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We provide complete phase diagrams describing the ground state of a trapped spinor Bose-Einstein condensate
under the combined effects of rotation and a Rashba spin-orbit coupling. The interplay between the different
parameters (magnitude of rotation, strength of the spin-orbit coupling, and interaction) leads to a rich ground-state
physics that we classify. We explain some features analytically in the Thomas-Fermi approximation, writing the
problem in terms of the total density, total phase, and spin. In particular, we analyze the giant skyrmion and find
that it is of degree 1 in the strong-segregation case. In some regions of the phase diagrams, we relate the patterns
to a ferromagnetic energy.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) provide a unique exper-
imental and theoretical testing ground for many macroscopic
quantum phenomena. One such area that has recently attracted
a lot of attention is the engineering of synthetic non-Abelian
gauge potentials coupled to neutral atoms [1–4] to create a
spin-orbit-coupled Bose-Einstein condensate [5,6], where the
internal spin states and the orbital momentum of the atoms
are coupled. These spin-orbit-coupled condensates support a
variety of ground-state density profiles; for instance, in the
most straightforward case of a spin-1/2 condensate [7–16],
the density either displays a plane wave or a striped wave.
The transition between the two depends on the interaction
parameters. However, if one is to consider a spin-1 or spin-2
condensate, then more exotic ground-state profiles, based on
the helical modulation of the order parameter, can be created
[17–20].

In addition to the various ground-state density profiles,
one can look to the basic elementary excitations created in
these spin-orbit condensates, such as the vortex [21–23], dark
soliton [24], or bright soliton [25] in spin-1/2 condensates
or the skyrmion in spin-1 and spin-2 condensates [26–29]. In
contrast to a single-component or two-component condensate,
where the appearance and energetic stability of the elementary
excitations are dependent on a rotation of the system to impart
angular momentum, spin-orbit-coupled condensates naturally
impart momentum through the coupling of the internal spin
and orbital momentum of the atoms. But when combining
both the spin-orbit coupling and the rotation, various novel
features have been predicted to occur [29–33]. Through a
suitable control of the condensate, an experimental scheme
for rotating spin-orbit-coupled condensates has been proposed
in [30].

The aim of this paper is to study the combined effect of
a Rashba spin-orbit coupling and a rotation on spinor BECs
for spin-1/2 condensates. The interplay between trap energy,
spin-orbit coupling, and interaction leads to a rich ground-state
physics: stripe phases, half vortices or vortex lattices. Some
behaviors are reminiscent of vortex lattices appearing for fast
rotating condensates [34,35]. We provide a complete phase

diagram according to the magnitude of rotation, spin-orbit
coupling, and interaction. Some features have been analyzed
by Subhasis et al. [23], Zhou et al. [32], and Xu and Han [33],
but here we want to investigate the full phase diagram behavior.

Our paper is organized as follows. In Sec. II we introduce
the energy functional in terms of individual wave functions
before making the transformation to the nonlinear Sigma
model, where the energy is instead written in terms of the total
density and a spin density. In Sec. III we provide numerically
determined phase-space diagrams for the ground states of the
condensate as functions of the rotation, spin-orbit coupling,
and interaction. We explain some features analytically by using
a Thomas-Fermi approximation in Sec. IV.

II. PROBLEM STATEMENT AND ENERGY FUNCTIONAL

We are interested in a two-dimensional (x,y) rotating
spin-coupled Bose-Einstein condensate. It has the following
nondimensional energy functional in terms of the wave
functions ψ1 and ψ2:

E =
∫ ∑

k=1,2

{
1

2
|∇ψk|2 + 1

2
r2|ψk|2 − �ψ∗

k Lzψk

+ gk

2
|ψk|4 − κψ∗

k

[
i
∂ψ3−k

∂x
+ (−1)3−k ∂ψ3−k

∂y

] }

+ g12|ψ1|2|ψ2|2 d2r (1)

under the constraint that
∫ |ψ1|2 + |ψ2|2 = N , with N being

the number of atoms. Here, gk is the self-interaction of each
component (intracomponent coupling) that we will later take
to be equal for both components, g12 measures the effect
of interaction between the two components (intercomponent
coupling), and � is the rotational velocity, applied equally to
both components, with Lz = −i(x∂y − y∂x) being the angular
momentum operator acting in the z direction. We consider a
Rashba spin-orbit interaction strength κ that is equal in both
the x and y directions.

One of the key ingredients in the analysis will be to use
the nonlinear Sigma model introduced for two-component
condensates in the absence of spin-orbit coupling [36–38],
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that is, to write the energy in terms of the total density ρ,

ρ = |ψ1|2 + |ψ2|2, (2)

and a normalized complex-valued spinor χ = [χ1,χ2]T : the
wave functions can be decomposed as ψ1 = √

ρχ1, ψ2 =√
ρχ2, where |χ1|2 + |χ2|2 = 1. We define the spin density

S = χ̄σχ , where σ = (σx,σy,σz) are the Pauli matrices, with
the components of S defined as

Sx = χ∗
1 χ2 + χ∗

2 χ1, (3a)

Sy = −i(χ∗
1 χ2 − χ∗

2 χ1), (3b)

Sz = |χ1|2 − |χ2|2, (3c)

such that |S|2 = 1 everywhere. For a rotating condensate, it is
natural to introduce

veff = ∇	

2
+ RSz

2
(
1 − S2

z

) = 1

2
Sz∇(	1 − 	2), (4)

where 	 = 	1 + 	2, 	k is the phase of ψk , with ψk =√
ρ|χk|ei	k , and R = Sy∇Sx − Sx∇Sy . This allows us to

rewrite the energy functional (1) as

E =
∫

1

2
(∇√

ρ)2 + ρ

8
(∇S)2 + ρ

2
(veff − � × r)2

+ ρκ

(
S⊥ · veff + 1

2
S · ∇ × S

)

+ ρ

2
(1 − �2)r2 + (

c0 + c1Sz + c2S
2
z

)ρ2

2
d2r, (5)

where S⊥ = (Sx,Sy) and

c0 = 1
4 (g1 + g2 + 2g12), (6a)

c1 = 1
2 (g1 − g2), (6b)

c2 = 1
4 (g1 + g2 − 2g12). (6c)

A derivation to this form of the energy from (1) and to other
forms is given in the Appendix.

Note that our choice of the effective spin-orbit Hamiltonian
[Eq. (1)] is assumed to remain stationary in the rotating frame.
This is in contrast to the experimental schemes proposed in
[30], where there is a time dependence inherent in the Hamilto-
nian. We justify our assumption and use of a time-independent
Hamiltonian on two fronts: first, the probable small effect that
the time-dependent terms will have on the ground state [we
note in particular Fig. 1(c) of Ref. [30] in which a regular vortex
lattice is present in both components for a large spin coupling
and a relatively large rotation] and, second, the need to perform
meaningful analytical analysis on the ground-state profiles,
which requires a “from-principles” approach whereby only
the fundamental terms of the Hamiltonian are considered, that
is, the spin-orbit coupling, the rotation, and the interaction, as
written in the Hamiltonian (1). Furthermore, to this last point,
the experimental infrastructure to create a rotating spin-orbit
condensate is relatively new, and there remains the possibility
that a new experimental scheme that fully justifies the use of
a time-independent Hamiltonian could be proposed. To this
end, we believe that our phase diagrams provide interesting

and relevant information on the ground states of the rotating
spin-orbit-coupled condensates.

III. DESCRIPTION OF THE PHASE DIAGRAMS

We wish to describe the ground-state wave functions of the
spin-orbit condensate. In what follows, we assume g1 = g2 ≡
g and set δ = g12/g, which measures the effect of interaction
between the two components. The experiments of [5,6] have
large gN (the Thomas-Fermi limit). Therefore, our analysis
will also be in the case of large gN , and our system is then
described by three parameters: �, the rotational velocity; κ ,
the spin-orbit interaction strength; and δ.

We first present numerically obtained phase diagrams
for these three parameters, with a Thomas-Fermi analysis
following in the next section. These simulations are conducted
on the coupled Gross-Pitaevskii equations that result from
the energy functional (1) through the variation i∂ψk/∂t =
δE/δψ∗

k for k = 1,2:

i
∂ψk

∂t
= −1

2
∇2ψk + 1

2
r2ψk − i�

(
y

∂ψk

∂x
− x

∂ψk

∂y

)
+ g|ψk|2ψk + g12|ψ3−k|2ψk

− κ

[
i
∂ψ3−k

∂x
+ (−1)3−k ∂ψ3−k

∂y

]
. (7)

We simulate in imaginary time using the following values of
parameters: g = 4 and N = 200, together with � ∈ [0,1), κ �
0, and δ � 0. These parameters place us in the Thomas-Fermi
regime. For each parameter set, we classify the ground state
according to the densities |ψk|2 and the spin densities S. In
general, it is difficult to find the true minimizing energy state.
But the use of various initial data converging to the same (or
similar) final state allows us to determine that the true ground
state will be of the same pattern as the one that we exhibit. We
break our analysis into three sections: � = 0, small �, and
large �.

A. � = 0

We begin by considering the nonrotating spin-orbit con-
densate in which the active parameters are κ and δ. In the case
when κ = 0, we are left with a two-component condensate
coupled exclusively by the intercomponent interaction strength
related by δ. In this case, there are never any topological defects
created in the condensate, and the ground-state density profiles
of the condensates are either, for δ < 0.99, two coexisting
disks (of equal radii) or, for δ > 0.99, one disk with the other
component being identically zero [37].

Turning on the spin-orbit coupling term so that κ �= 0
provides a system which has recently been considered in the
literature by a number of authors [8–10,15,17,19,21–23]. A
typical example of the phase diagram is shown in Fig. 1
together with the associated density plots.

When δ < 1, the two components remain coexisting and
disk shaped for all κ [Fig. 1, region (i)]. We never see any
topological defects in the density profiles of the coexisting
disk-shaped condensates. We can check (as in Fig. 2) that
S⊥ = (Sx,Sy) is almost constant, Sz is almost zero, and
(∂	/∂x,∂	/∂y) ∼ −2κS⊥.
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FIG. 1. (Color online) κ-δ phase diagram with � = 0. The
numerical parameters are taken as g = 4 and N = 200. There are
three identified regions: (i) two disks with no defects, (iii) SSP with
a giant skyrmion, and (iv) stripes. Each region has a typical density
plot for each component (left, component 1, and right, component
2). The numerical values of these simulations correspond to (i),
(δ,κ) = (0.25,1); (iii), (1.44,0.5); and (iv), (1.44,2).

On the other hand, if δ � 1, the components segregate.
For small κ [Fig. 1, region (iii)], one component is a disk,
in which most of the particles reside, and is surrounded by
a thin, low-population annulus as the other component. The
circulation is 2π in this annulus, which is reminiscent of the
skyrmion computed in [15,21]. Nevertheless, these authors

−5 0 5

−5

0

5

−0.5

0

0.5

(I)

(a)

−5 0 5

−5

0

5

−0.5

0

0.5

(I)

(b)

−5 0 5

−5

0

5

−0.5

0

0.5

(II)

−5 0 5

−5

0

5

−0.5

0

0.5

(II)

−5 0 5

−5

0

5

−0.5

0

0.5

(III)

−5 0 5

−5

0

5

−0.5

0

0.5
(III)

xx

y

y

y

FIG. 2. (Color online) Spin-density plots [frame (I), Sx ; (II), Sy ;
and (III), Sz] for numerical simulations carried out when � = 0 for (a)
(δ,κ) = (0.25,0.5) and (b) (δ,κ) = (0.25,4.75). The Thomas-Fermi
radius is plotted (black circle), as calculated in Eq. (12a).
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FIG. 3. (Color online) Numerical simulations for region (iii) of
the κ-δ phase diagram with � = 0 of Fig. 1. (a) (δ,κ) = (1.5,1.25)
and (b) (δ,κ) = (1.5,1.5). Density plots [frame (I), component 1, and
(II), component 2] and spin-density plots [frame (III), Sx ; frame (IV),
Sy ; and frame (V), Sz].

consider small values of interaction, which leads to a single
Landau level which is populated and thus a circulation of 1.
Here, we fix a large interaction, which leads to a different
regime, but find the same type of skyrmion. We will analyze
this later in the Thomas-Fermi limit.

As κ is increased, the maximum density in the annulus
increases, as well as the number of rings [see Fig. 3(a)]. We
have checked numerically that the circulation is 2π in each
annulus of component 1 as soon as δ is sufficiently large
(leading to segregation of the components). At a critical κ

(approximately equal to 1.5 at δ = 1.5), symmetry breaking
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FIG. 4. (Color online) κ-δ phase diagram with � = 0.1. The
numerical parameters are taken as g = 4 and N = 200. There are
four identified regions: (i) two disks with no defects, (ii) two
disks with domains, (iii) SSP with a giant vortex, and (iv) stripes.
Each region has a typical density plot for each component (left,
component 1, and right, component 2). The numerical values of
these simulations correspond to (i), (δ,κ) = (0.25,0.5); (ii), (0.5,5);
(iii), (1.69,0.25); and (iv), (1.44,4). The inset shows a close-up around
the point (δ,κ) = (1,0). We analyze regions (i) and (ii) in more detail
in Fig. 5. The transition between regions (iii) and (iv) is shown
in Fig. 6.

occurs, and the ground state becomes a stripe profile, as in
Fig. 3(b): these stripe density profiles were studied in [8,23].
The stripes are straight, and segregation of the components is
observed for large δ.

B. Small �

We now proceed to the case where � and κ are, in general,
nonzero. We first present a κ-δ phase diagram for � = 0.1
(small rotation) in Fig. 4 in which four distinct regions are
present. We identify these as (i) two disks with no defects, (ii)
two disks with domains, (iii) segregated symmetry preserving
condensates (SSP) with a giant skyrmion, and (iv) stripes.
Each region on the phase diagram of Fig. 4 contains a sample
density profile from a simulation carried out within that region
(the simulation parameters are noted in the figure). The key
difference between a phase diagram with � = 0 and small �

is the development of region (ii), which is not present when
� = 0 (Fig. 1).

Along the κ = 0 axis, we revert to the case of a rotating
two-component condensate for which the ground-state profiles
are two coexisting disks (δ < 1) or there is spatial separation
of the components [one component is a disk and the other
has a zero wave function (δ > 1)] [37,38]. These behaviors
are still present for small κ [regions (i) and (iii), respectively,
in Fig. 4]. The profiles of the spin densities related to these
two regions are straightforward: in region (i) we have S =
(Sx,Sy,Sz) ≈ (1,0,0), much the same as in Fig. 2(a), whereas
in region (iii) we have S ≈ (0,0,1). As κ becomes larger,
modulations of the density profiles begin to occur. There is
a blurring of the boundary between regions (ii) and (iv). To
indicate the uncertainty in the location of this boundary for
high κ , we have used a dashed line in Fig. 4 above some
arbitrary κ .
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FIG. 5. (Color online) Numerical simulations for region (ii) of the
κ-δ phase diagram with � = 0.1 of Fig. 4. (a) (δ,κ) = (0.5,1.25) and
(b) (δ,κ) = (0.5,5). Density plots [frame (I), component 1, and frame
(II), component 2] and spin-density plots [frame (III), Sx ; frame (IV),
Sy ; and frame (V), Sz].

For δ < 1, the coexisting disk-shaped components each
develop vortices that arrange themselves along bands of
each component. We classify this region as the region in
which both components are two disks with domains [region
(ii) in Fig. 4]. The domain we refer to here is related to
the profile of S. We notice (see Fig. 5) that across some
bands, the behaviors of the Sx and Sy components of the
spin density change sign. For example, Fig. 5 [frames (III)
and (IV)] plots the Sx component and the Sy component
for the parameters (δ,κ) = (0.5,1.25) and (δ,κ) = (0.5,5)
(� = 0.1). In the simulation with (δ,κ) = (0.5,1.25), two
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bands of vortices have been created along the x axis, while for
(δ,κ) = (0.5,5) there are four bands of vortices, each along one
of the principal axes. In both cases we see that for y > 0 (<0),
Sx > 0 (<0) and for x > 0 (<0), Sy < 0 (>0). This creates
domains within the Sx and Sy component profiles (we note
that Sz ∼ 0 away from the vortex lines). For this particular
example, we say that there are two domains. A particular
feature of the domain structure of Sx and Sy is that, away
from the vortex lines, they become (approximately) constant.
For example, in Fig. 5 [frames (III) and (IV)], Sx ≈ 1

√
2

(≈−1
√

2) for y > 0 (<0) and Sy ≈ −1
√

2 (≈1
√

2) for x > 0
(<0). Note that S2

x + S2
y ≈ 1 as we have Sz ≈ 0 everywhere.

As κ is increased to higher values, we see examples with more
domains. As for the total phase, we still have numerically the
relation (d	/dx,d	/dy) = −2κ(Sx,Sy).

For δ > 1, when κ is small, the density profiles are a disk for
one component and an annulus for the other, with a circulation
of 1 around the annulus. As κ increases, the rotation forces
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FIG. 6. (Color online) Density plots (left, component 1, and right,
component 2) with � = 0.1 and δ = 2. The numerical simulations
are carried out for (I) κ = 0, (II) κ = 0.25, (III) κ = 1.25, and
(IV) κ = 1.75. Note that the density of component 1 for frame (I) is
identically zero.

more circulation, while κ is not large enough to undergo the
transition to the stripe. In Fig. 6, we show some density profiles
that correspond to values of κ taken around this transition.
Figure 6, frame (III), illustrates the combined effect of rotation
and spin orbit. In the phase diagram of Fig. 4, we have drawn
the transition between the two regimes (from the regime of
SSP with a giant skyrmion to stripes) as being instantaneous,
but in reality there is a smooth transition from one profile to
the other. For large κ , the ground state corresponds to stripes,
which are no longer straight.

C. Large �

If instead we look to the large-� limit, then we see the
rotational effect dominating. Figure 7 shows a κ-δ phase
diagram for � = 0.9 (large rotation: note that � must stay
below 1) in which three distinct regions are present. We
identify these as (v) two disks with vortex lattices and peaks,
(vi) a region where one component is a disk with a vortex
lattice and the other contains peaks of density, and (vii) two
annuli with vortex lattices. Each region on the phase diagram
of Fig. 7 contains a sample density profile from a simulation
carried out within that region (the simulation parameters are
noted).

Again, if we consider the κ = 0 axis, then we revert
to the two-component condensate rotating at high angular
velocities [38]. In these cases, the large rotational effect leads
to angular momentum being imparted onto the condensate and
therefore to the existence of vortices. For δ < 1, the condensate
is made of two coexisting disk-shaped components, both
with a triangular coreless vortex lattice. For δ � 1, it is a
single component with a triangular vortex lattice: the other
component has zero wave function. As κ becomes nonzero,
then for δ < 1, each component has a lattice of vortices (no
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2 annuli with vortex lattices

2 disks with vortex
and peak lattices   

2 disks with 
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FIG. 7. (Color online) κ-δ phase diagram with � = 0.9. The
numerical parameters are taken as g = 4 and N = 200. There are
three identified regions: (v) two disks with vortex lattices, (vi) a
disk with vortex lattice and peaks, and (vii) two annuli with vortex
lattices. Each region has a typical density plot for each component
(left, component 1, and right, component 2). The numerical values
of these simulations correspond to (v), (δ,κ) = (0.25,0.5); (vi),
(1.94,0.25); and (vii), (0.25,1.25). The boundary between regions
(v) and (vii) is plotted according to the numerical simulations
(solid line) and analytically (dashed line), calculated according
to Eq. (37). We analyze regions (v) and (vii) in more detail
in Fig. 10.
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FIG. 8. (Color online) Density plots (left, component 1, and right,
component 2) with � = 0.9 and δ = 1.94. The numerical simulations
are carried out for (I) κ = 0, (II) κ = 0.25, (III) κ = 0.5, and
(IV) κ = 1. Note that the density of component 1 for frame (I) is
identically zero.

peaks), while if δ > 1, spatial separation of the component
occurs and vortices in the dominating component correspond
to isolated peaks in the other. As κ increases further, the
less populated component starts to grow, and the peaks get
localized only in the center until they disappear, leading
eventually to the formation of an annulus in one component.
This is illustrated in Fig. 8. In Fig. 9 we also show some density
profiles that correspond to this transition for � = 0.5.

As δ crosses 1 for small κ , there is a transition from S ≈
(0,0,1) to S = (Sx,Sy,0), where the Sx and Sy components
of the spin density are, in general, nonzero. Figure 10(a) plots
the component densities and spin densities for region (v) of
the � = 0.9 phase diagram. But if δ > 1 and κ increases, the
region where Sz = 1 gets smaller and eventually disappears, at
which point the annulus develops. While in Fig. 5 Sx and Sy are
almost constant, in Fig. 10 Sx and Sy are sine- or cosine-like
functions. We will show this to be the case later, but we note for
now that, in essence, we see a smooth sine- or cosine-like
function for Sx and Sy in the rotation-dominating regime,
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FIG. 9. (Color online) Density plots (left, component 1, and right,
component 2) with � = 0.5 and δ = 2. The numerical simulations
are carried out for (I) κ = 0, (II) κ = 0.25, (III) κ = 0.75, and
(IV) κ = 1.75. Note that the density of component 1 for frame (I) is
identically zero.

whereas in the spin-orbit-dominating regime we see Sx and
Sy becoming constants with sharp transitions over boundary
lines (that correspond to the lines of vortices and the definition
used in this paper for the domain boundary). The vortices of
each component correspond to singularities in the Sx , Sy , and
Sz components: pairs of upwards and downwards spikes.

As κ is increased, one can see the development of two
annular components. These annular components still preserve
the vortex lattices and the sine- or cosine-like form of
the spin density [see Fig. 10(b)]. In the next section we
find an analytical expression for the critical parameters at
which the geometry changes from two disks to two annuli.
This analytical result (dashed line) can be compared to the
numerical simulations (solid line) in Fig. 7.

D. �-δ phase diagrams

We have up to now only presented κ-δ phase diagrams with
the value of the rotation held constant (either � = 0 for Fig. 1,
� = 0.1 for Fig. 4, or � = 0.9 for Fig. 7). In addition to these
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FIG. 10. (Color online) Numerical simulations for regions (v) and
(vii) of the κ-δ phase diagram with � = 0.9 of Fig. 7 for (a) (δ,κ) =
(0.25,0.5) and (b) (0.25,1.25). Density plots [frame (I), component
1, and frame (II), component 2] and spin-density plots [frame (III),
Sx ; frame (IV), Sy ; and frame (V), Sz].

we present two �-δ phase diagrams with the value of κ held
constant: in Fig. 11(a) we take κ = 1 (small) and in Fig. 11(b)
κ = 8 (large).

IV. ANALYSIS IN THE THOMAS-FERMI REGIME

In this section we perform an analysis based on the
Thomas-Fermi approximation to describe various features of
the phase diagrams that we introduced in the previous section.
In particular, we will concentrate on the symmetry-preserving
ground states [those featured in regions (i)–(iii), (v), and (vii)
of the phase diagrams shown in Figs. 1, 4, and 7]. Our starting
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Ω

FIG. 11. �-δ phase diagrams with (a) κ = 1 and (b) κ = 8. The
numerical parameters are taken as g = 4 and N = 200. There are six
identified regions: (i) two disks with no defects, (ii) two disks with
domains, (iii) SSP with a giant vortex, (iv) stripes, (v) two disks with
vortex lattices and peaks, and (vii) two annuli with vortex lattices.
The boundary between regions (v) and (vii) is plotted according to
the numerical simulations (solid line) and analytically (dashed line),
calculated according to Eq. (37).

point is the energy functional [Eq. (5)] written in terms of the
total density and the spin density, for which we consider, as in
the numerical simulations, g1 = g2, which gives c1 = 0:

E =
∫

1

2
(∇√

ρ)2 + ρ

8
(∇S)2 + ρ

2
(veff − � × r)2

+ ρκ

(
S⊥ · veff + 1

2
S · ∇ × S

)

+ ρ

2
(1 − �2)r2 + (

c0 + c2S
2
z

)ρ2

2
d2r. (8)

Under the assumption that gN is large, we are in the Thomas-
Fermi limit, which allows us to make various approximations
regarding the importance of the individual terms in Eq. (8). We
divide our analysis into looking at the cases of zero rotation
and nonzero rotation, which we further divide into low and
high rotation.

A. No rotation

We assume that there is no rotation, � = 0. The phase
diagram of Fig. 1 shows that δ = 1 is a critical value. We thus
need to look at δ < 1 and δ > 1 separately.
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1. δ < 1

Since δ < 1, that is, c2 > 0, we can assume in the energy (8)
that c2S

2
z is negligible in front of c0. The fact that Sz is

negligible (which can be seen in Fig. 2) also implies that
veff ∼ ∇	/2 (we will see that ∇	 is of order 1). This leads to

E =
∫

1

2
(∇√

ρ)2 + ρ

2

[
1

4
(∇S)2 + κ S · ∇ × S

]

+ ρ

8
(∇	)2 + ρ

2
κ S⊥ · ∇	 + ρ

2
r2 + c0

ρ2

2
d2r. (9)

This energy leads to two orders of magnitude, one for ρ and
the other for S and 	. We will see that the ρ energy is of order
N3/2√c0, which is large in the Thomas-Fermi limit, while the
energy for S and 	 is of order Nκ2, which is much smaller
than N3/2√c0 since κ is of order 1.

Thus, when κ2 � √
Nc0, we can separately minimize

Eρ =
∫

1

2
(∇√

ρ)2 + ρ

2
r2 + c0

ρ2

2
d2r (10a)

and

ES,	 =
∫

ρ

2

[
1

4
(∇S)2 + κ S · ∇ × S

+ 1

4
(∇	)2 + κ S⊥ · ∇	

]
d2r. (10b)

Equation (10a) yields the Thomas-Fermi profile for ρ that
we will discuss below. Equation (10b) leads to two coupled
problems for 	 and S.

Thomas-Fermi density profiles. In the Thomas-Fermi ap-
proximation, the minimization of (10a) yields

ρ = 1

c0

(
μ − 1

2
r2

)
, (11)

where μ is the chemical potential. This Thomas-Fermi density
profile has a harmonic trapping potential, so the components
will always be disk shaped. To complete the analysis we use
the normalization condition to obtain

R =
(

4Nc0

π

)1/4

, (12a)

μ =
(

Nc0

π

)1/2

, (12b)

where R is the Thomas-Fermi radius. This value fits very well
with the numerical computations. We can check that the energy
is thus of order N3/2√c0.

Equations for 	 and S. The minimization of (10b) leads to
an equation for 	 written as

∇ · [ρ (∇	 + 2κ S⊥)] = 0. (13)

This is reminiscent of the continuity equation written in [39].
For small κ , S⊥ can be written as a gradient so that

∇	 + 2κ S⊥ = 0. (14)

In Fig. 1 with δ < 1 we have either Sx = 1, Sy = Sz = 0
or |Sx | = |Sy | = 1/

√
2, Sz = 0 (see Fig. 2). In both cases,

numerical computation of ∇	 gives that ∇	 = −2κ S⊥ is

satisfied everywhere. Therefore, when Eq. (14) is satisfied, the
minimization of ES,	, given by (10b), becomes

ES,	 =
∫

ρ

2

[
1

4
(∇S)2 + κ S · ∇ × S

+ κ2
(
S2

z − 1
) + c2ρS2

z

]
d2r, (15)

since S2
⊥ = 1 − S2

z . The ground state of this energy for small
κ should prove to be close to Sz = 0 and S⊥ constant.

2. δ > 1

If δ > 1, that is, c2 < 0, the minimization of (8) leads to
S2

z ∼ 1, and at leading order, the density minimizes

Eρ =
∫

1

2
(∇√

ρ)2 + ρ

2
r2 + (c0 + c2)

ρ2

2
d2r. (16)

Note that because g1 = g2, then c0 + c2 = g1. In the Thomas-
Fermi approximation, the minimization of (16) yields

ρ = 1

c0 + c2

(
μ − 1

2
r2

)
, (17)

with

R =
(

4N (c0 + c2)

π

)1/4

, (18a)

μ =
(

N (c0 + c2)

π

)1/2

, (18b)

where R is the Thomas-Fermi radius. Note that at δ = 1, then
c2 = 0, so that both profiles (11) and (17) in ρ are the same.
The value (18a) fits well with the numerical computations.

In order to understand the skyrmion structure, we go back
to the energy in ψ1, ψ2 and assume that ψ1 = f (r)einθ , ψ2 =
g(r). Then, the spin-orbit energy is equal to

Eso = −κ

∫ (
fg′eiθ(n−1) − f ′ge−iθ(n−1) + n

r
fgeiθ(n−1)

)
d2r.

(19)

It follows that if n �= 1, then this term is zero and having
a skyrmion of order bigger than 1 increases the energy.
Therefore, the giant skyrmion is necessarily of degree 1,
leading to a circulation of 2π . This is similar to what [15,21]
find in the lowest Landau level with small interaction. Note
that in the case of several annuli [Fig. 3(a), frame (I)], our
analysis also yields that each annulus encompasses a degree
1 because the computation is valid per annulus. To check this
numerically, we compute

C(r) = i

2|ψ1(r)|2
∫

r=R

(ψ∗
1 ∇ψ1 − ψ1∇ψ∗

1 ) d2r (20)

which is equal to 2π if the giant vortex is of degree 1. In Figs. 12
and 13 we plot C(r) for (δ,�) = (5,0) and for κ = 1.5 and
κ = 3. We check numerically in the case of a single annulus
or multiple annuli that indeed the circulation is 2π per annulus
of component 1.

If δ is much bigger than 1, then S2
z ∼ 1, the components are

segregated, and only a boundary layer exists at the interface.
Therefore, we can assume further that there exists a radius R0

such that ψ1 = √
ρeiθ1R0�r�R and ψ2 = √

ρ1r�R0 . Then only
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FIG. 12. (Color online) Density plots for (a1) component 1 and
(a2) component 2 together with (b) a plot of C(r) for component 1
and the density curves for both wave functions. The inset shows a
close-up of the density profiles around the Thomas-Fermi radius. The
parameters are δ = 5, � = 0, and κ = 1.5.

the derivatives f ′ and g′ produce a contribution, which is a δ

function at r = R0, and then the spin-orbit energy becomes

Eso ∼ −4πκρ(R0). (21)
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FIG. 13. (Color online) Density plots for (a1) component 1 and
(a2) component 2 together with (b) a plot of C(r) for component 1
and the density curves for both wave functions. The parameters are
δ = 5, � = 0, and κ = 3.

This dependence is again consistent with the numerical
computations.

B. Nonzero rotation

1. Low rotation

In the case δ < 1, when the rotation is included in the
problem, then the energy (8) also leads to decoupled problems,
one in ρ and one for S and 	:

Eρ =
∫

1

2
(∇√

ρ)2 + ρ

2
r2 + c0

ρ2

2
d2r, (22a)

ES,	 =
∫

ρ

2

[
1

4
(∇S)2 + κ S · ∇ × S + κ2S2

z + c2ρS2
z

+ 1

4
(∇	 + 2κ S⊥)2 − ∇	 · � × r

]
d2r. (22b)

The Thomas-Fermi expression for ρ does not change with
respect to the � = 0 expression [Eq. (11)]. We still have
that (14) holds except on singularity lines. New singularities
related to the rotation emerge on the boundary of the domain
regions of S⊥, as illustrated in Fig. 5.

In the case δ > 1, the coupling between spin orbit and
rotation leads to a giant skyrmion for low κ and then discon-
tinuities in the outside annulus, as illustrated in Fig. 6, frame
(III). The Thomas-Fermi approach may yield information on
this behavior. Numerically, although S⊥ is almost zero in the
Thomas-Fermi radius, it has a circulation which produces a
circulation in 	.

2. High rotation

When the rotation is increased, the energy becomes (see the
Appendix)

E =
∫

1

2
(∇√

ρ)2 + ρ

8
(∇S)2 + ρ

2
(veff + κ S⊥ − � × r)2

+ ρ�κ(−ySx + xSy) + 1

2
ρκ S · ∇ × S + 1

2
ρκ2S2

z

+ ρ

2
(1 − �2)r2 + (

c0 + c2S
2
z

)ρ2

2
d2r. (23)

In the case δ < 1, in the Thomas-Fermi regime, this decouples
into a problem for ρ (for which the kinetic energy is negligible
and c2S

2
z can be neglected in front of c0) and a problem for veff

and S. This allows us to rewrite Eq. (23) as follows:

E� =
∫

ρ�κ(−ySx + xSy) + ρ

2
(1 − �2)r2 + c0

ρ2

2
d2r,

(24)

Eveff,S =
∫

ρ

8
(∇S)2 + ρ

2
(veff + κ S⊥ − � × r)2

+ 1

2
ρκ S · ∇ × S + 1

2
ρκ2S2

z + c2

2
ρ2S2

z d2r. (25)

The minimization of (24) leads to two Euler-Lagrange equa-
tions:

1
2 (1 − �2)r2 + κ�(−ySx + xSy) + c0ρ = μ, (26a)

κ�ρ
[
y ∓ x

(
1 − S2

x

)−1/2
Sx

] = 0. (26b)
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We note that, at leading order, S2
x + S2

y ≈ 1, so that Eq. (26b)
gives

S ∼ (sin θ,− cos θ,0). (27)

An analysis to the next order in S, with the minimization
of (25), will lead to the vortex lattice.

Substituting (27) into Eq. (26a) gives

ρ = 1

c0

[
μ − 1

2
(1 − �2)r2 + κ�r

]
. (28)

We can use the normalization condition to find μ. However,
first, we must consider the two possible geometries: by
our assumption that Sz ≈ 0 away from the defects, we
expect the two components to share the same geometry. The
numerical simulations presented in Fig. 10 (and also present
in [33]) indicate that both components are either disks or
annuli.

Two disks. When the components are both disks (we show
later that this corresponds to μ > 0), then we can use the
normalization condition, integrating from r = 0 to the outer
boundary, r = R, to find that R is given as the solution of the
quartic

R4 − 4κ�

3(1 − �2)
R3 − 4Nc0

π (1 − �2)
= 0, (29)

which then gives the chemical potential as

μ = 1
2 (1 − �2)R2 − κ�R. (30)

Two annuli. When the components are both annuli, we
can analyze an effective potential, defined from Eq. (28) as
Ve(r) = 1

2 (1 − �2)r2 − κ�r . The total density is zero when
this effective potential is equal to the chemical potential, i.e.,
Ve(r) = μ. Thus

μ = 1

2
(1 − �2)r2 − κ�r

⇒ r = κ� ±
√

κ2�2 + 2(1 − �2)μ

(1 − �2)
, (31)

from which we identify

R1 = κ� −
√

κ2�2 + 2(1 − �2)μ

(1 − �2)
, (32a)

R2 = κ� +
√

κ2�2 + 2(1 − �2)μ

(1 − �2)
, (32b)

with the inner radius R1 of the annulus and the outer radius
R2. For R1 to exist we must have μ < 0; i.e., μ > 0 implies
that both components are disks, and μ < 0 implies that both
components are annuli. We thus here assume that μ < 0. Note
that

R1 + R2 = 2κ�

(1 − �2)
, (33a)

R2 − R1 = 2
√

κ2�2 + 2(1 − �2)μ

(1 − �2)
. (33b)

We can find μ from the normalization condition as

μ = 1

2(1 − �2)

[
−κ2�2 +

(
3Nc0(1 − �2)3

4πκ�

)2/3
]

, (34)

which gives R1 and R2 explicitly as

R1 = κ�

(1 − �2)
−

(
(κc�c)4

κ�
(
1 − �2

c

)3

)1/3

, (35a)

R2 = κ�

(1 − �2)
+

(
(κc�c)4

κ�
(
1 − �2

c

)3

)1/3

, (35b)

which leaves the width of the annulus, d = R2 − R1, as

d = α

(κ�)1/3
, (36a)

where

α = 2
(κc�c)4/3(
1 − �2

c

) (36b)

is a constant, with κc and �c being critical values of κ and �

(and g12) that can be found from setting μ = 0 and using the
normalization condition. This gives

(κc�c)4(
1 − �2

c

)3 = 3Nc0

4π
. (37)

In particular, for a sufficiently large κ , d gets small, and a thin
annulus with a large circulation can be created (as has been
seen in Fig. 2 of Ref. [33]).

Comparison to phase diagrams. A phase diagram identify-
ing the numerically determined ground states for the case of
large rotation is given in Fig. 7. We see the appearance of three
regimes, of which the above analysis pertains to the regimes in
which there exists two disks with vortex lattices and two annuli
with vortex lattices. The boundary between these two regimes
has been calculated analytically to be given by Eq. (37), which
we include on the phase diagram of Fig. 7 (dashed line),
together with the numerically determined boundary (solid
line). One can see a good agreement between the theory and
numerics.

The width of the annulus given by (33b) becomes thinner
as the product κ� increases. This scenario is reminiscent of
the rotating single-component condensate that is trapped by
a harmonic plus quartic trapping potential [40] in which an
annulus develops as the rotation is increased and in which
the width of the annulus becomes smaller. In the case of a
condensate held by a harmonic plus quartic trapping potential,
there is no upper limit to the rotation since the quartic term
acts to keep the condensate bounded for all �. This increasing
rotation leads to the development of a giant vortex (a large
circulation) inside the annulus. At the same time the width
of the annulus is decreasing such that the condensate can no
longer support any vortices in the condensate bulk. A similar
situation can occur if one considers a harmonic plus Gaussian
trapping potential (a toroidal trap), although in this case the
width of the annulus is dependent on additional factors, notably
the strength and “waist” of the Gaussian term (which is
generally taken to be centered at the origin) and an upper
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limit on the rotation, which must be enforced to ensure the
condensate stays bounded [41].

V. CONCLUSION

We have provided phase diagrams in terms of the magnitude
of rotation, the strength of the spin-orbit coupling, and
interactions. We have found that plotting the total phase and
the components of the spin leads to an interesting classification
of the ground states. In the case of coexisting condensates,
the Thomas-Fermi approximation for the total density leads
to a simplification of the energy. We are able to determine the
boundary between regions of disks and annuli leading to vortex
lattices at high rotation and to derive a ferromagnetic energy.
In the case of segregation, we analyze the giant skyrmion in
the Thomas-Fermi limit and find that it is of degree 1.

ACKNOWLEDGMENTS

The authors wish to thank J. Dalibard, R. Ignat, and
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APPENDIX: DERIVATION OF THE ENERGY
FUNCTIONAL (5)

1. First formulation

We show in this Appendix how to derive the energy
functional

E =
∫

1

2
(∇√

ρ)2 + ρ

8
(∇S)2 + ρ

2
(veff − � × r)2

+ ρκ

(
S⊥ · veff + 1

2
S · ∇ × S

)
+ ρ

2
(1 − �2)r2

+ (
c0 + c1Sz + c2S

2
z

)ρ2

2
d2r (A1)

in terms of the nonlinear Sigma model. We start with the energy
functional given in terms of the wave functions ψk [Eq. (1)],
rewritten here as

E =
∫ ∑

k=1,2

{
1

2
|∇ψk|2 + 1

2
r2|ψk|2 − �ψ∗

k Lzψk

+ gk

2
|ψk|4 − κψ∗

k

[
i
∂ψ3−k

∂x
+ (−1)3−k ∂ψ3−k

∂y

] }

+ g12|ψ1|2|ψ2|2 d2r. (A2)

In [38], we showed how to transform the energy functional of
the rotating two-component condensate (i.e., the above energy
functional with κ = 0) into one given in terms of the total
density ρ, the total phase 	, and the spin density S. So we
split the above energy functional into terms independent of
the spin coupling and terms dependent on the spin coupling,
E = Ei + Eso, where [38]

Ei =
∫ ∑

k=1,2

(
1

2
|∇ψk|2 + 1

2
r2|ψk|2 − �ψ∗

k Lzψk + gk

2
|ψk|4

)

+ g12|ψ1|2|ψ2|2 d2r

=
∫

1

2
(∇√

ρ)2 + ρ

8
(∇S)2 + ρ

2
(veff − � × r)2

+ ρ

2
(1 − �2)r2 + (

c0 + c1Sz + c2S
2
z

)ρ2

2
d2r (A3)

and

Eso = −
∫

κ
∑
k=1,2

ψ∗
k

[
i
∂ψ3−k

∂x
+ (−1)3−k ∂ψ3−k

∂y

]
d2r.

(A4)

We work with Eq. (A4), and use the nonlinear Sigma model
where we have ψk = √

ρχk , where ρ = |ψ1|2 + |ψ2|2 and χk

are related to S by Eq. (3). Note that |S|2 = 1 everywhere, so
that one of the components of S is given in terms of the other
two.

Upon substitution of ψk = √
ρχk in Eq. (A4), we find that

Eso = −
∫

κ

2

(
1 − S2

z

)1/2 ∑
k=1,2

ei(	3−k−	k )

×
{
iρ

[
i
∂	3−k

∂x
+ (−1)3−k ∂	3−k

∂y

]

+ (−1)kρ

2[1 + (−1)kSz]2

[
i
∂Sz

∂x
+ (−1)3−k ∂Sz

∂y

]

+ 1

2

[
i
∂ρ

∂x
+ (−1)3−k ∂ρ

∂y

] }
d2r, (A5)

where we have written the spinor χk in terms of its amplitude
and phase: χk = |χk| exp(i	k). Furthermore, we use the
identities Sz = |χ1|2 − |χ2|2 and |χ1|2 + |χ2|2 = 1 to give
|χk|2 = [1 + (−1)3−kSz]/2.

Next we note that Sx = 2|χ1||χ2| cos(	1 − 	2) = (1 −
S2

z )1/2 cos(	1 − 	2) and Sy = −2|χ1||χ2| sin(	1 − 	2) =
−(1 − S2

z )1/2 sin(	1 − 	2), which allows us to write

−i
(
1 − S2

z

)1/2 ∑
k=1,2

ei(	3−k−	k )

[
i
∂	3−k

∂x
+ (−1)3−k ∂	3−k

∂y

]

= Sx

[
∂

∂x
(	1 + 	2) + ∂

∂y
(	1 − 	2)

]

+ Sy

[
∂

∂y
(	1 + 	2) − ∂

∂x
(	1 − 	2)

]

= S⊥ · ∇	 − i

[
∂Sx

∂x
+ SxSz(

1 − S2
z

) ∂Sz

∂x

]

−
[

∂Sx

∂x
+ SxSz(

1 − S2
z

) ∂Sz

∂x

]
, (A6)

where the last line follows from

Sx

∂

∂y
(	1 − 	2) = −∂Sy

∂y
− SySz(

1 − S2
z

) ∂Sz

∂y
, (A7a)

Sy

∂

∂x
(	1 − 	2) = ∂Sx

∂x
+ SxSz(

1 − S2
z

) ∂Sz

∂x
. (A7b)

023610-11



AMANDINE AFTALION AND PETER MASON PHYSICAL REVIEW A 88, 023610 (2013)

We move on to the second term of Eq. (A5), which, by
noting that

∑
k=1,2

(
1 + (−1)3−kSz

1 − (−1)3−kSz

)1/2

ei(	3−k−	k )

= 2(
1 − S2

z

) (iSy + SxSz), (A8a)

∑
k=1,2

(−1)3−k

(
1 + (−1)3−kSz

1 − (−1)3−kSz

)1/2

ei(	3−k−	k )

= 2(
1 − S2

z

) (iSySz + Sx), (A8b)

is equal to

−(
1 − S2

z

)1/2 ∑
k=1,2

ei(	3−k−	k )

× (−1)kρ

2[1 + (−1)kSz]2

[
i
∂Sz

∂x
+ (−1)3−k ∂Sz

∂y

]

= 1(
1 − S2

z

) [
(iSxSz − Sy)

∂Sz

∂x
+ (iSySz + Sx)

∂Sz

∂y

]
.

(A9)

We combine Eqs. (A6) and (A9) to get

S⊥ · ∇	+ 1(
1 − S2

z

)(
Sx

∂Sz

∂y
− Sy

∂Sz

∂x

)− i

(
∂Sx

∂x
+ ∂Sy

∂y

)
.

(A10)

Finally, notice that

−(
1 − S2

z

)1/2 ∑
k=1,2

ei(	3−k−	k ) 1

2

[
i
∂ρ

∂x
+ (−1)3−k ∂ρ

∂y

]

= −i

(
Sx

∂ρ

∂x
+ Sy

∂ρ

∂y

)
. (A11)

Thus, Eq. (A4) becomes

Eso =
∫

κρ

2

[
S⊥ · ∇	+ 1(

1 − S2
z

)(
Sx

∂Sz

∂y
− Sy

∂Sz

∂x

)]
d2r.

(A12)

The last step is to notice that

S · ∇ × S = 1(
1 − S2

z

) (
Sx

∂Sz

∂y
− Sy

∂Sz

∂x
− Sz S⊥ · R

)
,

(A13)

so that

Eso =
∫

ρκ

(
S⊥ · veff + 1

2
S · ∇ × S

)
d2r (A14)

since

veff = 1

2

(
∇	 + Sz R(

1 − S2
z

))
, (A15)

and thus Eq. (A2) yields Eq. (A1).

2. Alternative forms for the energy functional (5)

Equation (A1) can be decomposed into its constituent parts;
i.e., we can write E = EKE + EPE + EI , where

EKE =
∫

1

2
(∇√

ρ)2 + ρ

8
(∇S)2 d2r, (A16a)

EPE =
∫

ρ

2
(veff − � × r)2 + ρκ

(
S⊥ · veff + 1

2
S · ∇ × S

)

+ ρ

2
(1 − �2)r2 d2r, (A16b)

EI =
∫ (

c0 + c1Sz + c2S
2
z

)ρ2

2
d2r. (A16c)

In the following we give two alternative expressions for EPE :
(i) We note that

(veff − � × r)2 = (veff + κ S⊥)2 − [
κ2

(
1 − S2

z

) − �2r2
]

− 2κ S⊥ · veff − 2� × r · veff, (A17)

so that we are able to write EPE as

EPE =
∫

ρ

2
(veff + κ S⊥)2 + ρκ

2
S · ∇ × S

− ρ

2

(
∇	 + Sz R(

1 − S2
z

))
· � × r

+ ρ

2

[
κ2

(
S2

z − 1
) + r2

]
d2r. (A18)

(ii) Similarly, we note that

(veff − � × r)2 = (veff − � × r + κ S⊥)2 − κ2
(
1 − S2

z

)
+ 2κ S⊥ · � × r − 2κveff · S⊥, (A19)

so that we are able to write EPE as

EPE =
∫

ρ

2
(veff − � × r + κ S⊥)2 + ρκ

2
S · ∇ × S

+ ρκ�(−ySx + xSy)

+ ρ

2

[
κ2

(
S2

z − 1
) + (1 − �2)r2

]
d2r. (A20)

Some of these formulations of the energy are related to some
computations in [12] or the hydrodynamic formulation in [39].
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