). It can be realized if we manipulate that the distance
between waveguides is given by dn = d1 − κ

2 ln[n(n − 1)].
The new variables Z = C1z and En(z) = �n(Z) exp(iK0Z)

transform Eq. (1) to the following dimensionless form:

i
d�n

dZ
(Z) +

√
n(n − 1)�n−2(Z)

+
√

(n + 1)(n + 2)�n+2(Z) = 0, n = 0,1,2, . . . . (2)

In order to find the solution of Eq. (2), the following
operator relation is defined:

i
d�

dZ
(Z) = −( â2 + â†2

)�(Z), (3)

in which �(Z) ≡ ∑
�m(Z)|m〉, where |m〉 represents the

classical analogs of Fock states and denotes the optical
mode of the mth waveguide. It will be shown that Eq. (3)
is equivalent to Eq. (2) in terms of �n(Z). The set {|m〉}
is called the waveguide number basis and �m(Z) denotes
the amplitude of electric field in the mth waveguide, which
depends on the dimensionless propagation distance. â and
â† are peculiar translation operators to the left and right,
respectively, which are defined by â|m〉 = √

m|m − 1〉 and
â†|m〉 = √

m + 1|m + 1〉, similar to the bosonic annihilation
and creation operators in quantum optics.

In terms of waveguide number basis, Eq. (3) is rewritten in
the following form:

i
∑
m

d�m(Z)

dZ
|m〉 = −

∑
m

√
m(m − 1)�m(Z)|m − 2〉

−
∑
m

√
(m + 1)(m + 2)�m(Z)|m + 2〉.

(4)

The orthogonality of the waveguide number basis
(〈m|k〉= δm,k) applied to Eq. (4) leads to

i
d�k(Z)

dZ
+

√
(k + 1)(k + 2)�k+2(Z)

+
√

k(k − 1)�k−2(Z) = 0, (5)

which justifies the equivalence of Eqs. (3) and (2). Therefore,
it is sufficient to solve Eq. (3).

The solution of Eq. (3) can be written as

�(Z) = exp[iZ(̂a2 + â†2
)]�(Z = 0) = Ŝ(−2iZ)�(0), (6)

in which Ŝ(−2iZ) is the squeeze operator Ŝ(ξ ) =
exp[ 1

2 (ξ ∗â2 − ξ â†2
)] with purely imaginary squeezing

parameter ξ = −2iZ. The squeezed amplitude is twice the
dimensionless propagation length and the squeezed phase is
−π

2 . By employing the disentangling theorem, the squeezed
operator is given in the following form [21,22]:

Ŝ(−2iZ) = 1√
cosh(2Z)

exp

{
i

2
[tanh(2Z)] â†2

}
× exp{− ln[cosh(2Z)] â†â}
× exp

{
i

2
[tanh(2Z)] â2

}
. (7)

If we excite the waveguide array by injecting light beam
at the nth waveguide, the amplitude of light in the lth
waveguide at position Z along the propagation direction would
be �

(n)
l (Z) = 〈l|Ŝ(−2iZ)|n〉. After some straightforward

calculations, for even values of |n − l|, �(n)
l (Z) can be written
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FIG. 2. (Color online) (a) Light intensity distribution for an initial
excitation at n = 0. The light intensity profile versus site number at
(b) Z = 0.7 and (c) Z = 1.5, solid lines are exact results and red
circles comes from the Runge-Kutta-Fehlberg numerical simulation.

in the following closed form:

�
(n)
l (Z) =

√
n!l!

[−i
2 tanh(2Z)

] n+l
2

√
cosh(2Z)

×
M∑

m=0

(−2i)2m

[sinh(2Z)]2m[2m]!
[

l
2 − m

]
!
[

n
2 − m)

]
!
,

(8)

while �
(n)
l (Z) = 0 if |n − l| is equal to an odd number.

Moreover, M = Int[Min( n
2 , l

2 )], where Int[x] means the integer
part of a real number x.

The light intensity in the lth waveguide, at position Z

along the propagation direction, is I
(n)
l (Z) = |�(n)

l (Z)|2. The
light intensity distribution is similar to the photon number
distribution for squeeze number states versus time in quantum
optics [19–22]. If light is injected in the first even labeled
waveguide (n = 0), the light intensity distribution is similar to
the squeezed vacuum photon distribution. For this case M = 0,
and the light intensity distribution is reduced to the following
form:

I
(n=0)
l (Z) = l!

[−1
2 tanh(2Z)

]l(
l
2

)
! cosh(2Z)

cos2

(
lπ

2

)
. (9)

Figure 2(a) shows the light intensity distribution in the
lower (even labeled) array which is similar to the photon
number distribution of the squeezed vacuum state. Figures 2(b)
and 2(c) show the intensity versus even labels of waveguides
at Z = 0.7 and Z = 1.5, respectively. To verify our analytical
results, the system of Eq. (2) for 10 000 guides are solved
numerically by the Runge-Kutta-Fehlberg method. The results
of the numerical simulation have been shown by red circles

FIG. 3. (Color online) (a) Light intensity distribution for an initial
excitation at n = 20. The light intensity profile versus site number
at (b) Z = 0.7 and (c) Z = 1.5, solid lines are exact results and red
circles comes from the Runge-Kutta-Fehlberg numerical simulation.

in Figs. 2(b) and 2(c), which show perfect agreement with the
exact (analytical) solutions.

Figure 3(a) shows the light intensity distribution when light
is injected into an intermediate waveguide (n = 20) in the
lower array, at the entrance plane. A reflection from the (fixed)
left boundary is observed where the intensity is returned to
the waveguides. The light intensity profiles are depicted at
two different propagation lengths Z = 0.7 and Z = 1.5 in
Figs. 3(b) and 3(c), respectively. These profiles show the
oscillation of light intensity in the lower array of waveguides.

According to our study, �
(n)
l (Z) is interpreted as the

impulse response for this structure. Therefore, for an arbitrary
distribution of light intensity injected at the entrance plane,
the light intensity distribution in each waveguide at the
propagation distance Z is given by

�l(Z) =
∞∑

n=0

�
(n)
l (Z)�n(Z = 0). (10)

If the intensity profile at the entrance plane is chosen to be
a Poisson distribution such as �n(Z = 0) = βn√

n!
exp(−|β|2

2 ),
where β = |β| exp(iθ ), the light intensity distribution at
distance Z can be written as follows (for more details, see
the Appendix):

In(Z) = |〈n|Ŝ(−2iZ)|β〉|2 = |〈n|Z,β〉|2

=
[

1
2 tanh(2Z)

]n

n! cosh(2Z)
exp{−|β|2[1 + sin(2θ ) tanh(2Z)]}

×
∣∣∣∣Hn

[
β√−i sinh(4Z)

]∣∣∣∣2

, (11)
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FIG. 4. (Color online) Light intensity distribution in the
waveguide array along the waveguide length, for N = 100, |β| = 4.0,
(a) θ = − π

4 , (b) θ = + π

4 .

where Hn(x) is the Hermite polynomial of order n. The
intensity profile of Eq. (11) is reminiscent of the squeezed
coherent photon distributions.

Figure 4 shows the light intensity distribution along Z
and versus the site number if a coherent light distribution
is injected at the initial plane (Z = 0). Figures 4(a) and 4(b)
present the light intensity distribution for two different phases
of the initial light, namely, θ = −π

4 and θ = +π
4 , respectively.

These figures show that the reflection from the left boundary
of the semi-infinite array can occur only for the negative initial
phase.

The authors of Refs. [9,10] proposed waveguide lattices
which provide the light intensity distribution for a coherent
state by injecting an initial beam in the first guide of the lattice
at the entrance plane. However, the interesting point of our
work is to design a self-consistent structure implementing
two different arrays to provide the squeezed coherent light
intensity distribution. The squeezed coherent light distribution
is established when the initial beam is exposed only to one of
the waveguides at the entrance plane. This can be applied to
classically simulate some phenomena related to the squeezed
coherent states in quantum optics.

As mentioned before, if the exposing beam is applied on an
even labeled waveguide, light propagates in the lower array,
while an injection of light on the odd labeled waveguide, the
propagation is on the upper array. The coherent state is a
superposition of both even and odd states. For a coherent
state, light propagates both in the upper and lower arrays.
The intensity distribution would be similar to the photon
distribution of the coherent squeezed state [19–22].

III. SPATIAL BLOCH OSCILLATION

In order to study the spatial Bloch oscillation in waveguide
arrays, a linear transverse gradient is added to the propagation
constants, i.e., propagation constants of waveguides are given
by Kn = K0 + �n, where � is a constant. In the presence of
the additional term (�n), Eq. (2) is written in the following
form:

i
d�α,n

dZ
(Z) + αn�α,n(Z) +

√
n(n − 1)�α,n−2(Z)

+
√

(n+ 1)(n+2)�α,n + 2(Z) = 0, n= 0,1,2, . . . , (12)

where α = �
C1

. As shown for Eq. (2), the following equation
is equivalent to Eq. (12):

i
d�

dZ
(Z) = −( â2 + αâ†â + â†2

)�(Z), (13)

if �(Z) is expanded in the orthonormal waveguide number
basis. The solution of Eq. (13) is

�(Z) = exp[iZ( â2 + â†2 + αâ†â)]�(Z = 0)

= Ŝα(Z)�(0), (14)

where Ŝα(Z) can be expressed in terms of SU(1,1) Lie

generators. The generators are defined by K̂+ = â†2

2 , K̂− = â2

2 ,
and K̂z = 1

2 (̂a†â + 1
2 ) which satisfy the following algebra:

[K̂+,K̂−] = −2K̂z; [K̂z,K̂±] = ±K̂±. (15)

According to the structure of Lie algebra and employing the
disentangling theorem we write Ŝα(Z) as the product of three
exponential forms [21]:

Ŝα(Z) = exp

[
− iαZ

2

]
exp[iZ(2K̂+ + 2K̂− + 2αK̂z)]

= exp

[
− iαZ

2

]
exp[φ(Z)K̂+] exp[φz(Z)K̂z]

× exp[φ(Z)K̂−], (16)

where

φ(Z) = −2 sinh(
Z)

i
 cosh(
Z) + α sinh(
Z)
,

(17)

φz(Z) = −2 ln

[
cosh(
Z) + α

i

sinh(
Z)

]
.

Here 
 = √
4 − α2 which is real for α < 2 while it is purely

imaginary for α > 2.
The light intensity in the lth waveguide at position Z, when

the array is excited by an input at the nth waveguide, is given
by I

(n)
l = |〈l|Ŝα(Z)|n〉|2, and can be obtained by employing

the normal form factorized evolution operator [Eq. (16)].
More insight on the product form of Ŝα(Z) reveals that even
(odd) waveguides are coupled to even (odd) ones. Because the
SU(1,1) algebra confirms that the operation of K̂+ or K̂− on an
even (odd) state leads to another even (odd) state. Hence, the
amplitude of light in the lth waveguide [�(n)

α,l (Z)] is obtained
to be

�
(n)
α,l (Z) = 〈l|Ŝα(Z)|n〉

=
√

i
(n!)(l!)[− sinh(
Z)]
n+l

2 e− iαZ
2

[α sinh(
Z) + i
 cosh(
Z)]
n+l+1

2

×
M∑

m=0

(−i
)2m

[sinh(
Z)]2m[2m]!
[

l
2 − m

]
!
[

n
2 − m)

]
!
,

(18)

for |n − l| = even and �
(n)
l (Z) = 0 whenever |n − l| = odd.

It is straightforward to show that the solution presented in
Eq. (18) is reduced to Eq. (9) for α = 0.
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FIG. 5. (Color online) The profile of light intensity at the critical
point α = 2.0, where the initial beam is exposed at n = 40 for the
semi-infinite array of waveguides.

For α < 2, 
 is a real parameter, hence, the profile of light
intensity is similar to what is presented already in Fig. 3 in
the absence of linear transverse gradient in the propagation
constants. If we concentrate our attention to the light prop-
agation along the Z direction within a single waveguide,
its long distance behavior is decaying exponentially, i.e.,
I

(n)
α<2,l(Z) ∼ exp(−
Z) for Z 	 1. It is reminiscent of the

overdamped behavior of the underlying system. However, for
α > 2, 
 is a purely imaginary parameter which will change
the behavior of our system (as will be discussed). Therefore, we
anticipate a phase transition at the critical parameter αc = 2.

At α = αc = 2 the parameter 
 is zero which necessitates
us to evaluate Eq. (18) in the limit 
 → 0, we get

�
(n)
α=2,l(Z) = (iZ)

n+l
2

√
n!l!e−iZ

[1 − 2iZ]
n+l+1

2

×
M∑

m=0

1

[iZ]2m[2m]!
[

l
2 − m

]
!
[

n
2 − m)

]
!
, (19)

for |n − l| = even and �
(n)
l (Z) = 0 for |n − l| = odd. The

intensity profile at the critical point (α = αc) is plotted in Fig. 5.
The long distance behavior (Z 	 1) of the intensity profile for
any waveguide decays algebraically, i.e., I (n)

αc,l
(Z) ∼ 1

Z
. This is

the typical behavior at a critical point where fluctuations of
all scales contribute to the phenomenon. Here the correlations
decay algebraically which states that the diffraction exists on
all length scales.

Nevertheless, for α > 2, 
 is purely imaginary and the
hyperbolic functions in Eq. (18) are converted to the periodic
trigonometric functions where the spatial Bloch oscillation
comes up. The spatial frequency of this oscillation is ZT =
CzT = π

|
| = π√
α2−4

. Figure 6 shows the intensity pattern of
this periodic propagation for α = 3.0 for which the spatial
frequency is ZT

∼= 1.405.

FIG. 6. (Color online) (a) Light intensity distribution of Bloch
oscillation in the semi-infinite array of waveguides when the initial
beam is exposed at n = 30 for α = 3.0. The intensity profile versus
site number at (b) Z = 1.4 and (c) Z = 2.1, solid lines are exact
analytical results and red circles are the results of the Runge-Kutta-
Fehlberg numerical simulation.

The spatial Bloch oscillation turns out from the interplay
between discrete diffraction, Bragg diffraction, and surface
reflection effects. In our model, due to the increase of the
coupling coefficients by increasing the site numbers, discrete
diffraction causes the expansion of light over large numbers of
waveguides during propagation along waveguides. The role of
Bragg diffraction appears when the phase differences between
neighboring waveguides are equal to multiples of π . This
condition can be satisfied at certain propagation lengths. At
these points the expansion of light is terminated and light
returns to the waveguides with lower propagation constants.
Equation (12) shows that for high site labels (n 	 1) both the
coupling coefficients and propagation constants are roughly
proportional to the site index n. Therefore, competition of
discrete diffraction and Bragg diffraction causes the existence
of a critical value for α. For α less than its critical value
(α � αc) the Bragg diffraction is suppressed by discrete
diffraction, while for higher α (>αc) the Bragg diffraction is
dominated. Moreover, the surface reflection causes repulsion
at the n = 0 boundary. For α > αc, Bloch oscillation occurs
due to the reflection at high (n 	 1) and n = 0 waveguides.
Such a critical value does not exists in Fock-Glauber lattices
where the coupling coefficients are approximately proportional
to the square root of the site label (

√
n), while the propagation

constants are proportional to the waveguide label (n). Hence,
independent of how much the value of α is, the Bragg reflection
is dominated and Bloch oscillation occurs.

�
(n)
α,l (Z) is the impulse response for such structures. For an

arbitrary distribution of light intensity injected at Z = 0, the
light intensity distribution in each waveguides at propagation
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FIG. 7. (Color online) Light intensity distribution in waveguide
array along the waveguide length, for N = 60, α = 4.0, |β| = 4.0,
(a) θ = − π

4 , (b) θ = + π

4 .

distance Z can be calculated as follows:

�α,l(Z) =
∞∑

n=0

�
(n)
α,l (Z)�n(Z = 0). (20)

If the light intensity distribution at the entrance plane is chosen

from a Poisson distribution, i.e., �n(Z = 0) = e− |β|2
2

βn√
n!

,

where β = |β|eiθ , the light intensity distribution at propaga-
tion distance Z can be written as follows (more details are
presented in the Appendix):

In(Z) = |〈n|Ŝα(Z)|β〉|2 = |〈n|Zα,β〉|2

=
∣∣ ν ′

2μ′
∣∣n

n!|μ′| exp

{
− |β|2

[
1 + Re

(
ν ′e2iθ

μ′

)]}

×
∣∣∣∣Hn

[
β√

2μ′ν ′

]∣∣∣∣2

. (21)

Here ν ′ = 2ν



, μ′ = μ + αν



, ν = −i sinh(
Z), and μ =
cosh(
Z). We call |Zα,β〉 the generalized coherent squeezed
states. Figure 7 shows the light intensity distribution for
α > αc, if the coherent light intensity distribution is injected
at the Z = 0 plane. The spatial Bloch oscillation is easily seen
in this figure. Figures 7(a) and 7(b) show the dependence of
light intensity distribution on the initial phase of light.

IV. SUMMARY

We proposed the classical analogs of quantum squeezed
number and squeezed coherent states in a semi-infinite lattice
of waveguides with an appropriate tuning of the coupling
coefficients. We have obtained the closed analytic form for
the light intensity of any waveguide at position Z along its
length, regardless of which waveguide has been exposed by an
initial beam. The result has been extended to get the intensity
profile for an arbitrary intensity distribution at the entrance of
waveguides. Adding a linear gradient (α) to the propagation
constant of the nth waveguide leads to a phase transition
between two different behaviors. For α < 2 we observed a
pattern which comes from discrete diffraction similar to the
α = 0 case (Fig. 3), while for α > 2 we observe the spatial
Bloch oscillation in the array of waveguides (Fig. 6).

The nature of the phase transition is related to the interplay
between discrete diffraction, which tends to expand the light
over large numbers of waveguides, and Bragg reflection, which
causes the light intensity to return to waveguides with lower
propagation constants. Meanwhile, the reflection at the n = 0
boundary causes the light to return to the waveguides with
increasing labels. Hence, an oscillation appears. We have
also found the closed form of light intensity distribution, in
the presence of linear gradient of refraction index, when a
Poisson light distribution is chosen for the initial beam which
is a classical simulation of generalized squeezed coherent
states.

We propose that these fully integrable lattices provide
new opportunities to study some interesting phenomena in
quantum optics and condensed matter physics, such as photon
correlations and quantum phase transitions, respectively. We
have obtained the long distance (Z 	 1) intensity profile
which falls off exponentially for α < 2 and an algebraic
decay at the critical point α = 2. This is similar to the spatial
behavior of correlation functions in a magnetic system close
to a quantum critical point. However, the observation and
measurement of light intensity in an array of waveguides are
much simpler than the corresponding counterpart in a magnetic
system.

APPENDIX

In order to obtain Eqs. (11) and (21) we start with a more
general case when α �= 0. For α = 0, Eq. (21) can be converted
to Eq. (11), so it is sufficient to get Eq. (21).

We define â|0〉 = 0 which leads to

Ŝα(Z)D̂(β )̂aD̂†(β)Ŝα
†
(Z)|Zα,β〉 = 0. (A1)

Here we have defined |Zα,β〉 = Ŝα(Z)D̂(β)|0〉. The
implementation of D̂(β )̂aD̂†(β) = â − β leads to

Ŝα(Z)̂aŜα
†
(Z)|Zα,β〉 = β|Zα,β〉.

After some lengthy but straightforward calculations we

obtain Ŝα(Z)̂aŜα
†
(Z) = μ′̂a + ν ′̂a†. So,

μ′̂a + ν ′̂a†|Zα,β〉 = β|Zα,β〉. (A2)

We expand the generalized coherent squeezed states in the
Fock bases |Zα,β〉 = ∑

n Cn|n〉. In these bases we arrive at
the following relation:

∑
n

[μ′Cn

√
n|n − 1〉 + ν ′Cn

√
n + 1|n + 1〉] = γ

∑
n

Cn|n〉.

(A3)

We define Cn ≡ N√
μ′ [

ν ′
2μ′ ]

n
2 fn(x), and replace it in Eq. (A3)

which gives

√
n + 1fn+1 + 2

√
nfn−1 − 2β√

2μ′ν ′ fn = 0, (A4)
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Eq. (A4) is similar to the recursion relation of Hermite
polynomials if we consider fn = 1√

n!
Hn(x) and x =

β√
2μ′ν ′ . Thus, the expansion coefficients Cn can be

written as

Cn = N√
n!μ′

[
ν ′

2μ′

] n
2

Hn

(
β√

2μ′ν ′

)
, (A5)

which gives C0 = N√
μ′ . On the other hand, C0 = 〈0|Zα,β〉,

which leads to N = √
μ′〈0|Zα,β〉. Moreover, we have

〈0|Zα,β〉 = e− iαZ
2√

μ′ exp

[
−|β|2

2
− 1

2
β2

(
ν ′

μ′

)]
. (A6)

Therefore, by using Eqs. (A5) and (A6) for Cn, it is
straightforward to reach Eq. (21).
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