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Finite-range corrections near a Feshbach resonance and their role in the Efimov effect
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We have measured the binding energy of 7Li Feshbach molecules deep into the nonuniversal regime by
associating atoms in a Bose-Einstein condensate with a modulated magnetic field. We extract the scattering length
from these measurements, correcting for nonuniversal short-range effects using the field-dependent effective
range. With this more precise determination of the Feshbach resonance parameters we reanalyze our previous
data on the location of atom loss features produced by the Efimov effect [Pollack et al., Science 326, 1683 (2009)].
We find the measured locations of the three- and four-body Efimov features to be consistent with universal theory
at the 20%–30% level.
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Efimov showed more than 40 years ago that three particles
interacting via resonant two-body interactions could form an
infinite series of three-body bound states as the two-body
s-wave scattering length a was varied [1]. In the limit
of zero-range interactions, the ratios of scattering lengths
corresponding to the appearance of each bound state were
predicted to be a universal constant, equal to approximately
22.7. The only definitive observations of the Efimov effect
have been in ultracold atoms, where the ability to tune a

via a Feshbach resonance [2,3] has proven to be essential.
Since the first evidence for Efimov trimers was obtained in
ultracold Cs [4], experiments have revealed both three- and
four-body Efimov states in several atomic species. Although
the Efimov effect has now been confirmed, several open
questions remain, including a full understanding of the role
of nonuniversal finite-range effects. Accurate comparisons
with theory require that these nonuniversal contributions be
quantitatively determined and incorporated.

We previously characterized the F = 1,mF = 1 Feshbach
resonance in 7Li, which is located at approximately 738 G, by
extracting a from the measured size of trapped Bose-Einstein
condensates (BEC) assuming a mean-field Thomas-Fermi
density distribution [5,6]. These data were fit to obtain a(B),
the function giving a versus magnetic field, which was used to
assign values of a to Efimov features observed in the rate of
inelastic three- and four-body loss of trapped atoms [5]. More
recently, two groups have characterized the same Feshbach
resonance by directly measuring the binding energy, Eb, of
the weakly bound dimers on the a > 0 side of the Feshbach
resonance [7–9]. These measurements disagree with our
previous measurements based on BEC size. The disagreement
in the parameters characterizing the Feshbach parameters is
sufficiently large to affect the comparison of the measured
Efimov features with universal theory.

In this paper, we report measurements of Eb, which
we fit to obtain a(B). The measurement of Eb has fewer
systematic uncertainties than the BEC size measurement,
which is affected at large scattering length by beyond mean-
field effects and by anharmonic contributions to the trapping
potential. The extraction of a from Eb can therefore be more
accurate, and unlike the condensate size measurement, Eb

is related to a for both thermal gases and condensates. We
have measured Eb far enough from the Feshbach resonance

that Eb no longer depends quadratically on the detuning of B

from resonance, as it would in the universal regime [2,3]. We
show that a commonly adopted correction for nonuniversal
finite-range effects, which depends on a single value for the
effective range, does not fit the data as satisfactorily as more
complex two-channel models [10,11] that accommodate a
field-dependent effective range, or a model that incorporates an
explicit calculation of the effective range. We employ the latter
strategy to produce an improved a(B) function to reanalyze
our three- and four-body loss data to obtain more accurate
locations of the Efimov features.

Our experimental methods for producing BECs and ultra-
cold gases of 7Li have been described in detail previously [6].
Atoms in the |F = 1,mF = 1〉 state are confined in an optical
trap formed from a single focused laser beam with wavelength
of 1.06 μm. A bias magnetic field, directed along the trap
axis, is used to tune a via the Feshbach resonance. For the
data presented here the axial and radial trapping frequencies
are 4.7 and 255 Hz, respectively. We adjust the magnetic
field to give a ∼ 200 a0, where a0 is the Bohr radius, and
use forced evaporation to produce either ultracold thermal
clouds with temperatures of ∼3 μK, or condensates with a
condensate fraction that we estimate is greater than 85%.
We then adiabatically ramp the field to the desired value and
employ in situ imaging, either polarization phase contrast [12]
when the density is high, or absorption imaging in less dense
clouds.

Atoms are associated into Feshbach molecules by reso-
nantly oscillating the magnetic field at a frequency hνmod =
Eb + Ekin, where Eb is taken to be positive for a bound
state, and Ekin is the relative kinetic energy of the atom
pair [13,14]. The weakly bound dimers formed in this way are
lost from the trap through collisional relaxation, presumably
into deeply bound vibrational levels [13]. This technique has
been used in studies of both homonuclear [10,13,15] and
heteronuclear [16–18] Feshbach resonances, in addition to the
specific hyperfine state of 7Li studied here [7–9].

The oscillating field is produced by a set of auxiliary coils
that are coaxial with the bias coils producing the Feshbach
field. The amplitude of this field ranges from 0.1 to 0.6 G
and the duration of modulation ranges from 25 to 500 ms
depending on magnetic field. The number of remaining atoms
are measured as a function of the frequency of the oscillating
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FIG. 1. (Color online) Magneto-association induced loss at B =
734.5 G, where a � 1100 a0. The main plot shows loss spectra for
thermal gases with the following modulation amplitudes and approx-
imate temperatures: green (triangles) 0.57 G/10 μK; blue (squares)
0.14 G/3 μK; and red (circles) 0.57 G/3 μK. The solid curves are fits
to Lorentzians convolved with thermal Boltzmann distributions. For
the 0.57 G/3 μK data the lower frequency resonance is a subharmonic
response, while the primary resonance is thermally broadened by
strong modulation. The inset (black diamonds) corresponds to a BEC
with a modulation amplitude of 0.14 G. The solid black line is a
Lorentzian fit to the condensate resonance and the vertical dashed
line in the main figure is the resonance location Eb/h = 450 kHz
found from this fit.

field. We find that in the case of a BEC the loss spectra are
fit well by a Lorentzian lineshape, while for a thermal gas, we
fit the loss spectra to a Lorentzian convolved with a thermal
Boltzmann distribution [7,14,18].

Figure 1 shows characteristic loss spectra at 734.5 G
(where a � 1100 a0) for several different temperatures and
modulation amplitudes. The Lorentzian component fits to a
linewidth of 8 kHz, which provides a lower bound on the
lifetime of the molecular state of 20 μs. There is no systematic
shift in the resonance location with temperature or modulation
amplitude, but for large amplitude modulations and sufficiently
low temperature we observe a nonlinear resonance at 1

2Eb/h.
No other subharmonics are seen. A similar nonlinear response
was reported previously [18].

The results of the measurement of binding energy versus
B are displayed in Fig. 2(a). In the universal regime [see
Fig. 2(b)], where a is much larger than any characteristic length
scale of the interaction potential, Eb = h̄2/ma2, where m is
the atomic mass [2,3]. The solid lines in Fig. 2 show the results
of fitting Eb in this universal regime to a, where a is given by
the usual Feshbach resonance expression,

a = abg

(
1 − �

B − B∞

)
, (1)

and where abg is the background scattering length, � is the
width of the resonance, and B∞ is the location of the resonance.
These three quantities are the only fitted parameters. For a �
|abg|, the first term in Eq. (1) is small, and the fit is insensitive to
abg and � separately. We fix � = −174 G (discussed below)
and fit to just two free parameters, B∞ and abg. The fitted
values are given in Table I. In Figs. 2(c) and 2(d), the same
data are recast in terms of γ ≡ (mEb/h̄

2)1/2, where for large

TABLE I. Feshbach resonance parameters obtained by fitting γ

to Eq. (1) using the various models. There are large uncertainties in
abg and � separately, but their product is well defined by the data.
The choice of � was guided by the coupled-channels calculation.
The quoted uncertainty in abg � reflects shot-to-shot variations in the
field and fitting uncertainties. The uncertainty in B∞ is systematic
uncertainty in field calibration. Since the range of validity of the
nonuniversal models is guaranteed only for |Re| � a, data below
725 G are excluded from the fit. The parameters obtained from the fit
to Eq. (4) using Re(B) from Fig. 3 are our recommended values, and
are given in bold.

abg abg �

(units of (units of
Model B∞ (G) � (G) a0) G a0)

Universal 737.82(12) −174 −21.0 3660(60)
Simple two-channel 737.68(12) −174 −19.6 3410(60)
[Eq. (2)] [3] 3410(60)
Complex 737.73(12) −174 −20.4 3550(60)
two-channel [11]
Coupled-channels Re 737.69(12) −174 −20.0 3480(60)

a, γ versus B is approximately linear, as is shown in Fig. 2(d).
We find no significant difference in Eb between a BEC or a
thermal gas, to within our uncertainties.

Figure 2 suggests that the universal regime extends down to
∼728 G, or ∼10 G below resonance. Significant discrepancies
between the measured Eb and universal theory are observed
as the field is decreased further. It is not surprising that the
universal regime spans only a small fraction of �, since
the 7Li resonance is known to be intermediate between
closed-channel and open-channel dominated, as the resonance
strength parameter sres � 0.56 [19] is neither �1 nor �1
[3,20]. For a more precise determination of a it is desirable
to extend the analysis into the nonuniversal regime, where
short-range attributes of the potential become appreciable,
and where several of the previously identified Efimov features
occur [5,7,8]. A simple two-channel approach to correct for
finite-range effects, suggested in Ref. [3] and applied to 7Li
in Refs. [7,9], is to replace the universal binding energy
expression with

Eb = h̄2

m(a − ā + R∗)2
, (2)

where ā = 31 a0 is the mean scattering length [21] (closely
related to the van der Waals radius avdW = 32.5 a0), and
R∗ = ā/sres = 55 a0 is related to the resonance width [22].
The bound state has predominately open channel character
only for a � 4R∗, which is the expected range of validity of
Eq. (2) [3]. The best fit to the data using Eqs. (1) and (2) is
plotted in Fig. 2, and the results are presented in Table I.

Although Eq. (2) gives a somewhat better fit to the data
than the universal binding energy relation, it clearly fails
to represent the entire range of measurements. This is not
unexpected as we are comparing the model to data outside its
range of validity. We find that higher order corrections to this
theory offer little improvement to the overall fit quality [3,23].
The simple two-channel approach [Eq. (2)] represents the
effective range of the potential Re with a single value. Since
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FIG. 2. (Color online) Results of modulation spectroscopy using condensates (red circles) and ∼3 μK thermal clouds (black squares).
(a) and (b) Eb vs B; and (c) and (d), the same data plotted as γ ≡ (mEb/h̄

2)1/2 vs B. The vertical error bars correspond to uncertainty in fitting
to the binding energy resonances, while the horizontal error bars are the statistical uncertainties due to shot-to-shot variations of the magnetic
field. The relatively large error bars below 725 G arise from the broadening of the resonance from the strong modulation required to produce
a detectable signal. The lines are fits of the measurements to Eq. (1) using the various models. Solid (black), universal model, Eb = h̄2/ma2;
dashed (green), simple two-channel model, Eq. (2), with the parameters given in the text; dot-dashed (blue), complex two-channel model given
in Ref. [11] [Eq. (26)], again with parameters as given in the text (the two-channel model of Ref. [10] gives similar results); and dotted (red),
Eq. (4) using Re(B) from Fig. 3. The fits exclude data below 725 G, where a � 250a0 is no longer much greater than R∗, and the validity of
the nonuniversal corrections becomes questionable. While the nominal fitting parameters are abg, �, and B∞, � is fixed at −174 G. The fits
are weighted by the inverse uncertainties. The resulting Feshbach resonance parameters are given in Table I.

the 7Li resonance is not open-channel dominated, however, Re

exhibits considerable field dependence over the width of the
resonance. Properly accounting for this field variation should
provide a better correction for finite-range effects. In order to
obtain Re(B) we numerically solved the full coupled-channels
equations using realistic model potentials for both the singlet
(closed channel) and triplet (open channel) potentials of the
electronic ground state of Li [24,25]. These potentials have
been refined by adjusting parameters, such as the potential
depth and the shape of the inner wall, to give quantitative
agreement with experimentally known quantities, which are
primarily the locations of Feshbach resonances [6,8], zero
crossings [6], and the binding energies of the least bound triplet
molecule [26]. The scattering length and effective range are
determined from the energy dependence of the s-wave phase
shift δ0:

k cot δ0(k) = −1

a
+ 1

2
Rek

2 + · · · , (3)

where h̄2k2/m = Ekin. Figure 3 shows both a and Re near
the Feshbach resonance at 738 G. There is considerable
variation in Re over the width of the resonance, contrary

to the assignment Re = −2R∗ = −111 a0 [22,28], or Re =
2(ā − R∗) = −49 a0 [3]. In comparison, the coupled-channels
calculation gives Re(B∞) � −6 a0. Given this discrepancy, it
is not surprising that Eq. (2) does not describe the data well.

More complex solutions to the two-channel model are given
in Refs. [10] and [11]. These complex two-channel models
improve upon the simple two-channel model by incorporating
a field-dependent effective range. The solution to γ in Ref. [11]
[Eq. (26)] is given in terms of R∗ and a short-range parameter
b, which is related to the van der Waals length and hence, to ā.
This short-range parameter is not universal, but rather is model
dependent, and is thus unknown a priori. One way to estimate b

is to require that Eb agrees with Eq. (2) when 1/a = 0. In this
case, b =

√
π

2 ā. However, we can use the coupled-channels
calculation of Re to obtain a more informed estimate. For
b = 0.85

√
π ā, the on-resonance values of Re calculated from

the model of Ref. [11] and from the coupled channels are equal.
Using this value for b and the previously specified values of R∗
and ā, the best fit to the data is shown in Fig. 2. The expected
improvement over the simple model [Eq. (2)] is borne out, as
its range of validity (stated as a � avdW) is proven to extend
to larger detunings from resonance.
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FIG. 3. (Color online) Coupled-channels calculation of a and Re

for the F = 1, mF = 1 Feshbach resonance in 7Li. The horizontal
and vertical dashed (blue) lines indicate a = 0 and B∞, respectively.
Re was fit to a polynomial expansion in the scaled field β =
(B − 737.7 G)/G to obtain Re(β)/a0 = −6.2 + 3.50 β − 9.2 ×
10−3 β2 − 6.5 × 10−5 β3 + 5.7 × 10−7 β4. This polynomial fit is
used to obtain Re in Eq. (4). Similar calculations for the F = 1, mF =
0 [27] and F = 1, mF = 1 [44] resonances have been previously
presented. In the latter case, the calculation of Re agrees well with
our results.

The relation between the binding energy of a weakly
bound state, or equivalently γ , and a and Re is given by
γ = 1/a + 1

2Reγ
2 [29]. Although this quadratic equation has

two solutions, only the following has the correct asymptotic
behavior for |Re/a| � 1 [11,22,30]:

γ = 1

Re

(
1 −

√
1 − 2Re

a

)
. (4)

Figure 2 shows the results of fitting the data to Eqs. (1) and (4),
using the Re values from Fig. 3. The agreement between theory
and experiment is very good over a much larger range of the
measurements than for the other models considered, and we
therefore use this fit to define the Feshbach parameters, which
are indicated in bold in Table I. As previously mentioned, the
data are insufficient to separately extract both abg and � since
a � |abg|. Given the precise knowledge of the location of the
field where a = 0, B0 = 543.6, found in our previous work [6],
a logical choice would be to fix � = B0 − B∞ = −194.1 G.
The best values of � and abg, however, may vary over the
large magnetic field range between the resonance and the
zero crossing. We find that � = −174 G gives a slightly
better agreement to the coupled-channel results for a > 100 a0,
so we adopt this value. We stress, however, that the fit to
the data strongly constrains the product abg �, but not each
parameter separately. The differences in a(B) using Eq. (1)
with either value of � are less than 2% for a > 100 a0. A
similar procedure was followed in Refs. [7,8]. Our Feshbach
parameters agree with Ref. [9], where they find B∞ =
737.8(2) G, and, although not quite as well, with Ref. [8],
which reports B∞ = 738.2(4) G. Finally, we remark that the
model potentials used in the coupled-channels calculation are
not a priori sufficiently well known to determine a(B) as
accurately as the binding energy data. The effective range, on
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FIG. 4. (Color online) Three-body loss rate coefficient L3 vs a.
The points are values extracted from the measured trap loss, with
the green, blue, and red points corresponding to condensates with
different trap frequencies, and the purple to a thermal gas (T ≈ 1–
3 μK), as reported in Ref. [5]. The solid line shows universal scaling
in a, where the positions of the features are determined by the single
feature a+

2 . The only additional fitted parameters are the widths η+ =
0.075 and η− = 0.17, for the a > 0 and a < 0 sides of the resonance,
respectively, and an overall scale factor of 5.5 on the a > 0 side of
resonance. The need for scaling the universal theory for positive a

is unknown. We ascribe the deviation from the universal curve for
small, negative a to the presence of the four-body feature aT

1,1. The
dashed lines are guides to the eye, showing a4 scaling.

the other hand, varies slowly with B in the region of interest,
and we find empirically that its contribution to the uncertainty
in γ , via Eq. (4), is small.

We now turn our attention to the three- and four-body
Efimov features previously reported in Ref. [5]. Figure 4 shows
the measured three-body loss rate coefficient L3 plotted versus
a, where the correspondence between measured values of B

is now determined by the new Feshbach parameters given in
Table I. While L3 generally scales as a4, as indicated by the
dashed lines, it is punctuated by several minima and maxima,
which arise from the presence of Efimov molecular states. The
previously reported [5] Efimov maximum a−

2 , corresponding
to the second Efimov trimer, was an error since the upward
shift in the resonance position by 0.7 G relative to the previous
measurement places this feature in the regime where the loss
rates are limited by quantum mechanical unitarity [31–33],
where a−

2 cannot be resolved in the data. For the same reason,
the effect of the second Efimov tetramer associated with the
second trimer (aT

2,2) is also not visible in measurements of
the four-body loss rate coefficient L4 (not shown). The fitted
locations of the remaining features are given in the second
column of Table II, where the caption provides a key to the
notation. Not all of the features given in Table II are indicated
in Fig. 4, but expanded views of both L3 and L4 are found in
Ref. [5].

The origins of three of the features in Table II, indicated
by square brackets, are uncertain. The feature a∗

2 is nominally
located at the atom-dimer resonance where the energy of the
second Efimov trimer merges with the atom-dimer continuum.
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TABLE II. Locations of Efimov features, given in units of a0, of
the three- (L3) and four-body (L4) loss coefficients. The experimental
values of a are extracted from the measured fields using Eq. (1)
with the parameters in bold from Table I. The horizontal lines
indicate features that are near the resonance and were not observed.
The estimated uncertainties include fitting uncertainties, as well as
the uncertainties in the Feshbach parameters. For a > 0, a+

i denotes
the recombination minimum of the ith Efimov trimer. The origins
of three features, labeled as [a∗

2 ], [a∗
2,1], and [a∗

2,2], have not been
identified, but roughly correspond to expected locations of atom-
dimer and dimer-dimer resonances. For a < 0, a−

i denotes the Efimov
resonance where the ith trimer merges with the free atom continuum.
The remaining features, aT

i,j , arise where the jth tetramer associated
with the ith trimer merges with the free atom continuum. The final
column gives the predicted locations of the features using universal
scaling in a. The universal scaling relations were obtained from
the indicated references. The scaling is anchored by the measured
location of a+

2 , which, as an input, is denoted by parentheses.

Experiment Universal scaling in
Feature (units of a0) a (units of a0)

a > 0 a+
1 89(4) 62.57a

a+
2 1420(100) (1420)

[a∗
2 ] 421(20) 317.5a,b,c

[a∗
2,1] 912(50) 697.3d

[a∗
2,2] 1914(200) 2154d

a < 0 a−
1 −252(10) −298.1b

a−
2 — −6765b

aT
1,1 −94(4) −126.8e

aT
1,2 −236(10) −272.0e

aT
2,1 −4060(800) −2878e

aT
2,2 — −6173e

aReference [34].
bReference [35].
cReference [36].
dReference [37].
eReference [38].

Relatively sharp peaks in L3, located near the expected
atom-dimer resonance, were previously reported for 39K [41],
and 7Li [5,42]. Since a large dimer fraction is unexpected, a
model was developed to explain the presence of enhanced loss
even without a large population of dimers [41]. In this model,
each dimer produced in a three-body recombination collision
shares its binding energy with multiple atoms as it leaves the
trap volume due to the enhanced atom-dimer cross section [41].
Recent Monte Carlo calculations, however, conclude that the
resulting peak from this avalanche mechanism is too broad
and shifted to higher fields to explain the observations [43].
The remaining two features, a∗

2,1 and a∗
2,2, are nominally

located at dimer-dimer resonances, where the energy of a
tetramer merges with the dimer-dimer threshold [39]. Their
assignment also remains tentative, since their observation
requires a significant and unsubstantiated dimer population.

The third column in Table II gives the predictions of
universal scaling. Many of the scaling relations presented in
the pioneering papers for the three-body [34] and four-body
sectors [39,40] have been replaced by the more precise
theoretical determinations cited in Table II. Four significant

digits are given to reflect the stated precision of these scaling
relations. If the relative positions of all features are universally
connected, the position of only one is needed to completely
fix the remaining. We choose the recombination minimum
of the second trimer, a+

2 , for purpose of comparison, as it
is a well-defined feature that occurs at sufficiently large a

(∼1400 a0) to be insensitive to short-range effects, while also
being small enough in magnitude to not be hypersensitive
to B. While the measured locations are consistent with
universal theory at the 20%–30% level, some of the features,
in particular a+

1 and the lowest tetramer aT
1,1, occur deep in

the nonuniversal regime where |Re/a| > 1. We attempted to
correct the universal theory for the effect of finite range using
the same strategy applied to the dimer binding energy, that
is, by applying universal scaling in γ −1 [Eq. (4)] rather than
in a. To lowest order, the correction to 1/a is 1

2Re/a
2. We

find that such a replacement improves the agreement with
experiment for features on the a < 0 side of the resonance,
but for a > 0 the agreement is actually made worse. We note
that an effective field theory for short-range interactions has
been developed in which corrections to universal scaling of
three-body quantities are computed to O(Re) and that they
have been applied to the F = 1, mF = 0 Feshbach resonance
in 7Li [44,45]. Effective range corrections have also been used
to analyze Efimov features in Cs [46]. It would be interesting
to apply the same analysis to the F = 1,mF = 1 resonance in
7Li to compare with the data presented here.

A measure of universality across the Feshbach resonance
may be obtained by evaluating the ratio a+

2 /a−
1 . Universal

scaling in a implies a+
2 /a−

1 = −4.76 [35], whereas experimen-
tally, we find a+

2 /a−
1 = −5.63. We disagree with a previous

measurement for the |F = 1,mF = 1〉 state in 7Li, which
found a+

2 /a−
1 = −4.61 [8,47]. The Efimov features observed

in Refs. [7,8] are not as sharp as those reported here, and this
may affect the precision for which the location of a feature
is extracted. The width is quantified by the fit parameter η,
which is related to the lifetime of the Efimov molecule [34].
For Ref. [8], η+ = 0.17 and η− = 0.25, corresponding to the
a > 0 and a < 0 sides of resonance, respectively, while we find
η+ = 0.075 and η− = 0.17. These large differences, at least in
case of η+, may indicate that η, and hence the dimer lifetime,
has an interesting and unexpected temperature dependence,
since the a > 0 data in Refs. [7,8] is obtained with a thermal
gas, while in our experiment the gas is cooled to nearly a pure
Bose condensate.

It was pointed out recently that the location of the first
Efimov trimer resonance a−

1 , when scaled by the van der Waals
radius avdW, is remarkably similar for multiple unconnected
resonances in the same atom [48], as well as for different
atomic species [49]. These observations suggest that there is no
need for an additional “three-body parameter” to pin down the
absolute positions of the Efimov features, but rather, that this
scale is set by short-range two-body physics [49–54]. For the
measurements reported here, −a−

1 /avdW = 7.8, which is close
to the range of 8–10 reported in most other cases [48,49,53,55].

Quantum mechanical unitarity implies that L3 is limited
for nonzero temperatures, as is evidenced by the purple points
in Fig. 4 near the resonance, for which the highest average
L3 is ∼8 × 10−20 cm6/s. This value is about 3 times greater
than the largest L3 [33] predicted for a 1-μK thermal gas,
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which is the lowest temperature of our thermal data [5]. This
discrepancy may indicate a systematic error in measuring L3

under conditions where the decay rate is comparable to the
rate of thermalization.

The determination of the Feshbach parameters for 7Li in
the |F = 1,mF = 1〉 state by direct measurement of the dimer
binding energy is a significant improvement over our previous
measurement using condensate size. We have measured the
dimer binding energy deep into the nonuniversal regime and
find that data are well represented by corrections based on
the field-dependent effective range. Using these more precise
parameters we find that the overall consistency between the
experimentally determined locations of three- and four-body
Efimov features and those obtained from universal scaling is
in the range of 20%–30%. Since we use the location of only

one feature as input, the agreement supports the contention
of universal scaling across the Feshbach resonance, but also
points to the need for a better understanding of effective
range corrections to the Efimov spectrum. The origin of
features nominally located at atom-dimer and dimer-dimer
resonances remains an open question. A direct measurement
of the equilibrium dimer fraction could help to resolve this
issue [56].
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and R. Grimm, Nature (London) 440, 315 (2006).

[5] S. E. Pollack, D. Dries, and R. G. Hulet, Science 326, 1683
(2009).

[6] S. E. Pollack, D. Dries, M. Junker, Y. P. Chen, T. A. Corcovilos,
and R. G. Hulet, Phys. Rev. Lett. 102, 090402 (2009).

[7] N. Gross, Z. Shotan, S. Kokkelmans, and L. Khaykovich, Phys.
Rev. Lett. 105, 103203 (2010).

[8] N. Gross, Z. Shotan, O. Machtey, S. Kokkelmans, and
L. Khaykovich, C. R. Physique 12, 4 (2011).

[9] N. Navon, S. Piatecki, K. Günter, B. Rem, T. C. Nguyen,
F. Chevy, W. Krauth, and C. Salomon, Phys. Rev. Lett. 107,
135301 (2011) (Supplemental Material).

[10] A. D. Lange, K. Pilch, A. Prantner, F. Ferlaino, B. Engeser,
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