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Density-functional theory for the spin-1 bosons in a one-dimensional harmonic trap
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We propose the density-functional theory for one-dimensional harmonically trapped spin-1 bosons in the
ground state with repulsive density-density interaction and antiferromagnetic spin-exchange interaction. The
density distributions of spin-singlet-paired bosons and polarized bosons with different total polarization for
various interaction parameters are obtained by solving the Kohn-Sham equations, which are derived based on
the local density approximation and the Bethe ansatz exact results for a homogeneous system. Nonmonotonicity
of the central densities is attributed to the competition between the density interaction and spin-exchange. The
results reveal the phase separation of the paired and polarized bosons, the density profiles of which respectively
approach the Tonks-Girardeau gases of Bose-Bose pairs and scalar bosons in the case of strong interaction. We
give the radius-polarization phase diagram at strong interaction and find the critical polarization, which paves the
way to directly observe the exotic singlet pairing in spinor gas experimentally.
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I. INTRODUCTION

Spinor Bose gases and one-dimensional (1D) systems are
both the fascinating topics in the research of cold atoms [1–4].
The studies of their crossing point for 1D spinor bosons are also
attractive in theories [5–12] and have been realized in recent
experiments [13–15]. Spinor gases are prepared in the optical
traps where the induced electric dipole moment determines the
laser-atom interaction and involve an ensemble of Bose atoms
condensed in a coherent superposition of all possible hyperfine
states. The early experimentally achieved spinor gases include
23Na [16,17] and 87Rb [18,19]. In the three-dimensional (3D)
case, the spin-dependent spin-exchange interactions are much
weaker than the spin-independent short-range density-density
interactions, for example, the ratio of them are c2/c0(Na) =
0.03 [20] and c2/c0(Rb) = −0.005 [21] respectively. The
ground-state wave function is represented by a spinor wave
function, which minimizes the free energy [22–24] and the
spin-exchange interactions give rise to a rich variety of
phenomena such as spin domains [17], textures [22], spin
mixing dynamics [25–28], and fragmentation of condensate
[29–31], etc. On the other hand, 1D systems can be realized
by confining the cold atoms in strong anisotropic traps where
the motion of atoms is effectively 1D [13–15,32–36]. The
interaction among the atoms can be tuned in the whole
regime of interaction strength via the idea of Feshbach
resonance as well as the confinement-induced resonance (CIR)
[37–39]. These experimental developments have provided
unprecedented opportunities for testing the theory of 1D
exactly solvable many-body models [7,40–46].

Many theories have studied the 1D spinor gases. Under
the mean-field theory, Zhang and You checked the validity
of a Gaussian ansatz for the transverse profile in the weak
interaction regime and a Thomas-Fermi ansatz (TFA) in the
strong interaction regime [5]. Hao et al. [6] modified the
Gross-Pitaevskii (GP) equations based on the solution of
the Lieb-Lininger (L-L) [40] model to reveal that the total
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densities of the 1D spinor bosons exhibit the Tonks-Girardeau
(TG) [47] properties of 1D scalar bosons when density-density
interaction is strong enough. The detailed TG and super
Tonks-Girardeau gas (STG) properties of 1D spinor bosons
have been investigated particularly by Deuretzbacher et al. [8]
and Girardeau et al. [9] with the method of Bose-Fermi
mapping.

If the spin-exchange interaction can be modulated to the
order of density-density interaction, the competition between
these two kinds of interaction must be considered. Cao et al.
find that the 1D homogeneous spinor bosons under c0 = c2

can be exactly solved with the Bethe ansatz (BA) method [7].
Essler et al. show its low-energy degrees of freedom are
equivalent to a spin-charge separation theory of the U(1)
Tomonaga-Luttinger liquid describing the charge sector and
the O(3) nonlinear σ model describing the spin sector [10]. By
means of the thermodynamical Bethe ansatz (TBA) method
[11,12], Lee et al. and Kuhn et al. give the ground-state phase
diagram and investigate the universal thermodynamics and
quantum criticality of the trapped 1D spinor bosons for the
strong interaction situation.

So far, a method is not available for the 1D trapped
spin-1 bosons in the entire region of interaction from weak to
strong. In this paper, we develop the Hohenberg-Kohn-Sham
density-functional theory (DFT) to investigate the ground-state
properties of 1D harmonically trapped spin-1 bosons. DFT has
been widely used for treating electron systems with long-range
Coulomb interaction [48,49]. It also has been successfully
generalized to cold-atom systems with short-range contact
interaction [50–53]. For 1D cold-atom systems, the method
of DFT based on BA results has been developed to solve the
ground-state problem of bosons [51,54,55], fermions [56,57]
and Bose-Fermi mixtures [58].

Here we apply this method to study how the ground state of
1D trapped spin-1 bosons evolves along with the interaction
strength from weak to strong. We derive the Kohn-Sham
(KS) equations by combing the BA solutions and local
density approximation (LDA). The ground-state densities and
energies for different interactions are obtained by solving these
equations iteratively. The paper is organized as follows. We
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introduce our theory in Sec. II and show the numerical results
in Sec. III. Section II includes the model, the BA equation
for homogeneous system, and the KS equations for trapped
system. In Sec. III, we first show the case that all bosons are
fully paired and then for the partially paired case.

II. THEORY

A. Model

We consider N spin-1 bosons of mass m confined in
extremely anisotropic crossed optical dipole traps with δ-
function-type density-density interaction and spin exchange
interaction between atoms. The trap is characterized by
the radial and axial angular frequencies ω⊥ and ω with
corresponding harmonic oscillator lengths a⊥ = √

h̄/mω⊥
and a = √

h̄/mω respectively. When ω⊥ � ω, the radial
Thomas-Fermi radius is small enough such that only axial
spin domains could form [14,15]. In first quantized form, the
Hamiltonian for 1D spin-1 gas can be written as

H =
N∑

i=1

(
− h̄2

2m

∂2

∂x2
i

+ 1

2
mω2x2

i

)

+
∑
i<j

[
c1D

0 + c1D
2 Si · Sj

]
δ(xi − xj ), (1)

where Si,j are spin-1 operators, c1D
0 and c1D

2 are 1D interaction
parameters, which can be expressed through interaction
parameters g1D

S in total spin S = 0,2 channels as c1D
0 =

(g1D
0 + 2g1D

2 )/3 and c1D
2 = (g1D

2 − g1D
0 )/3. In experiments,

g1D
S can be tuned with a⊥ and 3D s-wave scattering length a3D

S

according to g1D
S = 2h̄2a3D

S /ma2
⊥(1 − Aa3D

S /a⊥) with con-
stant A = 1.0326 [37]. Thus c1D

0 and c1D
2 may be manipulated

in wider range comparing with 3D spinor system.
The number of atoms N+, N0, and N− corresponding to spin

states s = +1,0,−1 are not conserved because the scattering
between two atoms of spin s = ±1 can produce two atoms
of spin s = 0 and vice versa, whereas the total number of
atoms N = N+ + N0 + N− and total spin in the z component
Sz = N+ − N− are conserved yet. Therefore we may consider
the system is composed of two parts of atoms, particle I and
particle II with total particle numbers N = N1 + 2N2 and total
polarization P = N1/N . The number of particle I is N1 = Sz

where all atoms have parallel spin forming the ferromagnetic
phase. The number of particle II is 2N2 where N2 pairs of atoms
are formed between two spin states s = ±1 or between two
spin states s = 0. Here we have supposed that N+ � N− and
that N0 is even. The sign of c1D

0 determines that the interactions
between the bosons are repulsive or attractive, while the sign
of c1D

2 determines that the spin exchange interaction in the
pairs are ferromagnetic or antiferromagnetic.

B. Bethe ansatz equations for homogeneous system

With the particles confined in a finite 1D tube with length
L instead of a harmonic trap as in the Hamiltonian (1), the
system has been exactly solved by Cao et al. [7] with the BA
method under a special condition

c1D
0 = c1D

2 = g > 0,

i.e., the repulsive density-density interaction equals the anti-
ferromagnetic spin-exchange interaction. They gave the BA
equations

eikj L =
N∏

i=1,i �=j

ẽ4(kj − ki)
2N2∏
α=1

ẽ−2(kj − �α), (2)

N∏
i=1

ẽ2(�α − ki) = −
2N2∏
β=1

ẽ2(�α − �β), (3)

with ẽn(x) = (x + inc′)/(x − inc′), c′ = c/4, and c =
2mg/h̄2. {ki} in the equations is the set of quasimomentum and
{�α} is the set of the spin rapidity. The ground-state energy of
the system is

E = h̄2

2m

N∑
i=1

k2
i . (4)

For positive c1D
2 , the spin-exchange interaction is antiferro-

magnetic. 2N2 particles form spin-singlet bound pairs between
two spin s = ±1 atoms or between two spin s = 0 atoms,
whereas N1 particles are polarized. Equations (2) and (3)
have N1 real solutions for ki (i = 1, . . . ,N1) and N2 pairs
conjugate complex solutions or string solutions for kα and �α

(α = 1, . . . ,2N2), i.e.,

kα = λl ± ic′, �α = λl ± ic′, (5)

with λl (l = 1, . . . ,N2) real numbers [7,11]. Inserting (5) into
(2), (3) and adopting the thermodynamic limit, i.e., the length
of gas L → ∞ and particle numbers N,N1,N2 → ∞ with
densities n = N/L, n1 = N1/L and n2 = N2/L finite, we
easily arrive at the BA integral equations

2πρ1(k) = 1 + 2
∫ B

−B

dk′ρ1(k′)a4(k,k′)

+ 2
∫ Q

−Q

dλρ2(λ)(a5 − a1)(k,λ), (6)

πρ2(λ) = 1 +
∫ B

−B

dkρ1(k)(a5 − a1)(k,λ)

+
∫ Q

−Q

dλ′ρ2(λ′)(a6 + a4 − a2)(λ,λ′), (7)

where

(an − am)(x1,x2) = an(x1,x2) − am(x1,x2), (8)

and

an(x1,x2) = n|c′|
(nc′)2 + (x1 − x2)2

, (9)

with ρ1(k) and ρ2(λ) densities of k and λ. The integral
boundaries B and Q are determined by the conditions

n1 =
∫ B

−B

dkρ1(k), (10)

n2 =
∫ Q

−Q

dλρ2(λ). (11)
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From (4), we get the ground-state energy per unit length

E

L
= h̄2

2m

∫ B

−B

dkk2ρ1(k) + h̄2

2m

∫ Q

−Q

dλ2λ2ρ2(λ) − εbn2,

(12)

where the binding energy of the pair in defined as

εb = h̄2

2m

c2

8
. (13)

To solve the BA equations, we introduce the dimensionless
L-L interaction parameter γ = c/2n = mg/h̄2n and polariza-
tion parameter p = n1/n. Let k = Bx, λ = Qy, B = c/β1 and
Q = c/β2, the densities of quasimomentum and spin rapidity
turn out to be ρ1(k) = g1(x) and ρ2(λ) = g2(y). The integral
BA equations (6) and (7) are translated into

2πg1(x) = 1 + 2

β1

∫ 1

−1
dx ′g1(x ′)b4(

x

β1
,
x ′

β1
)

+ 2

β2

∫ 1

−1
dyg2(y)(b5 − b1)

(
x

β1
,
y

β2

)
, (14)

πg2(y) = 1 + 1

β1

∫ 1

−1
dxg1(x)(b5 − b1)

(
x

β1
,
y

β2

)

+ 1

β2

∫ 1

−1
dy ′g2(y ′)(b6 + b4 − b2)

(
y

β2
,
y ′

β2

)
,

(15)

with

(bn − bm)(x1,x2) = bn(x1,x2) − bm(x1,x2), (16)

and

bn(x1,x2) = n/4

(n/4)2 + (x1 − x2)2
. (17)

The normalization conditions (10) and (11) are now

β1 = 2γ

p

∫ 1

−1
g1(x)dx, (18)

β2 = 4γ

1 − p

∫ 1

−1
g2(y)dy. (19)

From (12) the ground-state energy per atom for the homoge-
neous 1D spinor gas is

εhom(n,γ,p) = E

N
= h̄2n2

2m
e(γ,p), (20)

with

e(γ,p) = e1(γ,p) + e2(γ,p) + eb(γ,p) (21)

and

e1(γ,p) = 8γ 3

β3
1

∫ 1

−1
x2g1(x)dx, (22)

e2(γ,p) = 16γ 3

β3
2

∫ 1

−1
y2g2(y)dy, (23)

eb(γ,p) = −γ 2(1 − p)

4
. (24)

Here (22) and (23) can be solved numerically with the com-
bination of integral equations (14), (15) and the normalization

(18), (19). The chemical potentials are taken as the derivatives
of (20) as

μhom
1 (n,γ,p) = ∂(nεhom)

∂n1
= h̄2n2

2m
f1(γ,p), (25)

μhom
2 (n,γ,p) = ∂(nεhom)

∂n2
= h̄2n2

2m
f2(γ,p), (26)

where

f1(γ,p) = 3e − γ
∂e

∂γ
+ (1 − p)

∂e

∂p
, (27)

f2(γ,p) = 2

(
3e − γ

∂e

∂γ
− p

∂e

∂p

)
. (28)

We see that, when p = 1, the system is in a pure ferro-
magnetic phase with spin-polarized bosons. Here e(γ,p = 1)
coincides with e(γ ) in the L-L model of scalar bosons [40] with
interaction parameter 2γ . When p = 0, all the bosons form
pairs and the system is in a pure antiferromagnetic phase. In the
limiting case of γ = 0, the system reduces to free bosons with
e(γ = 0,p) = 0. When γ is very strong, the integral equations
(14) and (15) give g1(x) ≈ 1/2π and g2(x) ≈ 1/π , then

e(γ → +∞,p) ≈ π2p3

3
+ π2(1 − p)3

48
− γ 2(1 − p)

4
. (29)

The energy per unit length in the strong interaction case

E

L
≈ h̄2

2m

(
π2n3

1

3
+ π2n3

2

6
− c2n2

8

)
, (30)

is composed of three parts: the energy density of N1 free
fermions with mass m in Ref. [58], the energy density of
N2 free composite fermions with mass 2m, and the binding
energy N2εb/L of the composite fermions. This shows that
stronger interactions favor the forming of boson-boson pairs.
The chemical potentials in this case are

μhom
1 (γ → +∞,p) ≈ h̄2

2m
π2n2

1, (31)

μhom
2 (γ → +∞,p) ≈ h̄2

2m

(
π2

2
n2

2 − c2

8

)
. (32)

In Fig. 1, we plot the interaction dependence of energy
function e(γ,p) for various polarization p and compare it with
the case of scalar bosons. The upper figure is for p = 0, i.e.,
all the bosons form the pairs. Clearly we have e1 = 0 and
e2(γ ) (red dashed line), which is obtained numerically from
the combination of (15), (19), and (23), increases linearly along
with γ for γ 
 1 and approaches slowly to a constant value
π2/48 for γ � 1. e2(γ ) and the inverse parabola function
eb(γ ) = −γ 2/4 together dictate that e(γ ) is not monotonic
and has a maximum value 0.1169 at γ = 0.4. The lower figure
is for e(γ,p) with p = 0,0.2,0.4,0.6,0.8,1 corresponding to
the real lines from bottom to top. It shows that the energy
function e(γ,p) increases along with p for the same parameter
γ . For p = 1, i.e., pure ferromagnetic phase case, e(γ )
increases monotonously to constant π2/3, which is exactly
the asymptotic value of scalar bosons (gray dash-dotted line).

C. Kohn-Sham equations for trapped system

Now we consider the spin-1 bosons in a harmonic trap
Vext(x) = mω2x2/2 by means of the DFT theory based on
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FIG. 1. (Color online) The function e(γ,p) for the ground-state
energy of 1D homogeneous spin-1 bosons. In the top panel, p = 0. In
the bottom panel the real lines are for p = 0,0.2,0.4,0.6,0.8,1 from
bottom to top and the dash-dotted line is for scalar bosons.

the theorems of Hohenberg, Kohn, and Sham. The theory
enables us to deal with the energy and the density profile of
inhomogeneous system in the ground state. According to the
Hohenberg-Kohn theorem I of DFT, the ground-state density
of a bound system of interacting particles in some external
potential determines this potential uniquely. Denote now the
space dependent densities of particle I and particle II as
n1(x) and 2n2(x), respectively. The total density is then
n(x) = n1(x) + 2n2(x) and the number of the particles are
conserved separately according to∫

n1(x)dx = N1, (33)
∫

n2(x)dx = N2. (34)

The ground-state energy is a functional of the densities
E0[n1(x),n2(x)]. It can be decomposed as kinetic energy func-
tional of a reference noninteracting system T ref[n1(x),n2(x)],
external potential energy functional Eext[n1(x),n2(x)] and KS
energy functional EKS[n1(x),n2(x)] involving the interactions,
i.e.,

E0[n1,n2] = T ref[n1,n2] + Eext[n1,n2] + EKS[n1,n2]. (35)

We introduce two orthogonal and normalized Bose orbital
functionals φ1(x) and φ2(x) to express the densities as

n1(x) = N1φ
∗
1 (x)φ1(x), (36)

n2(x) = N2φ
∗
2 (x)φ2(x). (37)

The kinetic energy functional is written as

T ref[n1,n2] = −N1

∫
dxφ∗

1 (x)
h̄2

2m

d2

dx2
φ1(x)

− 2N2

∫
dxφ∗

2 (x)
h̄2

2m

d2

dx2
φ2(x) (38)

and the external potential energy functional is simply

Eext[n1,n2] =
∫

dxVext(x)n(x). (39)

Note for each part of bosons we introduce a single orbital
functional assuming that the bosons are in a quasicondensate
state. This is different from the system of fermions for which
the number of orbital functional is decided by the number of
fermions. In Ref. [58] we have indicated the validity of single
Bose orbital functional in DFT. It gives the density profile of
1D bosons varying from a standard Gaussian shape for weak
interaction to a half-ellipse profile for strong interaction. The
density profile for strong interaction is consistent with that
of noninteracting fermions except the density oscillations. In
the limit of large particle number, the difference between the
oscillating and nonoscillating profiles becomes imperceptible.

EKS[n1,n2] includes all the contribution of the interaction
energies. Sometimes it is partitioned as Hartree-Fock energy
(i.e., the mean-field approximation of the interaction energy)
and exchange correlation energy [48,57,58]. Following the
way in Refs. [50,51,54,55], we here treated it as an entity with
the LDA, that is, the system can be assumed locally equilibrium
at each point x in the external trap, with local energy per atom
provided by the homogenous interactional system. Thus the
interaction energy functional EKS[n1,n2] can be formulated as

EKS[n1,n2] ≈
∫

dxn(x)εhom[n1(x),n2(x)], (40)

where the densities n1(x),n2(x) are taken at point x and
εhom[n1(x),n2(x)] takes the form of Eq. (20). Note that both
the L-L parameter γ (x) = mg/h̄2n(x) and the polarization
parameter p(x) = n1(x)/n(x) are space dependent now. With
the explicit form of three terms in (35), the ground-state energy
functionals are

E0[n1(x),n2(x)]

= N1

∫
dxφ∗

1 (x)

[
− h̄2

2m

d2

dx2
+ 1

2
mω2x2

]
φ1(x)

+ 2N2

∫
dxφ∗

2 (x)

[
− h̄2

2m

d2

dx2
+ 1

2
mω2x2

]
φ2(x)

+
∫

dxn(x)εhom[n1(x),n2(x)]. (41)

Hohenberg-Kohn theorem II guarantees that the ground-
state density distributions are determined by variationally
minimizing E0 with respect to n1(x) and n2(x) [48].
That is equivalent to minimize the free-energy functional
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F = E0 − N1ε1 − 2N2ε2 with respect to φ∗
1 and φ∗

2 , where
the Lagrange multipliers ε1,ε2 are introduced to conserve N1

and 2N2. Then we can get the KS equations(
− h̄2

2m

d2

dx2
+ 1

2
mω2x2 + μhom

1 [n1(x),n2(x)]

)
φ1(x)

= ε1φ1(x), (42)

(
− h̄2

2m

d2

dx2
+ 1

2
mω2x2 + 1

2
μhom

2 [n1(x),n2(x)]

)
φ2(x)

= ε2φ2(x), (43)

where the chemical potentials μhom
1 , μhom

2 of the homogeneous
gas for densities n1,n2 at x are given by Eqs. (25) and (26).
With the eigenvalues of (42) and (43), the ground-state energy
can be expressed as

E0 = N1ε1 + 2N2ε2 +
∫

dxn(x)εhom(x)

−
∫

n1(x)μhom
1 (x)dx −

∫
n2(x)μhom

2 (x)dx. (44)

With the exactly solved εhom for different n1,n2 at x, we
can solve the KS equations (42) and (43) together with the
definition of orbital functional (36) and (37) to find the den-
sity distributions n1(x) and n2(x) and then calculate the
ground-state energy E0 from Eq. (44).

We now discuss the KS equations for the limiting cases of
weak and strong interaction. When there is no interaction, KS
equations correctly reduce to the 1D Schrödinger equation of
simple harmonic oscillator. The Bose density profiles take the
standard Gaussian shape

n1,2(x) = N1,2

a
√

π
exp(−x2/a2). (45)

When the interaction is strong, the kinetic energies in (42) and
(43) can be ignored, we have the TFA equations

1

2
mω2x2 + μ1(x) = μ0

1, (46)

1

2
mω2x2 + μ2(x)

2
= μ0

2

2
. (47)

The values of μ0
1 and μ0

2 are fixed by the normalization con-
ditions (33) and (34). Based on (46) and (47) Kuhn et al. give
the ground-state phase diagram and find that the singlet pairs
and unpaired bosons may form a two-component Luttinger
liquid in the strong coupling regime [12]. When the interaction
approaches infinitely strong, with the limit values of chemical
potential (31), (32) and the normalization conditions (33), (34),
we can solve (46), (47) to obtain the following half-ellipse-like
density profiles

n1,2(x) ≈
√

2N1,2 − (x/a1,2)2

πa1,2
, (48)

where a1 = a and a2 = √
h̄/2mω. We see that the density

of particle I is just that of N1 noninteracting harmonically
trapped fermions with mass m. The density of particles II is
that of N2 noninteracting fermions with mass 2m. It shows
that for infinitely strong interaction, the property of particles
II approaches the TG gas of Bose-Bose pairs. Resorting to

the Bose-Fermi mapping method [8,9,47], we may map the
densities of paired and unpaired components exactly to those
of noninteracting Fermions

n1,2(x) = 1

a1,2
√

π
exp

(−x2
/
a2

1,2

) N1,2−1∑
l=0

H 2
l (x/a1,2)

2l l!
,

(49)
where Hl(x) is the Hermite polynomial.

III. NUMERICAL RESULTS

We introduce the interacting parameter U = g/ah̄ω. The
space-dependent Lieb-Liniger parameter is expressed as
γ (x) = U/an(x). For the 1D spin-1 bosons with given N , P ,
and U , we present the numerical results for densities n1 and n2

of particle I and II obtained by solving the KS equations (42)
and (43) with the iteration method. The ground-state energy
E0 can be obtained via the relation (44). The numerical results
are summarized in Figs. 2–11.

A. P = 0 system

We first study the system with N = 30 and P = 0. In this
fully paired case, the length, density and energy are in units of
a, 1/a and h̄ω respectively. Figure 2 provides an understanding
of how the density profiles change along with the interaction
parameter for U = 0,0.1,0.5,2,12.5 in the top figure and U =

FIG. 2. (Color online) Density distribution of 1D trapped spin-1
bosons with N = 30 and P = 0. In the top figure, five black solid
lines from top to bottom are respectively for spinor bosons with U =
0,0.1,0.5,2,12.5. Red dotted line is for noninteracting Fermions with
mass 2m. The bottom figure shows the details of the peak density for
even stronger interactions U = 12.5,25,150. We observe a slightly
rising of the peak after U > 12.5.
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FIG. 3. Nonmonotonicity of the central density n(0) of 1D trapped
spin-1 bosons with increasing U for N = 30 and P = 0. The exists
a minimum value of n(0) at U = 12.5, which is shown in the inset.

12.5,25,150 in the bottom figure. With the increasing of U , the
total density profile varies from a standard Gaussian-like shape
characterizing the distribution of noninteracting Bose gas to a
half-ellipse shape indicating the distribution of noninteracting
Fermi gas. Interestingly we find that the density profile of N

spin-1 bosons with mass m for strongly interacting case, e.g.,
U = 150 overlaps that of N/2 noninteracting fermions with
mass 2m, except the emergence of the density oscillation in the
Fermionic case. It means that for strong interaction all atoms
in the antiferromagnetic spin-1 bosons are paired with each
other, behaving like the TG gas of Boson pairs.

FIG. 4. (Color online) (a) Evolution of the ground-state energy
E0 and all contributed energy terms of 1D trapped spin-1 bosons with
increasing U for N = 30 and P = 0. (b) The details of energies in the
weak interaction regime. (c) The details of external potential energy.

We surprisingly notice that the density profile does not
change with the interaction parameter monotonically. The
full tendency of the central density n(0) (density at the trap
center x = 0) can be seen in Fig. 3 and the inset shows
in detail the nonmonotonicity of n(0). We find that central
density first decreases to a minimum value n(0)

min = 4.858/a

at U = 12.5 before reaching the constant central density
of noninteracting fermions for large U . The result can be
understood as the competition between the repulsive density-
density interaction and the antiferromagnetic spin-exchange
interaction with equal strength. The repulsive density-density
interaction tends to increase the distance between bosons
while the antiferromagnetic spin-exchange interaction leads
essentially attraction between s = ±1 or s = 0 bosons. For
U < 12.5, the prevailing repulsions among bosons tend to
broaden them to wider space area and reduce the density of
bosons in the trap center to a minimum. The antiferromagnetic
effect is prominent for U > 12.5, which contracts the bosons
slightly.

Figure 4 describes the evolution of the ground-state energy
E0 and all contributed energy terms in Eq. (35) as a function
of U . We can see the whole trend in Fig. 4(a) and the details
in the mean-field regime in Fig. 4(b). It shows that the kinetic
energy T ref decreases slowly to a constant energy as the result
of interactions restraining the movement of atoms. However,
the external potential energy Eext increases due to the atoms
occupying a wider regime of the trap. In correspondence to
the nonmonotonicity of n(0), Eext shows nonmonotonicity too,
which can be seen clearly in Fig. 4(c). Close to the critical
interaction value of U = 12.5 for n(0)

min in Fig. 3(c), Eext

reaches its maximum Emax
ext = 59.092h̄ω at U = 11.5. But

the nonmonotonicity of n(0) doesn’t develop visible effects
on other energy terms. Analogous to the ground-state energy
functional e(γ,p = 0) for homogeneous spin-1 bosons (see the
top panel of Fig. 1), the KS energy EKS, i.e., the interaction
energy, increases linearly in the weak interaction regime
and approaches its peak value Emax

KS = 43.033h̄ω at U = 1.4,
corresponding to a central L-L interaction parameter γ (0) =
0.222 (γ at the trap center), followed by a monotonously
decreasing in the strong interaction regime. The contributions
from T ref , Eext, and EKS together establish the ground-state
energy E0 to increase to a maximum Emax

0 = 85.994h̄ω at
U = 1.9, corresponding to γ (0) = 0.324, and then decrease
monotonously. We notice that the value γ (0) = 0.324 for
Emax

0 is close to γ = 0.4 for the maximal e in the top panel
of Fig. 1. We understand that the competition between the
repulsion among bosons and the binding energy of the pair
gives the peak of E0 at U = 1.9 for the same reason as in the
homogeneous case, while that between the repulsive density-
density interaction and the antiferromagnetic spin-exchange
interaction gives the nonmonotonicity of n(0) at U = 12.5.

B. P �= 0 system

For P = 1, none of the bosons can form pairs and the system
reduces to the scalar Bose gas with density-density interaction
2g, whose ground-state properties have been studied by means
of DFT in Ref. [58]. With the increasing of U , the density
distribution and energy of the system approach those of a
single-component TG gas.
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FIG. 5. (Color online) Density distributions of 1D trapped spin-1 bosons at P = 0.1,0.2,0.4,0.6,0.8 (panels from left to right) and
U = 0.1,2,10,50 (panels from top to bottom). Blue solid lines denote the densities for polarized particles n1, red dashed lines denote the
densities for paired bosons 2n2, and black dotted lines denote the total densities n.

Here we study the interesting situation of a partially
polarized spinor gas with total polarization 0 < P < 1. In this
case the length, density, and energy are in units of N1/2a,
N1/2/a and h̄ω, respectively. In Fig. 5 we illustrate the density
of polarized particles n1 (blue solid lines), density of paired
bosons 2n2 (red dashed lines), and the total density n (black
dotted lines) for various polarization P = 0.1,0.2,0.4,0.6,0.8
(the figures in the columns from left to right) and interaction
U = 0.1,2,10,50 (the figures in the rows from up to down).

FIG. 6. (Color online) Comparison of the density distribution of
1D trapped spin-1 bosons at P = 0.4 in the case of strong interaction.
The results for both n1 and 2n2 are from DFT for U = 50 (solid
lines), TFA for U = +∞ (dashed lines), and N = 30 noninteracting
fermions (dotted lines), respectively. Clear evidence is observed for
the phase separation and in this case the surrounding wings are
composed of polarized particles. The radius of vanishing density
from DFT is obviously larger than the TFA result.

The horizontal view shows that the density profile n1 expands
gradually with the increasing of P accompanied by the corre-
sponding shrinking of 2n2. These two densities together result
in a slight decreasing of the peak density n(0) for increasing P .
An analysis of vertical scope for increasing interaction param-
eter U (note that we use different vertical axis scale in the weak
interaction case U = 0.1) tells us that the density 2n2 changes
smoothly from the Gaussian distribution of noninteracting
Bose gas to the half-ellipse distribution of TG gas of Bose-Bose
pairs. The density peak is located in the center of the trap for all
interaction strengths. The behavior of density n1 is, however, a
little complicated. Though n1 shows Gaussian distribution for
weak interaction (U = 0.1), bosons of particle I tend to occupy

FIG. 7. (Color online) Evolution of central densities n
(0)
1 , n

(0)
2 ,

and n(0) (panels from left to right) of trapped spin-1 bosons with
increasing interaction parameter U . Nonmonotonicity is seen for all
partially polarized cases 0 < P < 1.
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FIG. 8. (Color online) Comparison of the solutions with GP
equations of mean-field theory (wine) and KS equations of DFT
(green) for central densities n

(0)
1 (solid lines) and 2n

(0)
2 (dashed lines).

Here the total polarization P = 0.4.

wider space and start to be excluded from the trap center for
intermediate interaction (U = 2,10). The single-peak profile
of n1 changes into the double-peak distribution. This reminds
us of the partially phase separation of Bose-Fermi mixture with
equal mass and equal repulsive interaction [44,58]. In our case,
the phase separation of paired and unpaired bosons occurs in
the system, i.e., the core area of the 1D spinor gas is filled with
the mixture of paired and unpaired bosons and in the outer
region we find either polarized bosons for P > 0.2 or paired
bosons for P < 0.2. For even stronger interaction (U = 50),
the peak of n1 returns back to the trap center and the density
profile n1 approaches the half-ellipse distribution of TG gas.
Nevertheless the evidence of phase separation becomes more
prominent in the strong interaction case.

As a result the total density n shows the overall Gaussian
distribution showing a fully mixing phase of n1 and 2n2 at
weak interaction (U = 0.1). When the interaction increases,
we find a bimodal distribution of the total density with particle
II imposed on the top of particle I, i.e., the mixed core of
particles I and II is surrounded by two wings composed of
solely polarized bosons for large P and large U (see the

FIG. 9. (Color online) Central densities n
(0)
1 , n

(0)
2 , and n(0) as a

function of P for 1D trapped spin-1 bosons in the strong interaction
case. The results of DFT for U = 50 denoted by symbols are in
agreement with those in TFA for U = +∞ denoted by lines.

FIG. 10. (Color online) Radius-polarization (R-P) phase diagram
of 1D trapped spin-1 bosons in terms of the scaled density radii R

as the functions of total polarization P . Three quantum phases are
identified: spin-singlet-paired phase (S), ferromagnetic spin-aligned
phase (F), and mixed phase of the pairs and unpaired bosons (M). V
stands for vacuum. The results of DFT for U = 50 (n1, 2n2 < 0.02
are considered as vanishing scaled densities) and analytical results in
TFA for U = +∞ are compared.

several lower right panels of Fig. 5). Take the P = 0.4 case
as an example. We compare the density plots for the two
components in Fig. 6. The solid lines are our DFT results
from the iteration solution of the KSE Eqs. (42) and (43),
while the dashed lines are analytical TFA results Eq. (48) for
infinitely strong interaction. Also shown are the densities of
noninteracting fermions Eq. (49) according to the Bose-Fermi
mapping (dotted lines) for N = 30. We identify readily the
density oscillations with 12 peaks in the polarized component
n1 in the TG limit and nine peaks in the paired component n2

representing the TG gas of nine pairs of bosons.
An interesting observation is the nonmonotonicity of the

central density value n(0), which already occurs in the fully
paired case P = 0. We take a close look at the rise and fall of
the peak values for polarized bosons, paired bosons, and the
total density. Figure 7 shows the evolution of central densities
with increasing interaction parameter U for different P . For

FIG. 11. (Color online) The ground-state energy per atom of 1D
trapped spin-1 bosons as functions of U for different P . The lines are
for P = 0,0.2,0.4,0.6,0.8,1 from bottom to top.
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the central density of polarized particles n
(0)
1 , we find it is a

constant zero at P = 0 since there is no particle I in the gas and
a monotonically decreasing curve at P = 1 corresponding to
the scalar Bose gas. In all partially polarized cases 0 < P < 1,
the peak values rapidly decrease to a minimum n

(0)
1 min and

then gradually approach to a constant for strong interaction.
The minimum is seen to move toward the stronger interaction
direction with increasing P and finally disappear for P = 1.
On the contrary, the central density of paired particles n

(0)
2 is a

constant zero at P = 1 since there are no paired bosons in the
gas and a seemingly monotonically decreasing curve at P = 0
corresponding to the fully paired bosons. Yet we know from
the result of P = 0 in Fig. 3 there indeed exists a minimum
due to the competition between the density interaction and
spin exchange. The competition persists here for all partially
polarized cases, leading to similar shallow low-lying areas,
whose minimum is seen to move toward the weaker interaction
direction with increasing P as shown in the middle panel of
Fig. 7. The total central density comes from the combination
of these two terms n(0) = n

(0)
1 + 2n

(0)
2 . The right panel shows

that the minimum hollow for the total central density remains
for all partially or fully polarized cases 0 � P < 1 and the tail
of n(0) in strong interaction limit first goes up slightly followed
by a nearly linear decreasing for increasing P .

The nonmonotonicity of the central densities evolution with
interaction parameter has not been found in the mean-field
theory. Within the mean-field approach, the order parameter
of the ith (i = +, − ,0) component is ϕi and the energy
functional is expressed as

E0 =
∫

dx

[
ϕ∗

i

(
− h̄2

2m

d2

dx2
+ 1

2
mω2x2

)
ϕi + c1D

0

2
n2

]

+
∫

dx

[
c1D

2

2
ϕ∗

k ϕ
∗
i (Sη)ij (Sη)klϕjϕl

]
, (50)

where Sη=x,y,z are spin-1 matrices and the total density n =∑
i ni with ni = |ϕi |2. The explicit form of spin-dependent

term is

ϕ∗
k ϕ

∗
i (Sη)ij (Sη)klϕjϕl = n2

+ + n2
− + 2n0n− + 2n+n0

− 2n+n− + 2ϕ∗2
0 ϕ+ϕ− + 2ϕ2

0ϕ
∗
+ϕ∗

−.

(51)

According to ih̄∂ϕi/∂t = δE0/δϕ
∗
i , the coupled GP equations

can be derived as

ih̄
∂

∂t
ϕ+ =

[
− h̄2

2m

d2

dx2
+ 1

2
mω2x2 + c1D

0 n

+c1D
2 (n+ + n0 − n−)

]
ϕ+ + c1D

2 ϕ2
0ϕ

∗
−,

ih̄
∂

∂t
ϕ0 =

[
− h̄2

2m

d2

dx2
+ 1

2
mω2x2 + c1D

0 n

+ c1D
2 (n+ + n−)

]
ϕ0 + 2c1D

2 ϕ+ϕ−ϕ∗
0 ,

ih̄
∂

∂t
ϕ− =

[
− h̄2

2m

d2

dx2
+ 1

2
mω2x2 + c1D

0 n

+ c1D
2 (n− + n0 − n+)

]
ϕ− + c1D

2 ϕ2
0ϕ

∗
+.

Under the condition c1D
0 = c1D

2 = g > 0 and taking P = 0.4
for example, we calculate the component density distributions
with different interaction strength based on the above GP
equations. Because c1D

2 > 0, we get n0 = 0 just as in Refs.
[6] and [59] for 23Na case. Then n2 = n−. The results are
given in Fig. 8 where the central densities n

(0)
1 and 2n

(0)
2 are

denoted by wine solid and wine dashed lines respectively.
We can see that they both monotonously decrease with the
increasing interaction parameter U . Together shown are the
nonmonotonicity DFT results in green solid and green dashed
lines (cf. Fig. 7). Despite the consistent results with DFT theory
for weakly interacting gases, the mean-field theory obviously
fails to give the nonmonotonicity behavior of the central
densities for strong interaction case. Furthermore the approach
of mean-field energy functional underestimates the density of
paired bosons 2n

(0)
2 (dashed lines) by neglecting the binding

energy among the pairs, which is essential in our DFT theory.
This nonmonotonicity of the total central density in strong

interaction case (U = 50) is depicted in detail in Fig. 9
for increasing P , together with the monotonic behavior of
the central density for polarized bosons (upward) and that
for paired bosons (downward). The results from DFT are
compared with the analytical curves from the TFA. We find
that in the case of U = 50 the central densities for all polarized
situation are already very close to the limiting value in TFA,
which are obtained from Eq. (48) as

n
(0)
1 =

√
2NP

πa
, 2n

(0)
2 = 2

√
2N (1 − P )

πa
,

(52)

n(0) =
√

2N (
√

P + 2
√

1 − P )

πa
.

We may go further into the detailed quantum phases of
the spinor gas by defining the radii of the vanishing densities
for the two components. Figure 10 shows the phase diagram
as a function of the global polarization P for U = 50, where
the axial radii of the ensemble of the polarized and paired
components are extracted from the numerical result of the
density profiles from the KSE. Without loss of generality, we
set the threshold values of the vanishing scaled density as 0.02
in the numerical simulation. The intersection of these two radii
gives the boundaries, which divided the phase plane into three
quantum phases: spin-singlet-paired bosons S, ferromagnetic
spin-aligned bosons F, mixed phase of the pairs and unpaired
bosons M, while V stands for the vacuum. At low polarization
a partially polarized region forms at the trap center, the radius
of which increases with increasing polarization. At a critical
polarization Pc, the partially polarized region extends to the
edge of the cloud. When the polarization increases further, the
edge of the cloud becomes fully polarized. This process can be
evidently seen in the lowest panels in Fig. 5. Together shown
in Fig. 10 are the theoretical results in TFA. According to
Eqs. (48), the radii of the vanishing densities are calculated as

R1 =
√

2NPa, R2 =
√

N (1 − P )

2
a. (53)

When the two radii equal to each other, we find the critical po-
larization is Pc = 0.2 and the critical radius is Rc = 0.63. The
DFT results for the radii are apparently larger than the TFA es-
timation for both polarized and fully paired bosons, which can
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be understood easily from the extension of the tail of the den-
sity profile into outer region (see Fig. 6). Energetically this ex-
tension is due to the kinetic term neglected in TFA. The critical
polarization is in agreement with the TFA crossing at slightly
higher polarization Pc ∼ 0.23 and larger radius Rc ∼ 0.73.

The phenomena of phase separation at strong interaction
is consistent with the results of Ref. [12]. There they gave
the ground-state phase diagram according to the evolvement
of Thomas-Fermi radii of n1 and n2 along with P by the
means of TBA for the strong interaction case. Our results, on
the other hand, are valid for systems in the whole interaction
regime. Interestingly we found the double-peak structure of
the density of polarized bosons at intermediate interaction,
which is elusive from the method in Ref. [12]. In a seminal
experiment on spin-imbalanced 1D two-component Fermi gas
[13], phase separation of the two-spin mixture of ultracold 6Li
atoms trapped in an array of 1D tubes is reported. The partially
polarized core is surrounded by wings, which are composed
of either a paired or a polarized Fermi gas depending on the
polarization P . The pair mechanism in spinor gas is challenged
by the density repulsive interaction, which makes the phase
separation more complicated.

Finally, just as e(γ,p) shows the interaction dependence
for various polarizations in the homogeneous case and E0

in Eq. (44) gives the change with interaction in the fully
paired case, we illustrate in Fig. 11 the evolution of ground
state energies E0 per atom along with interaction U and
total polarization P in all partially polarized cases. The
black solid line for P = 0 here repeats the result of E0

in Fig. 4. The fully polarized P = 1 system is equivalent
to the 1D trapped repulsive scalar bosons in Ref. [58]
and E0 increases monotonously and approach the ground-
state energy of noninteracting fermion system. The energy
for partially polarized system with 0 < P < 1 interpolates
between these two extremes, i.e., the positive energy terms
including the kinetic, potential, and density-density repulsive
interactions together compete with the negative binding energy
in the antiferromagnetically paired bosons, giving rise to the
nonmonotonic dependence of the energy on the interaction
parameter U . In the weak interaction case, the repulsive
interaction is prominent so that E0 increases along with U . In
the strong interaction case, E0 decreases because the repulsive
energy slowly increases to a constant whereas the binding

energy goes downward parabolically. Larger polarization
destroys the Bose-Bose pairs one by one, which diminishes
the effect of pairing binding energy and finally leads to the
monotonic behavior of E0 for P = 1.

IV. CONCLUSION

In conclusion, using DFT we study the density distribution
and energy of the 1D harmonically trapped spin-1 bosons in the
ground state. We numerically solve the KSEs based on LDA
and the solution of Bethe ansatz. The results show that the
competition between the repulsive density-density interaction
and antiferromagnetic spin-exchange interaction results in
complicated density distributions and energy evolutions along
with the interaction parameter. We found a nonmonotonic
behavior in the central densities of both spin-singlet-paired
and polarized bosons. Some polarized bosons are repelled
out of the trap center in the intermediate interaction region,
showing the double-peak structure of density profiles. The
total density exhibits a bimodal distribution with paired bosons
imposed on the top of polarized bosons. The phenomena of
phase separation occurs for strong interaction with the partially
polarized core surrounded by wings, which are composed of
either paired bosons or polarized bosons depending on the
polarization P . We give the R-P phase diagram at strong
interaction and find that the critical polarization Pc in DFT
is slightly larger than the TFA result. Although we treat with
an integrable model with equal repulsive density interaction
and antiferromagnetic spin-exchange, the results do shed
some light on the relativistic spinor gases. We speculate that
the quantum phases investigated here could be probed in
experiment by in situ imaging, analogously to the 1D trapped
Fermi gas [13].
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