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Collective modes and generation of a new vortex in a trapped Bose gas at finite temperature
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The dynamics of Bose-Einstein condensate (BEC) is studied at nonzero temperatures using our variational
time-dependent-Hartree-Fock-Bogoliubov formalism. We have shown that this approach is an efficient tool
to study the expansion and collective excitations of the condensate, the thermal cloud, and the anomalous
correlation function at nonzero temperatures. We have found that the condensate and the anomalous density
have the same breathing oscillations. We have investigated, on the other hand, the behavior of a single quantized
vortex in a harmonically trapped BEC at nonzero temperatures. Generalized expressions for vortex excitations,
vortex core size, and Kelvin modes have been derived. An important and somehow surprising result is that
the numerical solution of our equations predicts that the vortex core is partially filled by the thermal atoms at
nonzero temperatures. We have shown that the effect of thermal fluctuations is important and it may lead to
enhancing the size of the vortex core. The behavior of the singly anomalous vortex has also been studied at
nonzero temperatures.
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I. INTRODUCTION

Ultracold Bose gases at nonzero temperatures have recently
proven to be a rich field of investigation, especially that all
experiments actually take place at nonzero temperatures. The
effects of finite temperatures are so important, in particular on
the thermal cloud, the anomalous density, the expansion of the
condensate, and on the thermodynamics of the system. Fur-
thermore, the effects of nonzero temperature become mainly
obvious in low-dimensional systems, where the condensate
exhibits fluctuations in its phase. Useful theoretical models
have been developed to describe the dynamical behavior of
BEC at nonzero temperatures. Among them we can cite
generalized mean-field treatments [1–4], number-conserving
approaches [5–7], classical field theory [8–12], stochastic
approaches [13–15], and kinetic approach [16–19].

Alternatively, in this paper we use our TDHFB (time-
dependent-Hartree-Fock-Bogoliubov) formalism [20–22]
which is a nonperturbative and non-classical field approach.
The TDHFB equations are time-dependent variational equa-
tions derived using the Balian and Vénéroni (BV) principle
[23]. They are a set of coupled time-dependent mean-field
equations for the condensate, the thermal cloud, and the
anomalous average. We have to mention at this point that these
equations are quite general and fully consistent as they do not
require any simplifying assumptions on the noncondensed or
the anomalous densities.

At nonzero temperatures, the dynamic of BECs, such
as collective modes and vortices are important sources of
information about the nature of the condensate and the thermal
cloud. Experimentally, the measurements of these modes can
be carried out with high precision with the aim to point
out the role of the interactions and quantum correlations
[24–26]. Previous theoretical works show that below the
transition temperature, the excitations have weak temperature
dependence and when the condensate goes to zero the modes
approach those of noninteracting trapped gas [27] while they
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deviate from each other for a large number of particles [27,28].
It has been shown also that the insertion of the anomalous
density in the generalized HFB theory provides a downward
shift in the modes observed experimentally near the critical
region.

Moreover, the collective modes of the condensate and
the thermal cloud have been tested successfully against
experiments in the so-called ZNG theory (Zaremba, Nikuni,
and Griffin) [16–18]. In such an approach, the thermal cloud
itself is described by a quantum Boltzmann equation coupled
to the condensate.

Although these theories give good results against exper-
iments, they completely raised the collective modes of the
so-called anomalous density. Certainly this quantity plays a
crucial role in Bose gases as well as its absence leads to
instabilities in such systems [21,22]. It is therefore instructive
to use our TDHFB formalism within the hydrodynamic
approach to study the excitation modes of the anomalous
density and its expansion after a sudden switching off of the
trap, and this is the subject of the first part of the present paper.

On the other side, many experimental and theoretical
efforts have been directed towards the formation and the
behavior of vortices in atomic BEC [29–48]. Actually, vortices
can be created using a range of different techniques. The
development of these techniques has opened the door to
study more complicated configurations, starting from vortex
lattices [30,31] passing to the creation of a small tangle
of vortices [34,49]. Moreover, vortices in two-dimensional
(2D) degenerate Bose gases have also realized [50] such
vortices play an important role in the occurrence of the phase
transition of the quasicondensate in 2D geometry [51]. Vortex
dipoles have also been recently realized experimentally in
dilute Bose gas [52–54]. Additional stationary vortex cluster
configurations, such as vortex tripoles [55] and other, more
exotic arrangements have also been predicted [56].

However, self-consistent but not variational approaches
[17] have led to the conclusion that a vortex which is
thermodynamically unstable at vanishing temperatures could
be stabilized at finite temperature due to the presence of
a thermal cloud causing the vortex to dissipate energy and
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spiral out of the condensate. Alongside this spiraling behav-
ior, the vortex core can become macroscopically occupied
by the thermal cloud [37,38,47]. It has also been shown that
the thermal cloud density acts as a pinning center and causes
the opposite sense of precession which is analogous to the
violation of the Kohn theorem in the HFB theory [37,47]. To
restore the proper behavior one must treat the dynamics of the
thermal cloud in a consistent fashion; this is what our TDHFB
theory provides.

Our motivation in the second part of this paper is to revisit
the behavior of vortices in Bose gases where we will investigate
the effects of temperature on vortex frequencies and the radius
of the vortex core by solving analytically and numerically
the TDHFB equations. What is advantageous in our theory
is that both the thermal cloud and the anomalous density are
not considered to be static as in earlier treatments, but are
treated dynamically on the same balance as the condensate.
This more consistent treatment counteracts the idea that a static
thermal cloud can destabilize the vortex [37,47]. Additionally,
our model permits us to go further and predict vortices
which appear at nonzero temperature, namely, “anomalous
vortices”.

The rest of the paper is organized as follows. In Sec. II,
we briefly review the derivation of the TDHFB equations.
Using the hydrodynamic approach, we show that TDHFB
equations satisfy all conservation laws as well as being gapless.
In Sec. III, we calculate the breathing modes of the anomalous
density in the limit of the Thomas-Fermi (TF) approximation.
In Sec. IV, we apply our TDHFB formalism to study the
behavior of vortices at nonzero temperatures, where we have
generalized standard expressions of vortex frequencies and the
radius of the vortex core (Sec. IV A). Next, we compare our re-
sults with recent theoretical calculations. The vortex profiles at
different ranges of temperatures are also analyzed (Sec. IV B).
In Sec. IV, we shed some light on properties of the so-called
anomalous vortex. Our concluding remarks are presented
in Sec. V.

II. THE TDHFB THEORY

In this section, we briefly discuss the TDHFB equations
and the advantages of using such a model before presenting
our results. The TDHFB theory based on the Balian-Vénéroni
variational principle describes the dynamics of interacting
trapped Bose systems at nonzero temperatures. For a short-
range interaction potential, the TDHFB equations read

ih̄�̇ =
(

− h̄2

2m
� + Vext (r) + g |�|2 + 2gñ

)
� + gm̃�∗,

(1a)

ih̄ ˙̃m = g (2ñ + 1) �2

+ 4

(
− h̄2

2m
� + Vext (r) + 2gn + g

4
(2ñ + 1)

)
m̃,

(1b)

ih̄ ˙̃n = g(m̃∗�2 − m̃�∗2
), (1c)

with m being the atom mass, Vext (r) the external confining
potential, and g = 4πh̄2a/m the coupling constant with a is
the s-wave scattering length.

In the set (1), � is the order parameter, nc = |�|2 =
|〈ψ(�r)〉|2 is the condensate density, ñ(�r) = 〈ψ+(�r)ψ(�r)〉 −
〈ψ+(�r)〉〈ψ(�r)〉 is the thermal cloud, m̃(�r) = 〈ψ(�r)ψ(�r)〉 −
〈ψ(�r)〉〈ψ(�r)〉 is the anomalous density, and n = nc + ñ is the
total density.

One may understand in few words how Eqs. (1) have been
derived simply by recalling that the BV variational principle
provides dynamical equations for the variational parameters
of the density operator. These parameters are directly related
to the previous expectation values (with respect to the density
operator) of the operators ψ(�r), ψ+(�r)ψ(�r), and ψ(�r)ψ(�r),
which determine the various densities.

For further computational details, see Refs. [20–22]. More-
over the quantities ñ and m̃ are related by the following
equality [23,57]:

I − 1

4
= ñ (ñ + 1) − |m̃|2 . (2)

If I → 1 or (T → 0), Eq. (2) shows that the absolute value
of the anomalous density is larger than the noncondensed
density. This proves the importance of the former especially
at low temperature, where it cannot be neglected whatever the
conditions.

A. Conservation laws

As known, the anomalous density is a divergent quantity in
any geometry. One of the most efficient tools to circumvent
this divergence is the renormalization of the coupling constant.
Following the method of Burnett et al. [9,27], we get from
Eq. (1a),

g |�|2 � + gm̃�∗ = g

(
1 + m̃

�2

)
|�|2 � = U |�|2 �. (3)

This is similar to the so-called G2 approximation [9,27]
based on the T -matrix calculation, which is gapless mean-field
theory taking into account effects of the background gas on
colliding atoms.

At very low temperature and for weak interaction
(m̃/�2 � 1), the new coupling constant U reduces imme-
diately to g.

Then by introducing U (r) in Eqs. (1), and using the fact that
at very low temperature we have, from Eq. (2), 2ñ + 1 ≈ 2m̃,
one obtains

ih̄�̇ =
[
− h̄2

2m
� + Vext(r) + g(β |�|2 + 2ñ)

]
�, (4a)

ih̄ ˙̃m =
[
− h̄2

2m
� + Vext (r) + 2g (Gm̃ + n)

]
m̃, (4b)

where β = U/g and G = U/4 (U − g).
Note that if β = 1, i.e., m̃/�2 = 0, Eq. (4a) reduces to

the well-known HFB-Popov equation which is of course safe
from all ultraviolet and infrared divergences and thus provides
a gapless spectrum.

In a homogeneous system the hydrodynamic excitations
are sound waves, while for trapped gas the excitations are not
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plane waves anymore and have to be classified according to the
symmetries present in the trap geometry. Besides the low-lying
excitations, which are studied by shaking the gas out of the
ground state into the lowest excited states, it is also important
to consider time-of-flight experiments, in which the sample is
released from the trap, and expands freely in space. Both types
of phenomena can be investigated within the hydrodynamic
formalism, which we derive now starting from the TDHFB
equations.

Hence, a useful reformulation of the set (1) is obtained by
factorizing the condensate wave function and the anomalous
density according to the Madelung transformation:

� (�r,t) =
√

nc (�r,t)eiS(�r,t), (5a)

m̃ (�r,t) =
√

m̃ (�r,t)eiθ(�r,t), (5b)

where S and θ are phases of the order parameter and the
anomalous density, respectively. They are real quantities,
related to the superfluid and thermal velocities, respectively,
by vc = (h̄/m) �∇S and vm̃ = (h̄/m) �∇θ . By substituting ex-
pressions (5) in Eqs. (4a) and (4b) and separating real and
imaginary parts, one gets the following set of hydrodynamic
equations:

∂
√

nc

∂t
+ �∇ (ncvc) = 0, (6a)

∂
√

m̃

∂t
+ �∇ (m̃vm̃) = 0. (6b)

Equations (6) are nothing more than equations of continuity
expressing the conservation of mass, and Euler-like equations
read

m
∂vc

∂t
− 1

2
mv2

c = −�∇
[
− h̄2

2m

�
√

nc√
nc

+ Vext + g (βnc + 2ñ)

]
,

(7a)

m
∂vm̃

∂t
− 1

2
mv2

m̃ = −�∇
[
− h̄2

2m

�
√

m̃√
m̃

+ Vext + 2g (Gm̃ + n)

]
,

(7b)

where (−h̄2/2m)�
√

nc/
√

nc and (−h̄2/2m)�
√

m̃/
√

m̃

are, respectively, quantum and anomalous pressures.
In a nonstationary situation, it is then considered small

oscillations (low density) for the condensed and anomalous
densities around their static solutions in the form

nc = nc0 + δnc, m̃ = m̃0 + δm̃, (8)

where δnc/nc0 � 1 and δm̃/m̃0 � 1.
Shifting the phases by −μct/h̄ and −μm̃t/h̄, we then

linearize Eqs. (6) and (7) with respect to δnc, δm̃, �∇S, and
�∇θ around the stationary solution. The zero-order terms give
two expressions for the chemical potential:

μc = − h̄2

2m

�
√

nc0√
nc0

+ Vext + g (βnc0 + 2ñ) , (9a)

μm̃ = − h̄2

2m

�
√

m̃0√
m̃0

+ Vext + 2g (Gm̃0 + n) , (9b)

where μc is the chemical potential of the condensate and
μm̃ is the chemical potential associated with the anomalous

density. Strictly speaking μm̃ is also associated with the
thermal cloud density since ñ and m̃ are related to each other
by Eq. (2).

Clearly μc �= μm̃ at all ranges of temperature except near
the transition where nc = m̃ = 0 and ñ = n. Additionally, in
the grand canonical ensemble the Hamiltonian may be written
as K = H − μN . If in the experiment only the total number
of particles N = Nc + Ñ or the total density n can be fixed,
then the total chemical potential of the system can be given as

μ = Nc

N
μc + Ñ

N
μm̃, (10)

where Nc/N and Ñ/N are, respectively, the condensed and
the thermal fractions. It should be noted that this equation
arises naturally from our formalism without any subsidiary
assumptions. Moreover, Eq. (10) very nicely guarantees the
conservation of the total number of particles and highly
coincides with the theory of Ref. [58].

After the above analysis we can confirm that the TDHFB
equations satisfy all the conservation laws such as the energy
and the total number of particles. Additionally, they are charac-
terized by a gapless excitation spectrum, which is compatible
with the finite temperature version of the Hugenholtz-Pines
theorem [59,60].

Let us now consider a harmonic oscillator potential
[Vext (r) = mω2

0r
2/2] with a large number of particles. It

is legitimate in this situation to neglect the kinetic energy
associated with both quantum and anomalous pressures.
Therefore, Eqs. (9) provide useful formulas for the radius of
the condensate and the anomalous density, respectively, as

R5
TF

Nc

= C

(
2
Nc

N

+ β − 2

)
, (11a)

Rm̃5
TF

M̃
= C

(
1
M̃
N

+ G

)
, (11b)
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FIG. 1. The ratio R5
TF/Nc as a function of the condensed fraction.

Circles show experimental results of [61], the dashed line shows
HFB-Popov calculations (β = 1), and the solid line is our predictions
with β = 0.08.
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where C = R
(0)5
TF /N with R

(0)
TF = aH0 (15Na/aH0)1/5 is the

standard TF approximation radius at zero temperature and
aH0 = √

h̄/mω0 is the harmonic oscillator length. M̃/N is the
anomalous fraction where M̃ = ∫

d�r m̃ (r) is the integrated
value of the anomalous density [22].

The relation (11a) reproduces the overall behavior observed
experimentally in [61] as well as yielding the zero-temperature
expression for Nc/N = β = 1. Nevertheless, as can be seen
from Fig. 1, R5

TF/Nc increases with increasing Nc/N and gives
reasonable agreement with both theoretical treatments of HFB-
Popov and experimental results of [61] for small values of β.

Furthermore, despite the lack of experimental data of the
anomalous density in the literature, we can point out from
expression (11b) that the radius of the anomalous density
is small compared to that of the condensate at low temper-
ature. At high temperature both radii should vanish since
nc = m̃ = 0 [21].

III. BREATHING MODES OF THE ANOMALOUS DENSITY

As an application of our implementation of the TDHFB
equations, we study the breathing oscillation of a BEC at
nonzero temperatures. Inserting Eqs. (9) into (7) and taking
the time derivative of the resulting equations, one finds

m
∂2δnc0

∂t2
= �∇(nc0 �∇δμc), (12a)

m
∂2δm̃0

∂t2
= �∇(m̃0 �∇δμm̃). (12b)

Equations (12) describe the collective modes of both con-
densate and anomalous density for Bose gas in an arbitrary
potential. So they form in this sense a natural extension of the
famous Stringari equation [62]. It is to be noted that similar
equations have been derived within the ZNG theory [16] but
without taking into account the anomalous density.

The calculation of the collective modes in a trapped case
is not trivial at nonzero temperature due to the fast extent of
the cloud and the spatial variation of the coherence length. In
the spirit of the TF approximation, it is therefore necessary
to explore the properties of the collective modes when both
pressures are neglected from the equations of motion.

Before proceeding further, it is important to note that the
kinetic term of the thermal cloud does not appear explicitly in
the equations but is rather hidden in Eq. (1c). Indeed, the
kinetic term of the thermal cloud is related to the second
derivative of the anomalous density. Differentiating Eq. (2)
yields a relation of the form �ñ ≈ ( �∇m̃)2 − ( �∇ñ)2 + m̃�m̃,
which shows clearly that neglecting �m̃ does not necessarily
mean neglecting �ñ, and therefore omitting the anomalous
pressure does not mean neglecting the thermal pressure [63].
Such feature we shall adopt in what follows.

When the anomalous pressure is neglected, Eq. (9b) reduces
to μ̄m̃ = μm̃ − 2gn = Vext + 2gGm̃, since the total density is
conserved (δn = 0). Thus

δμ̄m̃ = 2gGδm̃. (13)

The anomalous density becomes

m̃0 = μ̄m̃ − Vext

2gG
. (14)

Introducing Eqs. (13) and (14) into (12b) one finds

∂2δm̃0

∂t2
= 2gG

m
�∇(m̃0 �∇δm̃0). (15)

In the TF approximation the chemical potential and the ra-
dius of the anomalous density are related by μ̄m̃ = mω2

0R
m̃2
TF /2.

Assuming oscillations with time dependence δm̃0 ∝ e−iωt ,
and working in the spherical coordinates, the differential
equation (15) simplifies to

2�2χl (z) = 2y
dχl (z)

dz

+ (1 − z2)

[
d2

dz2
+2

z

d

dz
− l (l + 1)

z2

]
χl (z) , (16)

where χl (y) = δm̃0/Ym
l (θ,ϕ), � = ω/ω0, and z = r/Rm̃

TF.
In terms of the dimensionless coordinate x = z2, Eq. (16)

will be valid for 0 � x � 1 and hence it takes the standard
form of the hypergeometric function F (α,β,γ ; x). For low-
energy excitations with orbital angular momentum l = 0, one
can obtain after a little algebra values of the excitation energy

�j =
√

j (2j + 3). (17)

For j = 1 we get a surprising result, ω = √
5ω0, i.e., we

recover the breathing mode obtained earlier for the condensate.
This shows that the condensate and the anomalous density
dilate and contract together at the same time and with the
same frequency, which constitutes a new feature for ultracold
Bose gases at finite temperature. It is important to mention
here that we are able to study the evolution of the anomalous
density when the trap is switched off suddenly by extending the
TF approximation, Eq. (15), in the time-dependent harmonic
potential. The primary result shows that the anomalous density
in the TF regime keeps its shape at any moment. Analogous
result was found by Castin and Dum [64] for the condensate.

IV. VORTICES AT NONZERO TEMPERATURES

A. Vortex frequencies

Consider a straight vortex line in a BEC in the trapping
geometry of an ideal cylinder. The z direction is free, and
in the x,y plane one has a harmonic confining potential
Vext (r) = mω2

r r
2/2, where r2 = x2 + y2. We will try to find

the eigenfrequency and wave function of an excitation corre-
sponding to the rotation of the vortex line around the z axis.
Due to the instability of multiquantum vortices [37,38,65,66],
we will focus on looking for the solution of the stationary
TDHFB equation (4a) with orbital angular momentum 1. We
then obtain

ih̄�̇ = − h̄2

2m

(
d2

dr2
+ 1

r

d

dr
− 1

r2

)
�

+ [Vext(r) + g(β|�|2 + 2ñ)]�. (18)
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In the TF limit, the radius of the trapped BEC in the x,y
plane is RTF = √

2μc/mω2
r . The chemical potential is μc ≈

gnTF (0), with nTF (0) ≈ nc (0) being the finite temperature
TF density at the center of the trap. Such estimation can
be attributed to the fact that the thermal atoms are usually
localized at the edge of the trap where they develop a peak
[2,20,43]. Therefore, in the center of the trap the noncondensed
density should vanish [ñ (0) → 0]. This behavior is also valid
for the anomalous density [21].

Assuming now that RTF � ξ where,

ξ = h̄√
mμc

= ξ (0)

√
nc/n

(19)

is an estimate vortex size at finite temperature and ξ (0) =
h̄/

√
mng is the standard vortex size at zero temperature.

In this case one can write an approximate solution of
Eq. (18) as

� (r) = �TF (r) f (r/ξ ) eiφ, (20)

where �TF (r) is the TF wave function (see below) and RTF is
the finite temperature TF radius.

For a large condensate, it is natural then to write �TF (r)
via the expression (9a) as

�TF (r) =
√

μc

g

(
1 − r2

R2
TF

)
. (21)

Indeed, we may easily show that upon linearizing Eq. (18)
around a static solution by using the parametrization � =
�0 + ∑

k (uke
−iωkt − vke

iωkt ) in which ωk are the quasiparti-
cle frequencies and uk and vk are the quasiparticle amplitudes,
we get trivially the Bogoliubov-de Gennes (BdG) equations
[20]. The resulting equations cannot be solved exactly. Luckily
in many cases, one can use the local density approximation.
In the spirit of this approximation, we write uk (r) = ū and
vk (r) = v̄e−2iφ [67] and set ωk (r) = ωv . Therefore, the BdG
equations for these functions read

h̄ωvū =
[

− h̄2

2m

(
d2

dr2
+ 1

r

d

dr

)

+Vext + 2g(β |�|2 + ñ) − μc

]
ū − gβ�2v̄,

−h̄ωvv̄ =
[

− h̄2

2m

(
d2

dr2
+ 1

r

d

dr
− 4

r2

)

+Vext + 2g(β |�|2 + ñ) − μc

]
v̄ − gβ�2ū. (22)

We now assume that the solutions of Eqs. (22) are given by

ū = 1√
4πL

(
f

r
+ ∂f

∂r

)
�TF,

(23)

v̄ = 1√
4πL

(
f

r
− ∂f

∂r

)
�TF,

where L is the length of the vessel.

Next we introduce Eqs. (18), (21), and (23) into the set (22).
After that we multiply the sum of the two resulting equations
by (ū + v̄) and integrate over d3r . This yields

h̄ωv = 2h̄2

m

∫ {
f 2

r2

(
d2�TF

dr2
+ 1

r

d�TF

dr
+ 2

f

d�TF

dr

df

dr

)}

× d3r

4πL . (24)

The main contribution to the integral in the left-hand side of
Eq. (24) comes from distances where ξ � r � RTF. We then
set f ≈ 1 and �′′

TF = (1/r) , �′
TF = 1/R2

TF and we obtain

h̄ωv = − 2h̄2

mR2
TF

∫ RTF

ξ

dr

r
= − 2h̄2

mR2
TF

ln

(
RTF

ξ

)
. (25)

Using the fact that μc = mω2
r R

2
TF/2, we get straight-

forwardly the finite temperature corrections of the vortex
frequency as

ωv

ωr

= − 2

(RTF/aH0)2 ln

(
RTF

ξ

)
, (26)

where RTF and ξ are the extended radius and vortex size given,
respectively, by Eqs. (11a) and (19).

Therefore, the obtained eigenfrequency is negative. This
indicates the presence of thermodynamic (energetic) instability
as one may expect in a nonrotating trap where the vortex state
is not the ground state.

From Fig. 2 we can see that our prediction of Eq. (26) agrees
reasonably well with the calculations of the HFB-Popov and
ZNG theories [68] at temperatures less than T = 0.5Tc(here
we have followed the method outlined in [2,68] to calculate
the reduced temperature). At T � 0.6Tc our results start to
deviate from those of preceding theories.

• • •

• •
•
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FIG. 2. (Color online) Vortex frequency as a function of the
reduced temperature for R

(0)
TF/ξ (0) = 0.35 and β = 1.025. Solid line,

our predictions; red dashed line, HFB-Popov (β = 1); and blue
circles, the ZNG calculation [68].
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B. Numerical results

To complete the picture, we restrict ourselves in this section
to analyzing profiles of singly quantized and anomalous
vortices at nonzero temperatures by explicitly solving our
TDHFB equations.

First of all, we try to see how the singly quantized vortex
is generated in the condensed phase and how the thermal
part of the system looks. We then have to deal with solving
numerically our Eqs. (18), (1b), and (2). For single vortex
lines, cylindrical symmetry is often deployed to reduce the
computational cost of numerical solutions [37]. Employing the
cylindrical symmetry, the TDHFB equations can be reduced to
radial equations, which we discretize using a finite-difference
method. The physical parameter values for the gas and the trap
have been chosen to be the same as in Refs. [54,68].

At first sight, the vortex core, such as the one seen
in Fig. 3, appears partially occupied (∼10%) by thermal
atoms. This is indeed due to the much lower density at the
vortex core and, hence, the lower energy cost of gathering
particles at that position. However, our results are in qualitative
agreement with those obtained in [47,68–71], where it has
been shown that the thermal atoms feel the condensate density
as an extra potential and therefore can be located inside the
vortex core [69,70]. Additionally, the inclusion of anomalous
density, which quantifies correlations of pairs of noncondensed
atoms with pairs of condensed atoms, may play a crucial
role on the formation and on the shape of vortices at low
and intermediate temperatures. Note that if that anomalous
correlations are absent, the superfluidity does not occur [21,22]
and hence vortices cannot survive in Bose gas. Thus, the correct
description of vortices necessarily requires taking into account
uncondensed particles as well as the anomalous density. This
is especially important at fast rotation that increases the system
energy, and by this depletes the condensate, producing more
uncondensed atoms.

Clearly, we observe from Fig. 4 that by decreasing Nc/N ,
the condensed density begins to decrease and starts to

FIG. 3. Condensate and thermal gas density profiles for
N/Nc = 75%.

FIG. 4. (Color online) Condensate density as a function of the
radial distance for various condensed fractions.

disappear when Nc/N approaches 5%. This overall behavior
coincides very well with what was obtained earlier in the
literature. In addition, the vortex state is shown to be locally
stable at all ranges of temperature.

Figure 4 also depicts that the vortex core becomes effec-
tively larger with increasing temperature and therefore pushed
slightly away from the center of the trap in good agreement
with both recent Bogoliubov calculations of [71] and with our
analytical predictions of Eq. (19), as can be seen in Fig. 5. It is
now clear that the normal and anomalous correlations, which
we have consistently taken into account in our theory, may lead
to a large vortex core. These correlations also tend to lower the
energy compared to that of the mean-field ground state [71].
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FIG. 5. (Color online) Radius of the vortex core as a function of
the reduced temperature.
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Experimentally the radius of a vortex core is ordinarily
several times smaller than the wavelength of light used for
imaging, making direct, in situ observation of vortices in a
trapped condensate difficult [31,54].

Indeed, the vortex contrast decreases because the vortex
line undergoes Kelvin oscillations (kelvons) [72,73] due to the
presence of thermal fluctuations. In fact, this is true irrespective
of the presence or not of the noncondensed atoms in the vortex
core. In this case, the Kelvin modes can be calculated easily
from Eqs. (22) as K = Ekln (1/kξ ) where ξ is the nonzero
temperature vortex size defined in Eq. (19). Very recently, the
Kelvin collective mode has been determined for rotating BEC
containing up to 19 singly quantized vortex filaments, using
the microscopic Bogoliubov–de Gennes theory [74].

Finally we extend our study to examine the behavior of the
so-called anomalous vortex (associated with the anomalous
density). Including then the complex function (5b) into
Eq. (4b) without imposing the singly quantized vortex on the
condensed phase. The resulting equation contains a centrifugal
potential which forces the solution of m̃ to be zero along the z

axis for nonzero angular momentum.
Again, we solve numerically our TDHFB equations for

single vortex with the same experimental values corresponding
to Fig. 3. In Fig. 6 we plot qualitatively the anomalous vortex
as a function of temperature. It is easy to see that this type
of vortex preserves the same shape as the ordinary vortex,
whatever the position. The formation of the anomalous vortex
occurs first due to the centrifugal forces on the gas and second
owing to the correlations between condensed and noncon-
densed atoms. It generates and grows at low temperature until
it reaches its maximum value at intermediate temperatures.
After that, it starts to disappear near the transition. This
ultimately conducts us to confirm that the anomalous vortex
accompanies in analogous manner the ordinary vortex. To our
knowledge, anomalous vortices have never been investigated
in the literature.

It is worth noting that formulas for vortex frequencies,
the radius of the vortex core, and Kelvin modes of the
anomalous vortex can be derived following the same fashion
as in Sec. IV A.

FIG. 6. (Color online) Anomalous vortex vs the radial distance
for various condensed fractions.

V. CONCLUSION

Our work is divided into two parts. In the first part, by
applying our TDHFB formalism within the hydrodynamic
approach, we derived a set of two equations treating self-
consistently the expansion and the collective modes of both
the condensate and the anomalous density in trapped Bose gas
at finite temperature. The main message emerging from our
analysis is that at low temperature, the breathing modes of the
anomalous density have the same value found earlier for the
condensate. Also, the conclusion that we reached in this work
shows that the anomalous density in the Thomas-Fermi regime
keeps its shape at any moment after a sudden switching off of
the trap.

In the second part, we have discussed the effects of
the anomalous correlation function and temperature on the
properties of vortices in harmonically trapped Bose gas.
In such study, we have generalized, in particular, standard
expressions of the vortex excitations and the size of the vortex
core at nonzero temperatures. Our analytical predictions con-
stitute good agreement with ZNG simulations and HFB-Popov
calculations. Moreover, we have explored numerically the full
static TDHFB equations in the presence of a single quantized
and anomalous vortex. The outcomes of this simulation are
numerous. First of all, regarding the quantum vortex, an
important and somehow surprising result is that the TDHFB
formalism predicts that the vortex core is partially occupied
by the thermal atoms at nonzero temperatures. At this stage,
it should be noted that the filling of the vortex core by the
thermal cloud is not yet observed experimentally and remains
challenging for the experimentalists. Secondly, the size of the
core swells with increasing temperature in excellent agreement
with both our analytical calculations and recent theoretical
predictions [71]. Indeed, the vortex contrast decreases for the
reason that the vortex line undergoes Kelvin oscillations. In
addition, an extended formula of such Kelvin modes at nonzero
temperatures has also been derived in this paper. Furthermore,
we have shown that normal and anomalous correlations may
lead to modifying the size of the vortex core.

On the other hand, we have investigated the formation
and the behavior of the singly anomalous vortex. We have
found that this later preserves the same shape as the ordinary
vortex. The anomalous vortex reaches its maximum value
at intermediate temperatures, while it disappears near the
transition when the gas becomes completely thermalized.

It should be noted that a doubly quantized vortex can
be generated self-consistently in the anomalous density if
we insert condensed and anomalous phases simultaneously
in the TDHFB equations, which is in fact an advantage of
our formalism. Certainly, further experimental and theoretical
effort is required to gain more insight into what indeed is
happening about this type of vortex.

An interesting future work is to investigate the properties of
quantum and thermal vortices in three- and two-dimensional
BEC with dipole-dipole interactions at nonzero temperatures.
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[50] Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and

J. Dalibard, Nature (London) 441, 1118 (2006).
[51] D. S. Petrov and G. V. Shlyapnikov, Phys. Rev. A 64, 012706

(2001).
[52] Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, Science 293,

663 (2001).
[53] T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis, and

B. P. Anderson, Phys. Rev. Lett. 104, 160401 (2010).
[54] D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Langin,

and D. S. Hall, Science 329, 1182 (2010).
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