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BCS-BEC crossover in a quasi-two-dimensional Fermi gas
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We consider a two-component gas of fermionic atoms confined to a quasi-two-dimensional (quasi-2D)
geometry by a harmonic trapping potential in the transverse direction. We construct a mean-field theory of
the BCS-BEC crossover at zero temperature that allows us to extrapolate to an infinite number of transverse
harmonic oscillator levels. In the extreme BEC limit, where the confinement length exceeds the dimer size,
we recover 3D dimers confined to two dimensions with weak repulsive interactions. However, even when the
interactions are weak and the Fermi energy is less than the confinement frequency, we find that the higher
transverse levels can substantially modify fermion pairing. We argue that recent experiments on pairing in
quasi-2D Fermi gases [Y. Zhang et al., Phys. Rev. Lett. 108, 235302 (2012)] have already observed the effects of
higher transverse levels.
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I. INTRODUCTION

Recent experimental advances have made it possible to
study quasi-two-dimensional (quasi-2D) atomic Fermi gases
in a very controlled manner [1–8]. Such simple quasi-2D sys-
tems may provide useful insights into structurally complicated
unconventional superconductors such as the cuprates, where
superconductivity originates in the copper oxide planes [9].
Quasi-2D Fermi gases are also of fundamental interest since
they are the marginal case of the Mermin-Wagner theorem and
thus have modified superfluid properties [10,11]. In addition,
the quasi-2D geometry can strongly affect fermion pairing
within the superfluid, as we investigate in this paper.

In cold-gas experiments, atoms may be confined to one or
more quasi-2D “pancake” structures using a 1D optical lattice.
The system can then be tuned from three to two dimensions
by increasing the confining lattice potential. For sufficiently
strong lattices, the confining potential for a single quasi-2D
layer can be modeled as a harmonic oscillator potential
V (z) = 1

2mω2
zz

2 in the transverse z direction, where m is
the atom mass. When the temperature kBT � h̄ωz and the
Fermi energy εF � h̄ωz, the atoms will reside in the lowest
harmonic oscillator level in the absence of interactions and
the gas is considered to be kinematically two dimensional.
The short-range interatomic interactions are also renormalized
to yield an effective 2D s-wave scattering amplitude and
associated two-body bound state with a binding energy εB that
depends on both the 3D scattering length and the confinement
[12,13]. Thus, by varying the ratio εB/εF , one can explore
the crossover in two dimensions from weak BCS pairing
(εB/εF � 1) to the Bose-Einstein condensation (BEC) of
dimers (εB/εF � 1) [14,15]. However, the interactions also
mix in higher harmonic levels: For instance, in the BEC
limit, dimers will be smaller than the confinement length
lz = √

h̄/mωz once εB > h̄ωz, so they essentially become
3D bosons confined to quasi-two-dimensions. Here we are
interested in how the confinement can impact pairing and lead
to a departure from 2D behavior throughout the BCS-BEC
crossover.

We focus on zero temperature, where there is a well-
defined condensate in two dimensions, and we construct a

mean-field theory that generalizes the 2D results of Randeria
et al. [14] to quasi-two-dimensions. We expect the mean-field
approximation to be reasonable since it appears to be consistent
with recent experiments in the 2D limit (εF � h̄ωz) [7].
The BCS regime of the quasi-2D Fermi gas was previously
studied in Ref. [16] using a mean-field Bogoliubov–de Gennes
calculation that included the lowest three harmonic oscillator
levels. Our approach, however, allows us to extrapolate to an
infinite number of levels and thus explore the entire BCS-BEC
crossover. In the limit εB � h̄ωz, we find that our calculation
recovers weakly repulsive 3D bosons confined to quasi-two-
dimensions. However, even for weak interactions εB � h̄ωz,
we find that higher harmonic levels can substantially modify
fermion pairing as we perturb away from pure two dimensions
and εF approaches h̄ωz. We determine the radio frequency
(RF) spectra for the quasi-2D Fermi gas and show that recent
measurements of pairing in the quasi-2D regime εF ∼ h̄ωz [8]
are consistent with effects due to higher transverse levels.

II. METHODOLOGY

We consider a two-component (↑,↓) Fermi gas interacting
close to a broad s-wave Feshbach resonance in three dimen-
sions. Under harmonic confinement in the z direction, the
motion of each atom can be parametrized by its 2D momentum
k in the x-y plane and the harmonic oscillator quantum number
n in the transverse direction. The many-body Hamiltonian is
thus (setting the system volume to 1)

Ĥ =
∑
k,n,σ

(εkn − μ)c†knσ cknσ

+
∑

k,n1,n2
k′,n3,n4

q

〈n1n2|ĝ|n3n4〉c†kn1↑c
†
q−kn2↓cq−k′n3↓ck′n4↑, (1)

where εkn = k2/2m + nωz are the single-particle energies
relative to the zero-point energy of the n = 0 state (we now set
h̄ = 1) and μ is the chemical potential. Note that we assume
that the mass and chemical potential (and thus the particle
density) are the same for each spin σ .
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Since the short-range interactions only depend on the
relative motion, we obtain the interaction matrix elements
〈n1n2|ĝ|n3n4〉 by switching to relative and center-of-mass
harmonic oscillator quantum numbers ν and N , respectively.
This yields

〈n1n2|ĝ|n3n4〉 = g
∑
N

fν〈n1n2|Nν〉fν ′ 〈Nν ′|n3n4〉

≡ g
∑
N

V
n1n2
N V

n3n4
N , (2)

where fν = ∑
kz

φ̃ν(kz), with φ̃ν the Fourier transform
of the νth harmonic oscillator eigenfunction. It is eas-

ily seen that f2ν+1 = 0 and f2ν = (−1)ν

ν! (mωz

2π
)1/4

√
(2ν)!
22ν . The

change of basis coefficients are given in Ref. [17]. Since
〈n1n2|Nν〉 ∼ δN+ν,n1+n2 and ν and ν ′ are even, n1 + n2 must
equal, modulo 2, n3 + n4 to obtain a nonzero interaction matrix
element. The 3D contact interaction g can be written in terms
of the binding energy εB of the two-body bound state, which
always exists in the quasi-2D geometry:

− 1

g
=

∑
k,n1,n2

f 2
n1+n2

|〈n1n2|0 n1 + n2〉|2

εkn1 + εkn2 + εB

. (3)

Here we simply take N = 0 since εB is independent of
the center-of-mass motion. One can also determine εB as a
function of the 3D scattering length as [12,13] from Eq. (3)
using 1

g
= m

4π
( 1
as

− 2

π

), where 
 is a UV cutoff for the 3D
momentum that can be sent to infinity at the end of the
calculation.

Now if we define the superfluid order parameter

�qN = g
∑

k,n1,n2

V
n1n2
N 〈cq−kn2↓ckn1↑〉 (4)

and assume fluctuations around this are small, we obtain the
mean-field Hamiltonian

ĤMF =
∑
k,n,σ

(εkn − μ)c†knσ cknσ

+
∑
q,N

⎛
⎝�qN

∑
k,n1,n2

V
n1n2
N c

†
kn1↑c

†
q−kn2↓

+�∗
qN

∑
k′,n3,n4

V
n3n4
N cq−k′n3↓ck′n4↑ − |�qN |2

g

⎞
⎠ . (5)

We further assume that the ground state has a uniform order
parameter without nodes so that �qN = δq0δN0�0. In this case,
Eq. (5) only contains a single unknown parameter �0, so it can
be diagonalized to yield

ĤMF =
∑
k,n

(εkn − μ − Ekn) − �2
0

g
+

∑
k,n,σ

Eknγ
†
knσ γknσ , (6)

where Ekn are the quasiparticle excitation energies. The quasi-
particle creation and annihilation operators are respectively

given by

γ
†
kn↑ =

∑
n′

(ukn′nc
†
kn′↑ + vkn′nc−kn′↓), (7)

γ−kn↓ =
∑
n′

(ukn′nc−kn′↓ − vkn′nc
†
kn′↑), (8)

where the real amplitudes u and v only depend on the
magnitude k ≡ |k| and satisfy

∑
n′(|ukn′n|2 + |vkn′n|2) = 1.

Note that while they have a well-defined spin and momentum,
they involve a superposition of different harmonic oscilla-
tor levels. The corresponding BCS wave function |MF〉 ∝∏

knσ γknσ |0〉, where |0〉 is the vacuum state for the bare
operators cknσ . We then minimize 〈ĤMF〉 = ∑

k,n(εkn − μ −
Ekn) − �2

0
g

with respect to �0 at fixed μ to obtain the ground
state. The value of μ is chosen to keep the density of particles
ρ = 2

∑
k,n′,n |vkn′n|2 and thus the Fermi energy εF constant

throughout the crossover.1

A. Two-level calculation

It is first instructive to consider the case of only two levels
n = 0,1. Here Eq. (6) is greatly simplified since there is no
pairing between atoms in the n = 0 and 1 levels. The quasi-
particle dispersions are then Ekn = √

(εkn − μ)2 + (V nn
0 �0)2.

One can now minimize 〈ĤMF〉 by simply using ∂〈ĤMF〉/∂�0 =
0. Combining this with Eq. (3) yields the implicit equation(√

�2 + μ2 − μ

εB

)4

= εB + 2ωz

ωz − μ +
√

�2

4 + (ωz − μ)2
, (9)

where we have defined � = �0V
00

0 , the pairing gap in the
lowest level. Also, the density ρ = −∂〈ĤMF〉/∂μ and in the
regime εF � ωz where εF = πρ/m, this gives

2εF =
√

�2 + μ2 +
√

�2/4 + (ωz − μ)2 + 2μ − ωz. (10)

We see that Eqs. (9) and (10) reduce to the 2D mean-field
equations [14] in the limit ωz → ∞, as expected. They also
yield the lowest-order correction to the 2D result due to
confinement (εF /ωz �= 0): In the BCS regime εB/εF � 1, we
have

�

εF

�
√

2εB

εF

(
1 + εF

8ωz

)
,

μ

εF

� 1 − εB

2εF

(
1 + εF

4ωz

)
.

Thus � is enhanced by the confinement in this regime while μ

is suppressed. This trend is also observed in the full calculation
involving many levels (see Figs. 1 and 2).

B. Multiple levels

For more accurate results, we must include multiple levels
of the confinement, especially when perturbing away from the
2D limit εF , εB � ωz. In general, ĤMF must be diagonalized

1We define εF to be the chemical potential of an ideal Fermi gas
with the same density ρ.
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FIG. 1. (Color online) Chemical potential μ measured with
respect to half the binding energy εB for several values of the Fermi
energy εF /ωz. The dashed line is the 2D mean-field result [14], while

the dotted curve is the 3D BEC result, μ + εB

2 � − 2
√

2εF

3π

√
εF

εB
. The

inset shows the asymptotic behavior in the BEC regime εB/εF > 1
plotted on a logarithmic scale. Once εB/h̄ωz > 1, we obtain 3D
bosons confined to quasi-two-dimensions. The solid straight lines
are straight line fits to the data with gradient −1/3. Error bars for the
numerical data are within symbol size.

numerically to obtain Ekn and the quasiparticle amplitudes for
a given μ and �. Equivalently, one can solve the Bogoliubov–
de Gennes equations self-consistently, but it is considerably
faster to minimize the energy 〈ĤMF〉 directly and it also
allows us to take into account up to 100 levels. Indeed, we
find that higher harmonic levels are important even for weak
interactions once εF /ωz shifts away from zero. For the values
of εB and εF considered in this paper, we can in fact extrapolate
the results for μ and � to an infinite number of harmonic levels
since we find that they both scale linearly with the inverse
of the number of levels in this limit. We emphasize that the
extrapolated values and those obtained using only a few levels
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FIG. 2. (Color online) Behavior of the order parameter �

throughout the BCS-BEC crossover for different values of εF /ωz.
The dashed curve is the 2D mean-field result � = √

2εBεF [14],

while the dotted curve is the 3D BEC result � � εF

√
16
3π

( εB

2εF
)1/4.

The key for the numerical data is the same as in Fig. 1.

can differ by tens of percent, even in the BCS regime (see the
Appendix).

III. RESULTS

A. Order parameter and chemical potential

By incorporating an infinite number of levels, we can
determine the evolution of the chemical potential μ and order
parameter � throughout the BCS-BEC crossover in a quasi-2D
Fermi gas, as depicted in Figs. 1 and 2. The lowest density
we consider (εF /ωz = 0.1) corresponds approximately to the
experiments of Refs. [3–6]. Note that in the extreme BCS
and BEC limits, we must have μ → εF and μ → −εB/2,
respectively, a feature that holds across all dimensions. In the
BCS regime, the behavior is in qualitative agreement with
the two-level calculation: μ is suppressed and � is enhanced
with respect to the 2D result, with the deviation from two
dimensions being increased with increasing εF /ωz. However,
multiple levels are required to correctly capture the dependence
on εB/εF as εF shifts away from zero. We also see in Fig. 1
that the relative chemical potential μ + εB/2 exhibits a very
steep gradient as εB → 0 for εF /ωz � 0.5. This illustrates
how higher levels can lead to a strong deviation from two
dimensions even when εF < ωz and εB/εF � 1.

For larger εB/εF , � eventually becomes suppressed com-
pared to the 2D result and approaches the 3D mean-field curve
in the BEC limit (Fig. 2). The chemical potential, in contrast,
always remains lower than the 2D result and has a behavior in
the BEC regime that is intermediate between 2D and 3D mean
field. In the limit εB/εF � 1, the pairing gap is no longer given
by � and the properties of the Bose superfluid are instead
encoded in μ. In particular, the relative quantity μ + εB/2
yields the mean-field energy for the repulsion between dimers.
Referring to Fig. 1 (inset), we see that it tends to zero as a
power law with increasing εB/εF , similarly to the 3D and
in contrast to the 2D mean-field result. This is consistent
with a dimensional crossover to 3D dimers once εB � ωz.
In this case, we expect to have weakly interacting bosons
confined to quasi-two-dimensions with a mean-field energy
that scales as as/ lz ∼ √

ωz/εB [18], i.e., it behaves as a power
law with exponent −1/2 like in the 3D BEC regime. However,
our quasi-2D calculation gives a power of −1/3 rather than
−1/2. This discrepancy is due to the fact that our mean-field
approximation does not allow for the scattering of dimers in
the transverse direction since they are constrained to be in
the N = 0 center-of-mass mode. Removing a spatial degree
of freedom means we only recover 2/3 of the full exponent.
The fact that we recover a power-law dependence at all for the
dimer-dimer interaction is because we can extrapolate to an
infinite number of levels. Note that N > 0 scattering between
dimers is not expected to be significant in the BCS regime.
The repulsion between dimers has also been discussed in the
context of a two-channel model for the quasi-2D system [19],
although no explicit dependence on εB was given.

B. Experimental probes

Deviations from 2D behavior will also be apparent in
experimental probes of the quasi-2D superfluid. Typically,
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investigations of pairing have exploited RF spectroscopy [20],
where atoms in one hyperfine spin state (e.g., ↓) are transferred
via an RF pulse to another hyperfine state that is initially
unoccupied. In the ideal scenario where the final state is
noninteracting, the mean-field transition rate or RF current
is given by

IRF (ω) ∝
∑

k,n′,n

|vkn′n|2δ(εkn′ − μ + Ekn − ω), (11)

where ω is the frequency shift relative to the bare transition
frequency between hyperfine states. Here the onset frequency
of the RF spectrum corresponds to Ek=0,n=0 − μ and is associ-
ated with the pairing gap of the superfluid. In the 2D case, (11)
reduces to IRF (ω) ∝ �2

ω2 �(ω − εB) and thus the RF pairing
gap is simply εB , as noted by Sommer et al. [7]. Perturbing
away from two dimensions, we find that the RF spectrum can
be substantially modified by the higher confinement levels. In
Fig. 3 we see that the strongest effects are in the BCS regime,
where the pairing gap is initially enhanced compared to εB .
Such an enhancement is not surprising given that, in three
dimensions, a pairing gap can exist even when there is no
two-body bound state. However, once εF � ωz, the pairing gap
drops below εB and even becomes negative for small enough
εB/εF . This is because the coupling between n = 0 and 2, and
the associated level repulsion (see inset of Fig. 3), reduces the
energy Ek,n=0. In this case, the lowest-energy quasiparticle
contains a smaller fraction of the n = 0 harmonic level and
the RF peak is instead dominated by the n = 2 quasiparticle.
Thus the onset frequency is no longer an accurate measure of
pairing, as we can see in Fig. 4. Note that the deep lattices used
in Ref. [7] correspond to εF /ωz ≈ 0.03 and thus the pairing
gap will lie very close to the 2D result, as was observed.
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FIG. 3. (Color online) Pairing gap measured using RF spec-
troscopy as a function of εB/εF for a range of different εF /ωz.
In the BCS regime, it deviates substantially from the 2D result
with increasing εF /ωz. In the BEC limit, Ek=0,n=0 − μ must always
approach εB , regardless of εF /ωz. The inset shows the lowest
quasiparticle dispersions for εF /ωz = 1, εB/εF = 0.1. Note that there
is level repulsion between n = 0 and 2, but no avoided crossing
between the n = 0 and 1 dispersions.
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FIG. 4. Radio frequency spectra of the quasi-2D Fermi gas in the
BCS regime with εB/εF = 0.2 for εF /ωz = 0.5,1.5. The RF current
IRF is scaled so that the peak value is always 1. The peak is strongly
shifted towards higher frequencies compared to the 2D result when
εF /ωz � 1.5. Note that the spectra are calculated assuming that the
final state is noninteracting.

In contrast, the experiments in Ref. [8] correspond to
εF /ωz � 1.5 and thus the RF spectrum in the BCS regime
will be strongly affected by the confinement. In particular,
we see in Fig. 4 that the RF peak is shifted to higher
frequencies compared to the 2D case and develops more
structure at lower frequencies. Furthermore, the pairing gap
in the BEC regime appears to be less sensitive to confinement
and closer to the 2D result (Fig. 3) since it is dominated by
two-body physics. These features are all consistent with the
experimental observations [8]. A direct comparison with these
experiments is not straightforward in the BCS regime because
of strong final-state interactions (which we have neglected). In
addition, thermal effects are expected to smear out the fine
structure in the RF spectra in Fig. 4, leaving an RF peak
that more closely resembles that observed. It has even been
suggested that finite temperature plays a crucial role here; see
Ref. [21] for an alternative explanation based on fermionic
polarons. However, the shift due to confinement appears to
be substantial at T = 0, with a direction that is consistent
with experiment, and therefore it cannot be disregarded.
Indeed, it has also been shown that effects due to confine-
ment can be significant in spin-polarized quasi-2D Fermi
gases [22].

IV. CONCLUSION

To conclude, we have constructed a mean-field theory for
the quasi-2D Fermi gas that is able to capture the deviations
from 2D behavior resulting from confinement. We expect it to
provide a benchmark for further investigations into quasi-2D
Fermi systems. In the future, it would be interesting to explore
the effects of finite temperature and the Berezinskii-Kosterlitz-
Thouless transition in our model.
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APPENDIX: EFFECT OF HIGHER LEVELS

Our approach of directly minimizing the mean-field energy,
enabled us to do calculations for up to 100 levels. Indeed,
changing the number of levels by one does not change the
results by more than a few percent, as noted in Ref. [16].
However, there is an incremental change if one continues to
add more and more levels, resulting in an overall significant
difference. This is to be expected in the BEC regime, but
surprisingly also holds in the BCS regime. Upon plotting μ

and � as a function of the inverse number of levels used
in the calculation, we observe a linear behavior (see Fig. 5).
This enables us to extrapolate to the origin, corresponding
to an infinite number of harmonic levels. For εF /ωz = 1,
as shown in Fig. 5, � changes by 32% for εB/ωz = 0.01
and 17% for εB/ωz = 0.1, when the extrapolated values are
compared to those obtained in a three-level calculation. For
μ, the differences are 3% for εB/ωz = 0.01 and 13% for
εB/ωz = 0.1. These results are for the BCS regime. For the
BEC regime, the percentage changes between a few levels and
the extrapolated values are considerably larger.

0.2

0.4

0.6

Δ/
ω

z ε
F

/ω
z
=1, ε

B
 /ω

z
= 0.01

ε
F

/ω
z
=1, ε

B
 /ω

z
= 0.1

0 0.05 0.1 0.15 0.2 0.25 0.3
Inverse no. of levels

0.7

0.8

0.9

1

μ/
ω

z

FIG. 5. (Color online) Order parameter � (upper panel) and
chemical potential μ (lower panel) versus inverse number of levels
for εF /ωz = 1 and εB/ωz = 0.01 (red diamonds) εB/ωz = 0.1 (black
circles). The solid lines are linear fits to the data for ten or more levels.
The open symbols, corresponding to the three- and four-level cases,
have the same values of εB,εF as their solid counterparts, but were
not included in the fit.
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