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Boson-fermion pair correlations in a mixture are considered at zero temperature in the T -matrix approximation.
Special attention is paid to the Luttinger theorem. In a strict random-phase approximation variant of the Nozières-
Schmitt-Rink approach, it is shown that this theorem is respected also in the homogeneous infinite matter case.
We calculate the corresponding occupation numbers of fermions and bosons and the condensate depletion. We
also show that in the limit of very small boson density, our results are in good agreement with the results found
in the literature for the Fermi polaron in strongly imbalanced Fermi-Fermi mixtures.
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I. INTRODUCTION

Cold-atom physics is constantly progressing at a rapid
pace. Fermi and Bose systems have been under consideration
extensively. Bose-Fermi (BF) mixtures have been studied so
far a little less. In early attempts to create a degenerate Fermi
gas, bosonic 7Li [1,2] or 23Na atoms [3] were added to the
fermionic 6Li in order to allow for sympathetic cooling. The
first BF mixture with an attractive BF interaction was that of
40K and 87Rb [4]. In present-day experiments with 6Li, a small
fraction of 7Li atoms is kept to serve as a thermometer [5]. In
Ref. [6] a mixture of 40K, 41K, and 6Li was created with the
main goal to produce a mass-imbalanced Fermi gas of 40K and
6Li, the boson 41K acting again as a coolant. The possibility
to produce a dipolar Fermi gas of polar fermionic molecules
has triggered many experiments with different BF mixtures
such as 87Rb-40K [7,8], 23Na-40K [9,10], and 23Na-6Li [11].
Experiments with BF mixtures are not restricted to alkaline
atoms. For instance, also 84Sr-87Sr [12] mixtures were created.

From the theory perspective, BF mixtures are interesting in
their own right, e.g., to study the interplay between different
quantum statistics in various fields of physics. They also may
serve to simulate definite physical systems. For example, BF
mixtures have been considered as an analogy to what might
happen in the quark-hadron phase transition [13] within the
scenario that the first two quarks form a tightly bound diquark
(boson), which then combines with a third quark (fermion)
to form a nucleon. It, thus, is important to further develop
the theory of BF correlations in BF mixtures. A particularly
interesting question concerns the structure and behavior of BF
pairs. In Ref. [14] we have shown that similar to the formation
of Cooper pairs in two-component Fermi systems, also in BF
mixtures stable BF pairs can exist with very weak attraction
for which a bound state cannot be formed in free space.

In this work, we shall be concerned with bosons and
fermions interacting via a broad Feshbach resonance. Under
this condition, the system can be described by a Hamiltonian of
bosons and (spinless) fermions interacting via an attractive (or
repulsive) contact potential. There exist several Monte Carlo
investigations in one-dimensional (1D) [15] and 3D [16,17] BF
systems. However, also approximate many-body approaches
have been applied. Among those several works using the

so-called T -matrix approximation have appeared [14,18–22]
and this shall also be our framework in this paper. The BF
T matrix describes BF scattering states but also eventual
formation of bound states. Bound states in the medium are
especially interesting. The T matrix also can serve to study
single-particle properties. In this respect, folding the T matrix
with either a fermion or a boson propagator yields the boson
or fermion self-energy of the Dyson equation.

The T -matrix approximation has become particularly pop-
ular since Nozières and Schmitt-Rink (NSR) showed that for
attractive Fermi systems this approach interpolates between
the weak-coupling (BCS) situation and the Bose-Einstein
condensation (BEC) of strongly bound fermion pairs [23].
This approach has also been generalized to study the pairing
properties of polarized Fermi systems where there exist more
fermions with, e.g., spin ↑ than those with spin ↓ [24–27].
However, these studies have revealed that in this case the
standard NSR approach may lead, in some regions of the
parameter space, to pathological results. A special case of
particular interest is that of an extremely imbalanced mixture,
which can be treated by considering a single atom of the
minority species, the so-called polaron limit. The case of
Fermi polarons, i.e., a single fermion of spin ↓ in a system
of fermions with spin ↑, has been intensively studied using
a variational ansatz [28,29] and, equivalently, a T -matrix
approach [30,31], as well as using a diagrammatic Monte Carlo
technique [32–34]. All these results can be directly applied to
BF mixtures with a very small number of bosons, because if
one considers only a single impurity it does not matter whether
it is a fermion or a boson.

In the present paper, we will pay special attention to the
Luttinger theorem [35]. This theorem states that the volume
of the Fermi sphere is not changed by interactions, or in
other words, that the reduction of the occupation numbers
ρk<kF

inside the Fermi sphere is exactly compensated by the
nonvanishing occupation numbers ρk>kF

outside the Fermi
sphere. It is highly nontrivial to respect this theorem within
a nonperturbative approximation scheme. Here, we will use
a variant of the NSR approach adapted to BF systems.
A particularity of the NSR approach is that it treats the
self-energy in the single-particle Dyson equation only to first
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order. This, for instance, means that the NSR approach, if
suitably adapted, is strictly equivalent to the random-phase
approximation (RPA), here in the so-called particle-particle
(pp) channel, which sums pp and hole-hole (hh) ladders
simultaneously [36]. The fact that pp-RPA satisfies, among
other things, the analog of the Luttinger theorem in a system
with a discrete level structure such as atomic nuclei has been
known for many years [36,37]. It has also been demonstrated
for a BF system on a lattice [38]. It will be one of the results
of the present work to show this explicitly in a continuum case
for an attractively interacting infinite BF system.

The paper is organized as follows. In Sec. II we discuss the
BF scattering in a BF mixture within the pp-RPA framework.
In Sec. III we discuss the correlation effects on the ground-state
properties. Finally, in Sec. IV we summarize and conclude.

II. BOSON-FERMION T MATRIX WITHIN
PARTICLE-PARTICLE RPA

The starting point of our study is the following BF
Hamiltonian:

H =
∫

d3r

{
− ψ†(r)

∇2

2mF

ψ(r) − ϕ†(r)
∇2

2mB

ϕ(r)

+ gψ†(r)[
√

n0 + ϕ†(r)][
√

n0 + ϕ(r)]ψ(r)

}
, (1)

where ψ and ϕ are the fermion and boson field operators,
mF,B are the fermion and boson masses, and g is the coupling
constant. The field operator ϕ has been shifted by a c-number√

n0, where n0 denotes the density of condensed bosons [39].
The field operators ψ and ϕ can be written in terms of fermion
and boson annihilation operators ck and bk as

ψ(r) =
∫

d3k

(2π )3
cke

ik·r , (2)

ϕ(r) =
∫

d3k

(2π )3
bke

ik·r. (3)

Analogously, ψ† and ϕ† can be written in terms of fermion
and boson creation operators c

†
k and b

†
k.

The Hamiltonian (1) is suitable for the case of a broad
Feshbach resonance in the BF interaction [21]. We neglect
the boson-boson (BB) interaction. A repulsive BB interaction
would essentially result in a mean-field shift that can be
absorbed in a redefinition of the boson chemical potential
and does not change the results very much [18,19]. Since we
assume that the fermions are present in only one spin state
(“spinless fermions”), there cannot be an s-wave fermion-
fermion (FF) interaction and higher partial waves are usually
negligible in ultracold trapped atoms.

As mentioned before, we want to apply a suitably adapted
NSR approach to the present BF problem. We will work at
zero temperature and with chronological Green’s functions
(GFs). In standard notation [39] we have for the single-particle
fermion and noncondensed boson GFs

GF (k,t − t ′) = −i〈0|T ck(t)c†k(t ′)|0〉 , (4)

GB(k,t − t ′) = −i〈0|T bk(t)b†k(t ′)|0〉 , (5)

FIG. 1. Feynman diagrams corresponding to the formulas in the
text.

where T means time ordering. The corresponding free boson
and fermion propagators in frequency space are given by

G0
B(k,ω) = 1

ω − εB(k) + iη
, (6)

and

G0
F (k,ω) = θ (k − kF )

ω − εF (k) + iη
+ θ (kF − k)

ω − εF (k) − iη
, (7)

where εB,F (k) = k2/(2mB,F ) are the noninteracting boson and
fermion energies and kF is the Fermi momentum, related to
the fermion density nF by nF = k3

F /(6π2).
We use these free GFs to construct the BF T matrix in

ladder approximation. The result can be written as [14,18]

T (k,ω) = 1


−1(k,ω) − n0G
0
F (k,ω)

. (8)

The regularized BF scattering matrix 
 with no boson in the
condensate is a standard expression, which can be found in the
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literature [18,19,21]


(k,ω) = 1
mr

2πa
− J (k,ω)

, (9)

where mr = mF mB/(mF + mB) is the reduced mass, a is
the BF scattering length, and J denotes the uncorrelated BF
propagator that is given by

J (k,ω) =
∫

d3k′

(2π )3

[
1 − θ

(
kF − ∣∣mF

M
k + k′∣∣)

ω − k2

2M
− k′2

2mr
+ iη

+ 2mr

k′2

]
,

(10)

with M = mB + mF . The Feynman diagrams corresponding
to the 
 and T matrices are shown in Figs. 1(b) and 1(c).

For the following calculations it is important to study the
analytical properties of the T matrix. The continuum threshold,
i.e., the energy above which the T -matrix has an imaginary
part, lies at

ωth(k) =
{

(k−kF )2

2mB
+ EF

(
k � M

mF
kF

)
k2

2M
+ EF

(
k > M

mF
kF

) , (11)

where EF = k2
F /(2mF ). For not too high momenta k, 
(k,ω)

has a pole at �
(k) below this threshold. As a consequence,
the T matrix has one or two poles below threshold:

T (k,ω) = ω − εF (k)

(ω − εF (k))
−1(k,ω) − n0

= (ω − εF (k))S1(k)θ (kF − k)

ω − �1(k) − iη

+ (ω − εF (k))S1(k)θ (k − kF )

ω − �1(k) + iη

+ (ω − εF (k))S2(k)

ω − �2(k) + iη
+ Tc(k,ω), (12)

where Tc(k,ω) is the continuum part and (�i − εF )Si is the
residue of the pole at ω = �i (if there is only one pole, we set
S2 = 0).

In Fig. 2 we show the dispersion of the two poles of T

for some cases. The poles are physically of very different
nature. �2 is a collective pole created by BF scattering with
the boson always out of the condensate. �1 stems from the
elastic scattering of the fermion off the Bose condensate and,
thus, it is essentially given by the free fermion dispersion. This
is also the reason why �1 lies in the upper half of the complex
plane for k < kF , as it is in the case of the free fermion GF (7).
Of course, in T both branches interact and depending on the
system parameters they can be more or less repelled from one
another. An interesting aspect, already revealed in Ref. [14], is
that the �2 branch corresponds to a stable BF pair that exists
even for very weak attraction so that there is no bound state
in free space. This phenomenon is similar to the existence of
the Cooper pole in a pure two-species Fermi gas, since the
stability of the BF pair in weak coupling is due to the fact that
there is still a sharp Fermi edge in the problem.

At this point it is worth discussing a subtle point of the
theory related to a possible crossing or inversion of the two
branches shown as the dashed lines in Fig. 2. In an unpolarized
spin-1/2 Fermi system, it is known from the Thouless criterion
that once the T matrix has a pole at ω = 2μ (where μ is

the fermion chemical potential), an instability towards the
superfluid (superconducting) state appears, and that for lower
temperatures and in particular for zero temperature the ground
state of the system has to be changed from the Hartree-Fock
(HF) to the BCS one [36]. In our BF case, one would think
that there should be also some criterion that tells us when our
description of a single BF pair in an uncorrelated ground state
becomes invalid and the ground state has to be changed into a
state consisting of many interacting BF pairs. We are not aware
that such a criterion has been given in the literature. However,
we will see in Sec. III that as soon as �
 drops below εF for
k < kF , the correlation energy does no longer vanish in the
limit n0 → 0, as it should. We therefore suspect that in this
case our theory is not valid any more and we discard in the
present work cases in the parameter space where this happens
(e.g., lower panels of Fig. 2).

Contrary to the case of spin-1/2 fermions, where the new
ground state of Bose condensed Cooper pairs can be described
within BCS theory, it is unclear how this new ground state of
correlated BF pairs should look. In any case, as it was pointed
out in Ref. [41], it is obvious that since the BF pairs are
fermions, this cannot be treated as in BCS theory as suggested
in Ref. [40]. This problem shall be a very interesting subject
for future studies.

III. SINGLE-PARTICLE GREEN’S FUNCTIONS AND
CORRELATED GROUND STATE

In order to obtain the occupation numbers in the correlated
ground state, let us get back to the single-particle GFs. As in
the standard NSR approach [23], where the particle number
is obtained from a GF in which the self-energy in the Dyson
equation is treated only to lowest order [diagrams Figs. 1(d)
and 1(e)], we will write for the boson and fermion GFs

GB,F (k,ω) = G0
B,F (k,ω) + G0 2

B,F (k,ω)�B,F (k,ω). (13)

The self-energies in ladder approximation are defined by

�F (k,ω) = n0T (k,ω) + i

∫
d3K

(2π )3

∫
dω′

2π
eiω′η

× T (K,ω′)G0
B(K − k,ω′ − ω), (14)

and

�B(k,ω) = −i

∫
d3K

(2π )3

∫
dω′

2π
eiω′η

× T (K,ω′)G0
F (K − k,ω′ − ω), (15)

see Feynman diagrams in Figs. 1(f) and 1(g).
By truncating the Dyson equation already at first order in

� in Eq. (13), we treat the correlation effects only to leading
order. To be consistent, we should therefore not include the
condensate depletion into the calculation of the T matrix.
In other words, for the condensate density n0 that enters the
calculation of T and �B,F , we put

n0 = nB, (16)

nB being the total boson density, since in an uncorrelated
system at zero temperature all bosons are condensed. Although
one might be tempted to use the “final” condensate density
as a better approximation for n0, one should remember that
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FIG. 2. (Color online) Dispersion relation of the poles of the T matrix for mB = mF and nB = nF for various values of (kF a)−1. The solid
red lines represent poles in T matrix. The short-dashed blue line represents the pole in 
. The long-dashed green line is the noninteracting
fermion single-particle energy εF (k) = k2/(2mF ). The gray area corresponds to the continuum where 
 and T have a nonzero imaginary part.

standard RPA [36,39] is always built on top of the uncorrelated
ground state, and only in this way one can be sure that it
respects all theorems (see discussion below).

Notice that the first term of �F contains one-particle
reducible diagrams (i.e., diagrams that can be separated by
cutting a single fermion line), because in the T matrix the
boson can disappear in the condensate. Nevertheless, this term
has to be retained within RPA, and as long as �F is kept only
to first order in Eq. (13) this is not a problem.

Using the above equations, the fermion and boson occupa-
tion numbers can be calculated from

ρB,F (k) = ±i

∫
dω

2π
eiηωGB,F (k,ω), (17)

the upper (lower) sign being valid for bosons (fermions).
Inserting the explicit expressions for the self-energies, one
obtains

ρF (k) = θ (kF − k)
−1(k,�1(k))S1(k) + θ (k − kF )

×
∫

d3K

(2π )3

[�1(K) − εF (K)]S1(K)θ (kF − K)

[�1(K) − εF (k) − εB(K − k)]2
,

(18)

ρB(k) =
∫

d3K

(2π )3
S1(K)[�1(K) − εF (K)]

× θ (kF − K)θ (|K − k| − kF )

[�1(K) − εF (K − k) − εB(k)]2
. (19)

The results for the occupation numbers are presented
in Fig. 3 for various system parameters. Note that, as a
consequence of the perturbative treatment of the self-energy
in Eq. (13), the Z factor determining the jump of ρF at
the Fermi surface can become negative, or the number of
bosons out of the condensate can become larger than the
total number of bosons. We discard such cases and restrict
ourselves to parameters in which the correlations are not too
strong.

The Luttinger theorem states that in the fermion distribution
the momentum integral over what is missing with respect to
the free case below kF is exactly compensated by the part
above kF , i.e.,

∫
k<kF

d3k

(2π )3
[1 − ρF (k)] =

∫
k>kF

d3k

(2π )3
ρF (k). (20)

From general properties of RPA theory (see below) one
expects that the Luttinger theorem should be exactly fulfilled
in our scheme, although from the final expression (18) for
the occupation numbers this is hard to see. In our numerical
calculations, Eq. (20) is fulfilled to a relative accuracy of better
than 10−3. This is the advantage of treating the self-energy
perturbatively in Eq. (13). If we had resummed the Dyson
equation to all orders, as in [19,21,22], the Luttinger theorem
would most likely have been violated. For instance, in Fig. 8(a)
of Ref. [21] it seems that the number of fermions above the
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FIG. 3. (Color online) Occupation numbers of fermions and
bosons at mB = mF and nB = nF for various values of (kF a)−1.

Fermi surface1 is larger than the number of fermions missing
below.

In addition to the Luttinger theorem (20) for the fermions,
our formulation satisfies the following relation:

nnc
B =

∫
k>0

d3k

(2π )3
ρB(k) =

∫
k>kF

d3k

(2π )3
ρF (k), (21)

where nnc
B denotes the density of noncondensed bosons. The

relation has a very intuitive interpretation: each time a boson
is scattered out of the condensate, also a fermion is scattered
out of the Fermi sea. Therefore the total number of fermions
above kF must be equal to the number of bosons out of the
condensate. The condensate depletion as a function of the
interaction strength is shown in Fig. 4 for different mass and
density ratios. As mentioned before, we stop the calculation
as soon as n0 − nnc

B or the Z factor of the fermions becomes
negative or the branch �
 drops below εF for k < kF .

Let us discuss the approximation scheme that is set up in
the foregoing equations. One recognizes the similarity with the
NSR approach for the treatment of interacting two-component
Fermi gases close to the transition temperature to the superfluid
state [23]. The main difference is that the NSR formalism
is transcribed here to an interacting BF system at zero
temperature.

The T matrix, which, in the case of a pure Fermi system,
simultaneously sums the particle-particle (pp) and hole-hole

1Note that in Ref. [21] the Fermi surface is not at k = kF because
kF has a different meaning in that paper.
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FIG. 4. (Color online) Condensate depletion as a function of the
interaction strength: (a) for various mass ratios mB/mF and nB = nF ;
(b) for various density ratios nB/nF and mB = mF .

(hh) ladders, is sometimes also called the pp-RPA [36]. It
is well known that RPA theory has appreciable properties
as the fulfillment of conservation laws and sum rules. (The
latter statements are, strictly speaking, only valid if the RPA is
solved in the HF basis [36]. However, in our case the HF shifts
are unimportant because they disappear in the regularization
procedure when the coupling constant g tends to zero while
the cutoff tends to infinity, keeping the scattering length a

constant [18,19,21].)
It is, in principle, straightforward to prove that the Luttinger

theorem is fulfilled in strict application of RPA. The proof is
straightforward and well known in the case of particle-hole
(ph) RPA in a system with discrete single-particle states as it
is often considered in, e.g., nuclear or atomic and chemical
physics [36,42,43], i.e., for finite Fermi systems.2 In the case
of pp-RPA, things are less well known but corresponding
expressions can also be found in the literature [37]. In the
BF case, the fulfillment of the Luttinger theorem, i.e., the fact
that the occupation numbers of levels above the Fermi surface
exactly cancel the reduction of the occupation numbers of
levels below the Fermi surface, has also been demonstrated
for finite size cases with the Hubbard model [38]. We intend
to show it with RPA in continuum cases where things are, of

2In Refs. [37,42] explicit expressions for the correlated parts
of the single-particle occupation numbers are given. From these
expressions, it becomes so obvious that particle number is conserved
that this property is most of the time not even stated in the literature.
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course, a little more tricky, for instance from the numerical
point of view.

It is, however, very important to notice a subtle difference
between this strict RPA approach and the NSR scheme. The
latter is generally formulated in finite-temperature formalism,
and the zero-temperature case is obtained as a limiting
procedure as, e.g., in [21]. However, the two formalisms do
not become equivalent in this limit (see, e.g., chapter 3.3 of
Ref. [44]), even if the self energy is only treated to first order
and not summed as in Ref. [21]. This point is a topic for future
research.

In our scheme, the particle numbers nB,F are fixed from
the beginning and they are not modified by the inclusion
of correlations (because the Luttinger theorem is satisfied).
Therefore we cannot determine the chemical potentials in the
way this is usually done in the NSR scheme by inverting the
n(μ) relation obtained by integrating Eq. (17) over k. But of
course, also in our scheme the correlations change the equation
of state, i.e., the relation between n and μ. Therefore, we have
free chemical potentials, μ0

F = EF = k2
F /(2mF ) and μ0

B = 0,
and modified ones μF,B that include the correlation effects. But
here the corrections to the chemical potentials are calculated
perturbatively to first order in the correlations. They are
obtained from the correlated ground-state energy density, i.e.,

μF,B = ∂E
∂nF,B

. (22)

The energy density E is calculated within RPA in the usual
way from the coupling constant integration [39]

E − E0 = −i

∫ 1

0

dλ

λ

∫
d3k

(2π )3

∫
dω

2π
eiωη�λ

F (k,ω)G0
F (k,ω),

(23)

where �λ
F is the self-energy calculated with coupling constant

gλ instead of g. Considering a finite value of the coupling
constant g and a cutoff and taking the cutoff to infinity only
in the end of the calculation, one obtains the following simple
formula for the ground-state energy:

E − E0 =
∫

k<kF

d3k

(2π )3
[�1(k) − εF (k)]. (24)

This expression for the energy density agrees with that given
in Ref. [14], besides the fact that here the extra term of the
fermion-hole boson-condensate matrix element is missing,
since it has been absorbed by the regularization procedure.
From this formula it is clear that as long as �
 lies above εF

for k < kF , the branch �1 approaches εF in the limit n0 → 0
and the correlation energy tends to zero, which is not true if
�
 drops below εF for k < kF .

The boson and fermion chemical potentials calculated in
this way are shown in Fig. 5. As expected, we see that the
chemical potentials are lowered by the correlations if the boson
density n0 or the interaction strength |a| (a < 0) increases.

One can show analytically that the boson chemical potential
satisfies

μB = �B(0,0), (25)

which agrees to leading order in �B with the usual condition
for Bose condensed systems.
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FIG. 5. (Color online) Fermion and boson chemical potentials as
a function of the boson density n0 for various values of the scattering
length and mB = mF .

Let us now consider the case with almost vanishing boson
number, i.e., the polaron limit, where it is immaterial whether
the impurity is a boson or a fermion of another species (or
opposite spin). Boson chemical potentials in this limit are
displayed in Fig. 6 as functions of the interaction strength
for various mass ratios mB/mF . We compare our results with
those of Combescot et al. [30]. We see that the agreement is
quite good for negative and not too large scattering lengths.
For values of (kF a)−1 close to −1 the agreement deteriorates.
This is not surprising, since we treat the self-energy only to
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FIG. 6. (Color online) Boson chemical potential as a function of
(kF a)−1 at n0/nF = 0.001 for various mass ratios. The symbols +,
×, ∗, and � are polaron chemical potentials extracted from Fig. 1 of
Ref. [30] for mB/mF = 1, 0.5, 0.25, and ∞.
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first order whereas in the polaron approach the whole series is
summed.

It would therefore be desirable to sum up the self-energy to
all orders. However, with the present form of the self-energy,
this would cause other problems, such as the violation of the
Luttinger theorem (20). We think that these issues should
be settled before definite conclusions can be drawn from a
nonperturbative approach.

IV. SUMMARY, DISCUSSION, AND OUTLOOK

In this work we used a T matrix approach to describe
BF pair correlations in a BF mixture. The approach is very
similar to the usual NSR theory for fermions [23]. However,
there are subtle differences because we work within the zero-
temperature formalism. Our approach is a strict application of
what has been known as pp-RPA in nuclear physics [36,37]. As
expected, this approach respects the Luttinger theorem. This is
explicitly verified numerically to high precision in calculating
the correlated fermion and boson occupation numbers. We also
studied for the bosons the condensate depletion and found
that the number of bosons scattered out of the condensate
is exactly equal to the number of fermions scattered above
the Fermi surface. In studies of spin-1/2 Fermi gases, it is
often supposed that the Luttinger theorem is satisfied [see,
e.g., Eq. (6) of Ref. [45]] but it is rarely checked whether
the approximations that are used preserve this property. The
problems found in studies of polarized Fermi systems [24–27]
might also be related to this problem.

As in the original NSR approach, we keep the self-energies
only to first order in the Dyson equation. Besides the nice
properties mentioned before, this has of course also some
drawbacks. For instance, the Z factor of the fermion GF
(i.e., the jump of the occupation numbers at kF ) may become
negative if the correlations are too strong. A possible way to
avoid this overestimation of the correlation effects, without
violating the Luttinger theorem, would be to use in the T

matrix the self-consistently determined correlated occupation
numbers instead of the uncorrelated ones. In nuclear physics
this approximation is known as “renormalized RPA”, see, e.g.,
Refs. [46,47].

We also investigated the polaron limit and found that the
boson chemical potential agrees well with the results by
Combescot et al. [30] in the weak-coupling region. Close
to unitarity the results start to diverge, which is again a
consequence of our perturbative treatment of the self-energy.

If one goes in the molecular regime beyond the polaron
limit, one expects the system to have a completely different
ground state, namely a Fermi sea of composite molecules.
Actually this transition might already happen before the
molecular limit, since there is, as in the Cooper pair problem,
always a stable BF branch in the in-medium T matrix, even
if in free space there is no bound state. How this transition
happens is still unclear [41] and needs further investigation.
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