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We discuss the phase diagram of the Bose-Hubbard (BH) model in the leading-order auxiliary field (LOAF)
theory. LOAF is a conserving nonperturbative approximation that treats on equal footing the normal and
anomalous density condensates. The mean-field solutions in LOAF correspond to first-order and second-order
phase transition solutions with two critical temperatures corresponding to a vanishing Bose-Einstein condensate
Tc and a vanishing diatom condensate T �. The second-order phase transition solution predicts the correct order
of the transition in continuum Bose gases. For either solution, the superfluid state is tied to the presence of the
diatom condensate related to the anomalous density in the system. In ultracold Bose atomic gases confined on a
three-dimensional lattice, the critical temperature Tc exhibits a quantum phase transition, where Tc goes to zero
at a finite coupling. The BH phase diagram in LOAF features a line of first-order transitions ending in a critical
point beyond which the transition is second order while approaching the quantum phase transition. We identify
a region where a diatom condensate is expected for temperatures higher than Tc and less than T0, the critical
temperature of the noninteracting system. The LOAF phase diagram for the BH model compares qualitatively
well with existing experimental data and results of ab initio Monte Carlo simulations.
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I. INTRODUCTION

The Bose-Hubbard (BH) model has been the subject of
broad theoretical [1–3] and experimental [4–6] interest. In
addition to being a challenge for many-body theories [7], its
realization in ultracold atoms [5] opened opportunities for
studying the BH model in a controllable and accurate way.
Approaches based on mean-field approximation [1,8], strong-
coupling expansions [9–12], variational perturbation theory
[13,14], nonperturbative renormalization group [15], slave-
boson [16–18], and quantum rotor [19] descriptions, together
with diagrammatic Monte Carlo techniques [20,21] represent
only an incomplete list of theoretical efforts dedicated to this
problem. In this context, developing and improving mean-field
descriptions for the BH model has been an important task since
Fischer et al. [1] discussed the zero-temperature mean-field
phase diagram of the BH model. Studies of the BH model
have been summarized in many textbooks [22–24]. One may
also test various many-body theoretical techniques using the
BH model and benchmark those methods. Here we follow
this tradition and study the BH model using a well-developed
theoretical framework.

Recently we introduced a leading-order auxiliary field
(LOAF) theory for a homogeneous system of ultracold gas
of bosonic atoms [25,26]. To derive this formalism we used
the Hubbard-Stratonovitch transformation [27,28] to introduce
auxiliary fields related to the normal and anomalous density
condensates. Path integral methods were used to obtain a
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leading-order expansion of the partition function using the
auxiliary fields to organize the expansion method. The result-
ing nonperturbative mean-field theory produces a conserving
and gapless approximation that is applicable to a large interval
of coupling-constant values, satisfies the Goldstone theorem,
yields a Bose-Einstein transition that is second order, and
predicts a positive shift in the critical temperature Tc, consistent
with other similar methods [29]. The relation of the LOAF
theory to the Goldstone theorem and the Higgs mechanism
was discussed in Ref. [30]. The behavior of the LOAF theory
near the critical point is discussed in Ref. [31] and the relation
to superfluidity and the Josephson relation is discussed in
Ref. [32], where we showed that the superfluid density in
LOAF is proportional with the square of the anomalous-
density diatom condensate. The latter is analogous with the
Cooper-pair condensate in the BCS mean-field theory of dilute
Fermi gases [33].

In this paper we develop the LOAF theory of the Bose-
Hubbard model, which has been used to study the physics of
ultracold Bose atoms in optical lattices [3,14,18,20]. Perhaps
the most salient feature of the BH model is the prediction
of a superfluid to Mott insulator phase transition. The latter
was demonstrated experimentally in three-dimensional optical
lattices by Trotzky et al. [6] by observing the suppression
of the critical temperature for superfluidity near the Mott
transition. These experimental results were showed to compare
nicely with theoretical predictions based on quantum Monte
Carlo simulations [20]. Monte Carlo also predicted the critical
interaction strength for which the critical temperature goes to
zero and the phase transition is purely quantum in character
[20].

We will show that below the critical temperature Tc, where
the usual Bose-Einstein condensate vanishes, LOAF is identi-
cal with the Hamiltonian version of LOAF introduced recently
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by Kleinert, Narzikulov, and Rakhimov [34] and referred to as
the “two-collective” field theory for the BH model. Above Tc,
LOAF has two possible solutions corresponding to first-order
and second-order phase transitions, respectively. For both
solutions, the superfluid state is indicated by the presence of
an anomalous-density diatom condensate in the system. In
ultracold Bose atomic gases confined on a three-dimensional
lattice, LOAF predicts that the critical temperature Tc exhibits
a quantum phase transition (QPT), where Tc goes to zero at
a finite coupling. The BH phase diagram in LOAF features a
line of first-order transitions ending in a critical point beyond
which the transition is second order while approaching the
QPT limit. We identify a region where a diatom condensate is
expected for temperatures Tc < T < T0. Here T0 is the critical
temperature of the noninteracting system. Overall, the LOAF
phase diagram is very similar to the superfluid to Mott insulator
transition in systems of ultracold Bose atoms trapped in optical
lattices and compares qualitatively well with results of ab
initio Monte Carlo simulations [20] and available experimental
data [6]. We analyze numerically the properties of the LOAF
theory in the weak-coupling limit.

II. THE BOSE-HUBBARD MODEL

We consider the case of N bosonic atoms trapped in a
three-dimensional cubic lattice.

A. Real time formulation

The path integral for the boson field φ(x,t) is given by

Z[j,j ∗] = eiW [j,j∗]/h̄ =
∫∫

DφDφ∗eiS[φ,φ∗;j,j∗]/h̄,

(1)
S[φ,φ∗; j,j ∗] =

∫
dt L[φ,φ∗; j,j ∗],

where the Lagrangian is

L[φ,φ∗; j,j ∗]

= ih̄

2

∫
d3x{φ∗(x,t)[∂tφ(x,t)] − [∂tφ

∗(x,t)]φ(x,t)}

−
∫

d3xφ∗(x,t)

[
−h̄2∇2

2m
+ V (x)

]
φ(x,t)

−1

2

∫∫
d3xd3x ′φ∗(x,t)φ∗(x′,t)U (x,x′)φ(x′,t)φ(x,t)

+
∫

d3x[j ∗(x,t)φ(x,t) + j (x,t)φ∗(x,t)]. (2)

Variation of the action yields a Schrödinger equation for the
field φ(x,t). Here V (x) is the periodic potential created by the
optical lattice and U (x,x′) is the interaction energy between
atoms. The tight-binding approximation assumes that the field
φ(x,t) can be expanded in normalized eigenfunctions ψ(x) of
an atom trapped in the lattice at positions xi = ai,

φ(x,t) =
∑

i

φi(t)ψ(x − xi), (3)

where a is the lattice spacing and ψ(x) satisfies[
−h̄2∇2

2m
+ V (x)

]
ψ(x) = Eψ(x), (4)

where E is the ground state energy of a trapped atom of mass m.
Here i = (ix,iy,iz) are triplets of integers, each running from
1 to Ns . Inversion of (3) gives

φi(t) =
∫

d3xψ∗(x − xi)φ(x,t). (5)

So using expansion (3), and keeping overlaps with nearest
neighbors, we find∫

d3xφ∗(x,t)

[
−h̄2∇2

2m
+ V (x)

]
φ(x,t)

≈
∑

i

{
E|φi(t)|2 − J

∑
κ

[φ∗
i (t)φi+κ (t) + φ∗

i+κ (t)φi (t)]

}
,

(6)

where κ = (1,0,0),(0,1,0),(0,0,1) is the displacement by one
unit in the (x,y,z) directions, and J is the overlap integral,

J = −
∫

d3xψ(x + a)V (x)ψ(x) > 0. (7)

The particle-particle interaction is assumed to be a short range
contact interaction,

1

2

∫∫
d3xd3x ′φ∗(x,t)φ∗(x′,t)U (x,x′)φ(x′,t)φ(x,t)

≈ U

2

∑
i

|φi(t)|4. (8)

So in the tight-binding approximation, the Lagrangian is given
by

L[φi ,φ∗
i ; ji ,j ∗

i ]

= ih̄

2

∑
i

{φ∗
i (t)[∂t φi (t)] − [∂t φ∗

i (t)]φi (t)}

−
∑

i

{
E|φi(t)|2 − J

∑
κ

[φ∗
i (t)φi+κ (t) + φ∗

i+κ (t)φi (t)]

}

−U

2

∑
i

|φi(t)|4 +
∑

i

[j ∗
i (t)φi (t) + ji (t)φ∗

i (t)], (9)

which we can write as

L[φi ,φ∗
i ; ji ,j ∗

i ]

= ih̄

2

∑
i

{φ∗
i (t)[∂t φi (t)] − [∂t φ∗

i (t)]φi (t)}

−
∑

i

(E − 2dJ )|φi(t)|2 − U

2

∑
i

|φi(t)|4

−J
∑
i,κ

{2|φi(t)|2 − [φ∗
i (t)φi+κ (t) + φ∗

i+κ (t)φi (t)]}

+
∑

i

[j ∗
i (t)φi (t) + ji (t)φ∗

i (t)]. (10)

Here d is the number of spatial dimensions. The constant
energy term proportional to E − 2dJ can be eliminated by
changing variables to

φi(t) = e−i(E−2dJ )t/h̄φ̃i(t), (11)
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which simply changes the energy scale. Then in terms of these
new variables, (10) becomes

L[φ̃i ,φ̃∗
i ; j̃i ,j̃ ∗

i ]

= ih̄

2

∑
i

{φ̃∗
i (t)[∂t φ̃i (t)] − [∂t φ̃∗

i (t)]φ̃i (t)}

−J
∑
i,κ

{2|φ̃i(t)|2 − [φ̃∗
i (t)φ̃i+κ (t) + φ̃∗

i+κ (t)φ̃i (t)]}

−U

2

∑
i

|φ̃i(t)|4 +
∑

i

[j̃ ∗
i (t)φ̃i (t) + j̃i (t)φ̃∗

i (t)]. (12)

Equation (12) is the usual form of the Bose-Hubbard La-
grangian. From now on we drop the tilde notation.

B. Imaginary time formulation

The imaginary time action is obtained from the real time
action by the mapping t �→ −ih̄τ and L �→ −LE. The partition
function Z for the BH model is then written as

Z[j,j ∗] = e−β	[j,j∗] =
∫∫

DφDφ∗e−SE[φ,φ∗;j,j∗],

(13)

SE[φ,φ∗; j,j ∗] =
∫ β

0
dτ LE[φ,φ∗; j,j ∗],

where the Euclidean Lagrangian is

LE[φ,φ∗; j,j ∗]

=
∑

i

(
1

2
{φ∗

i (τ )[∂τφi(τ )] − [∂τφ
∗
i (τ )]φi(τ )}

+ J
∑

κ

{2|φi(t)|2 − [φ∗
i (τ )φi+κ (τ ) + φ∗

i+κ (τ )φi (τ )]}

+ U

2
|φi(τ )|4 − μ|φi(τ )|2 − j ∗

i (τ )φi (τ ) − ji (τ )φ∗
i (τ )

)
.

(14)

Here we have dropped the tilde notation and introduced a
chemical potential μ.

III. LOAF FORMALISM

In the leading-order auxiliary field (LOAF) method we
introduce two auxiliary fields χi(τ ) and �i(τ ) by means of the
Hubbard-Stratonovitch transformation [27,28]. In our case, the
auxiliary-field Lagrangian density takes the form

Laux[�,�] =
∑

i

{
1

2U

∣∣Ai(τ ) − Uφ2
i (τ )

∣∣2

− 1

2U
[χi(τ ) − U

√
2|φi(τ )|2]2

}
, (15)

which we add to Eq. (14). We show in Ref. [26] that this
choice, in the weak coupling limit, agrees with Bogoliubov

theory [35,36]. Then, the action becomes

SE[�,�; J,K]

= 1

2

∫ β

0
dτ

∫ β

0
dτ ′ ∑

i,j

�†
i (τ )G−1

i,j (τ,τ ′)�j(τ
′)

−
∫ β

0
dτ

∑
i

{
χ2

i (τ ) − |Ai(τ )|2
2U

+ J †
i (τ )�i (τ )

+K†
i (τ )�i (τ )

}
, (16)

with

G−1
i,j (τ,τ ′) = δ(τ,τ ′)

(
hi,j + δi,j∂τ , −δi,j,Ai(τ )

− δi,jA
∗
i (τ ), hi,j − δi,j∂τ

)
, (17)

where

hi,j = J∇i,j + δi,j[
√

2χ (τ ) − μ], (18a)

∇i,j =
∑

κ

{2δi,j − [δi,j+κ + δi+κ,j]}. (18b)

Here we have introduced currents which we write as Ji(τ ) and
Ki(τ ) and a notation,

�i(τ ) =
(

φi(τ )

φ∗
i (τ )

)
, Ji(τ ) =

(
ji(τ )

j ∗
i (τ )

)
(19)

for the particle fields and currents, and a notation

�i(τ ) =

⎛
⎜⎝

Ai(τ )

χi(τ )

A∗
i (τ )

⎞
⎟⎠, Ki(τ ) =

⎛
⎜⎝

ki(τ )

k0i(τ )

k∗
i (τ )

⎞
⎟⎠ (20)

for the auxiliary fields and currents. The generating functional
for the fields is written as a path integral over all the fields

Z[J,K] = e−β	[J,K] =
∫∫

D�D�e−SE[�,�;J,K]. (21)

The action is now quadratic in the φi(τ ) which can be integrated
out, giving

Z[J,K] =
∫

D�e−Seff[�;J,K], (22)

where now

Seff[�; J,K]

= −1

2

∫∫ β

0
dτdτ ′ ∑

i,j

J †
i (τ )Gi,j(τ,τ

′)Jj(τ
′)

−
∫ β

0
dτ

∑
i

(
χ2

i (τ ) − |Ai(τ )|2
2U

+ K†
i (τ )�i (τ )

− 1

2
Tr{ln[G−1

i,i (τ,τ )]}
)

. (23)
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Expanding the effective action,

Seff[�; J,K] = Seff[�̄; J,K] +
∫ β

0
dτ

∑
i

(
δSeff[�; J,K]

δ�i(τ )

)
�̄

× [�i(τ ) − �̄i(τ )] + 1

2

∫∫ β

0
dτdτ ′

×
∑

i,j

(
δ2Seff[�; J,K]

δ�i(x)δ�j(x ′)

)
�̄

[�i(τ ) − �̄i(τ )]

× [�j(τ
′) − �̄j(τ

′)] + · · · (24)

about the stationary points � = �̄, defined by(
δSeff[�; J,K]

δ�i(τ )

)
�̄

= 0, (25)

and computing the remaining path integral by the method of
steepest descent, we find

β	[J,K] = Seff[�̄; J,K]

+ 1

2

∫ β

0
dτ

∑
i

Tr{ln[D−1
i,i (τ,τ )]} + · · ·

= −1

2

∫∫ β

0
dτdτ ′ ∑

i,j

�̄†
i (τ )G−1

i,j (τ,τ ′)�̄j(τ
′)

−
∫ β

0
dτ

∑
i

(
χ̄2

i (τ ) − |Āi(τ )|2
2U

+ K†
i (τ )�̄i(τ )

−1

2
Tr{ln[G−1

i,i (τ,τ )]} − 1

2
Tr{ln[D−1

i,i (τ,τ )]}
)

,

(26)

where

D−1
i,j (τ,τ ′) =

[
δ2Seff[�; J,K]

δ�i(τ )δ�j(τ ′)

]
�̄

. (27)

Here �̄i(τ ) is defined as the solution of

�̄i(τ ) =
∫ β

0
dτ ′ ∑

j

Gi,j(τ,τ
′)Jj(τ

′) , (28)

and is a functional of the currents (J,K). Explicitly, the
stationary points are defined by the solutions of the equations

χ̄i(τ )

U
= 1

2
�̄†

i (τ )�̄i(τ ) + 1

2
Tr[Gi,i(τ,τ )] + k0i(τ ), (29a)

Āi(τ )

2U
= 1

2
�̄†

i (τ )σ+�̄i(τ ) + 1

2
Tr[σ−Gi,i(τ,τ )] − ki(τ ), (29b)

and are functionals of the currents and σ± are the Pauli
matrices. Introducing the Legendre transformation,

βVeff[�,�] =
∫ β

0
dτ

∑
i

[J †
i (τ )�i(τ ) + K†

i (τ )�i(τ )]

−β	[J,K], (30)

we obtain the thermodynamic effective potential,

Veff[�,�] = 1

2β

∫∫ β

0
dτdτ ′ ∑

i,j

�†
i (τ )G−1

i,j (τ,τ ′)�j(τ
′)

+ 1

β

∫ β

0
dτ

∑
i

(
χ2

i (τ ) − |Ai(τ )|2
2U

+ 1

2
Tr{ln[G−1

i,i (τ,τ )]}
)

, (31)

where we have dropped the trace-log term involved in the
D propagator, which is higher order in our expansion. The
currents are now given by derivatives of Veff[�,�] with respect
to the fields,

J †
i (τ ) = βN

∂Veff[�,�]

∂�i(τ )
, K†

i (τ ) = βN
∂Veff[�,�]

∂�i(τ )
.

The thermodynamic potential is evaluated at zero currents,
which is at the minimum of Veff[�,�]. The average particle
number is given by

N = −∂Veff[�,�]

∂μ
(32)

evaluated at the minimum of the effective potential.

IV. HOMOGENEOUS SYSTEMS

For homogeneous lattice systems in equilibrium, the fields
are independent of τ and i. Expanding the inverse Green
function in a three-dimensional Fourier series,

G−1
i,j (τ,τ ′) = 1

βN3
s

∑
k,n

G̃−1
k,ne

i[2πk·(i−j)/Ns−ωn(τ−τ ′)], (33)

where ωn = 2πn/β are the Bose Matsubara frequencies. Here
k = (kx,ky,kz) is a triplet of integers, each running from
−Ns/2 to Ns/2 − 1. The total number of sites in the cubic
box is N3

s and the filling factor ν is defined to be the number
of particles per site ν = N/N3

s . From Eq. (6), the Fourier
transform of the Green function is given by

G̃−1
k,n =

(
εk + χ ′ − iωn −A

−A∗ εk + χ ′ + iωn

)
, (34)

where we have put χ ′ = √
2χ − μ, and the kinetic energy is

written in terms of the lattice momentum k̂ as

εk = J k̂2 = 2J

a2

∑
s=x,y,z

[1 − cos(2πks/Ns)], (35)

Using standard techniques,

1

2β

∫ β

0
dτ

∑
i

Tr
{
ln

[
G−1

i,i (τ,τ )
]}

= 1

2β

∑
k,n

Tr
{
ln

[
G̃−1

k,n

]}

= 1

2β

∑
k,n

ln
[
det

(
G̃−1

k,n

)] = 1

2β

∑
k,n

ln
[
ω2

n + ω2
k

]

=
∑

k

{
ωk

2
+ 1

β
ln[1 − e−βωk ]

}
, (36)
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where

ωk =
√

(εk + χ ′)2 − |A|2. (37)

The effective potential (31) for the homogeneous case then
becomes

Veff[�,�]/N3
s

= χ ′|φ|2 − 1

2
[Aφ∗2 + A∗φ2] − (χ ′ + μ)2

4U
+ |A|2

2U

+ 1

N3
s

∑
k

{
1

2
[ωk − εk − χ ′] + 1

β
ln[1 − e−βωk ]

}
. (38)

Here we have renormalized the effective potential by subtract-
ing the zero-point energy. The coupling constant is finite and
does not need to be renormalized. Minimizing the effective
potential with respect to the fields gives

(χ ′ − A∗)φ = 0, (39a)
χ ′ + μ

2U
= |φ|2 + 1

N3
s

∑
k

{
εk + χ ′

2ωk

[2nk + 1] − 1

2

}
,

(39b)
A

U
= φ2 + A

N3
s

∑
k

[2nk + 1]

2ωk

, (39c)

where nk = 1/[eβωk − 1], and with the filling factor given by

ν = N

N3
s

= − 1

N3
s

∂Veff[�,�]

∂μ
= χ ′ + μ

2U
. (40)

Because of the U (1) invariance of the Lagrangian, at the
minimum of the potential we can choose φ to be real. Then,
from (39a) A is also real since χ ′ is real. We interpret |φ|2 as
the number of condensed particles per site, and put

|φ|2 = φ2 = ν0
N0

N3
s

= νn0, (41)

with the condensate fraction n0 = N0/N . The sums over k
then omit the k = 0 mode. The gap equations then become

ν = νn0 + 1

N3
s

∑
k

′ {
εk + χ ′

2ωk

[2nk + 1] − 1

2

}
, (42a)

A

U
= νn0 + A

N3
s

∑
k

′ [2nk + 1]

2ωk

, (42b)

where ωk is given in Eq. (37) with εk given by Eq. (35).
For comparison purposes, we note that the LOAF effective

potential per unit volume for the continuum case is

Veff[�,�]/V

= χ ′|φ|2 − 1

2
[Aφ∗2 + A∗φ2] − (χ ′ + μ)2

4λ
+ |A|2

2λ

+
∫

d3k

(2π )3

{
1

2

[
ωk − εk − χ ′ + |A|2

2λ

]

+ 1

β
ln[1 − e−βωk ]

}
. (43)

which gives the equations

(χ ′ − A∗)φ = 0, ρ = χ ′ + μ

2λ
, (44a)

χ ′ + μ

2λ
= |φ|2 +

∫
d3k

(2π )3

{
εk + χ ′

2ωk

[2nk + 1] − 1

2

}
,

(44b)

A

λ
= φ2 +

∫
d3k

(2π )3

{
1

2ωk

[2nk + 1] − 1

2εk

}
,

(44c)

where the kinetic energy is the usual εk = h̄2k2/(2m). The
differences between the two theories reduce to the naive
substitution of the integral with the sum over the allowed
momenta, an extra term in the renormalization of the effective
potential, and the kinetic energy modification on the lattice.
The continuum coupling constant λ = 4πh̄2a0/m corresponds
to the Hubbard parameter U on the lattice. Here a0 is the
s-wave scattering length in the dilute atomic Bose gas. The
solutions II(i) and II(ii) correspond to first-order and second-
order phase transitions, respectively.

V. RESULTS AND DISCUSSIONS

The numerical analysis of the solutions space for Eqs. (42)
leads to three distinct regions in the Bose-Hubbard model
phase diagram.

(I) The broken symmetry case where φ 	= 0 and χ ′ =
A. Then ω = √

εk(εk + 2χ ′). In this region we solve the
equations [37]

ν = νn0 + 1

N3
s

∑
k

′ {
εk + χ ′

2ωk

[2nk + 1] − 1

2

}
, (45a)

χ ′

U
= νn0 + χ ′

N3
s

∑
k

′ [2nk + 1]

2ωk

. (45b)

(II) The case when φ = 0 so that n0 = 0, and either
(i) A = 0 so that ωk = εk + χ ′ and

ν = 1

N3
s

∑
k

′
nk. (46)

This solution corresponds to a first-order phase transition.
Equation (46) does not depend on the interaction strength
and applies for temperatures T � Tc, where Tc is the critical
temperature defined by the zero condensate faction limit
n0 → 0 in Eqs. (45).

(ii) Or 0 � A � χ ′ so that ωk =
√

(εk + χ ′)2 − A2,
and

ν = 1

N3
s

∑
k

′ {
εk + χ ′

2ωk

[2nk + 1] − 1

2

}
, (47a)

1

U
= 1

N3
s

∑
k

′ 1

2ωk

[2nk + 1]. (47b)

This solution corresponds to a second-order phase transition.
(III) The normal case where φ = 0 and A = 0. In this case

we solve Eq. (46) as in case II(i) above.
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We note that the LOAF solutions for the cubic lattice are
identical with the LOAF solutions for the continuum system
[25,26,30].

To make contact with Refs. [20,34] we set a = 1 and convert
the finite sums over k to integrals by defining q = 2k/Ns , so
that formally in Eqs. (42) we substitute

1

N3
s

∑
k

⇒
∫∫∫ +1

−1

d3q

8
=

∫∫∫ +1

0
d3q. (48)

This substitution is exact in the limit Ns → ∞. In the
following, all quantities other than the filling factor ν and
the condensate fraction n0 can be scaled by J without loss of
generality.

We define the critical temperature Tc as the point in region I
where the usual condensate fraction n0 vanishes. The second
critical temperature T � is the temperature where the diatom
condensate A vanishes in region II(ii). In the noninteracting
limit U → 0 we have T � → Tc.

The critical temperature Tc and fields χ ′
c = Ac are given by

the solution of Eqs. (46) in region I when n0 = 0:

ν =
∫∫∫ +1

0
d3q

{
εq + χ ′

c

2ωq

[2nq + 1] − 1

2

}
, (49a)

1

U
=

∫∫∫ +1

0
d3q

[2nq + 1]

2ωq

, nq = 1

eωq/Tc − 1
, (49b)

with ωq = √
εq(εq + 2χ ′

c) [38]. From Eqs. (49) the critical
value of the Hubbard parameter (U/J )c is obtained by taking
the limit Tc → 0. For ν = 1 we obtain the critical Hubbard
parameter value (U/J )c � 56.076, to be compared with the
critical value of 29.34(2) obtained by ab initio quantum Monte
Carlo simulations [20].

The critical temperature T � and field χ ′� are defined by the
solution of Eqs. (47) when n0 = 0 and A = 0:

ν =
∫∫∫ +1

0
d3qnq, nq = 1

eωq/T � − 1
, (50a)

1

U
=

∫∫∫ +1

0
d3q

[2nq + 1]

2ωq

, (50b)

with ωq = εq + χ ′�.
In Fig. 1 we illustrate the temperature dependence of the

condensate fraction νn0, scaled auxiliary fields χ ′ and A,
scaled chemical potential μ, and effective potential Veff for a
Hubbard interaction parameter value U/J = 10 at unity filling
ν = 1. We find that in region II we have two possible solutions
of the LOAF equations, as discussed above. The solution II(i)
gives rise to discontinuities in the temperature dependence
of the auxiliary fields and chemical potential that lead to a
discontinuity in the effective potential as well. This behavior
is characteristic to a first-order phase transition. In contrast, the
solution II(ii) corresponds to a second-order phase transition,
because the temperature dependence of χ ′, A, μ, and Veff is
smooth across Tc.

For convenience we denote by χ ′
c(i) the value of the

normal-density auxiliary field corresponding to the first-order
phase transition solution II(i) [see Eq. (46)] for T = Tc, and
we introduce the notation χ ′

c(ii) = χ ′
c to indicate the value of

χ ′ at Tc corresponding to the second-order phase transition
solution II(ii). We have, χ ′

c(i) → χ ′
c(ii) in the noninteracting
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V
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FIG. 1. (Color online) Temperature dependence of the condensate
fraction νn0, scaled auxiliary fields χ ′ and A, scaled chemical poten-
tial μ, and effective potential Veff for a Hubbard interaction parameter
value U/J = 10, at unity filling ν = 1. Here the temperature T is
scaled by T0, the critical temperature of the ideal (noninteracting)
Bose-Hubbard model. Solutions II(i) and II(ii) corresponds to first-
and second-order phase transitions, respectively.

limit U → 0. We recall that Eq. (46) is independent of the
Hubbard parameter U and is restricted to temperatures T � Tc.
In the noninteracting limit we have Tc → T0, where T0 is
the critical temperature of the noninteracting lattice Bose
system, and the noninteracting limit corresponds to χ ′ → 0.
So we find that χ ′

c(i) → 0 in the limit {U → 0,Tc → T0}.
Therefore a first-order phase transition may occur at Tc only
for an interaction strength U that gives a critical temperature
Tc � T0. Furthermore, the solution II(i) is only possible for a
temperature T � T0. We will use this important observation
next.

The coupling constant dependence of the LOAF critical
temperatures Tc and T �, the corresponding scaled normal-
density auxiliary fields χ ′

c(i), χ ′
c(ii) = χ ′

c, and χ ′�, and the cor-
responding effective potentials at Tc are depicted in Fig. 2. We
find that the critical temperature T � increases monotonically
with the BH model coupling constant (U/J ), whereas the
critical temperature Tc increases with the interaction strength
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FIG. 2. (Color online) LOAF scaled critical temperatures Tc and
T � and the corresponding scaled normal-density auxiliary fields
χ ′

c = χ ′
c(ii), χ ′�, and χ ′

c(i), and effective potentials, as a function of the
Bose-Hubbard model coupling constant (U/J ) at unity filling ν = 1.
We note that only the critical temperature Tc features a downturn
with the interaction strength and leads to a quantum phase transition
(QPT) for (U/J )c � 56.07, where Tc goes to zero. In addition, the
normal-density auxiliary field χ ′

c(i) for solution II(i) is not defined
for Tc < T0, where T0 � 5.59 is the critical temperature of the
noninteracting Bose system. Therefore, LOAF predicts a critical point
(CP) at coordinates TCP = T0 and (U/J )CP = 46.02. For coupling
values (U/J )CP < (U/J ) � (U/J )c, the transition is second order
and LOAF predicts a diatom condensate A 	= 0 in the absence
of the usual Bose-Einstein condensate fraction for temperatures
Tc < T < T0. Because T � > T0, the system is in the normal phase
for T > T0 in this region. For coupling constants (U/J ) < (U/J )CP

the transition is first order because Veff,c(i) < Veff,c(ii) in that region.

for U/J � 10 and then decreases with (U/J ). At unity filling
ν = 1, the critical temperature Tc goes to zero for a critical
value (U/J )c � 56.076. It is important to note that in the
continuum case of a homogenous system of ultracold Bose
atomic gases neither of the two critical temperatures Tc and
T � goes to zero in LOAF [31]. It appears that in LOAF
the presence of a quantum phase transition is related to the
reduction in the allowed momentum-vector phase space. The
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FIG. 3. (Color online) Interaction strength dependence of the
zero-temperature condensate fraction νn0 and the corresponding
scaled normal-density auxiliary field χ ′

0 at unity filling ν = 1.

latter is a consequence of the bosonic atoms being spatially
confined on the lattice.

For completeness in Fig. 3 we illustrate the scaled Hubbard
parameter U/J dependence of the zero-temperature conden-
sate fraction νn0 and the corresponding scaled normal-density
auxiliary field χ ′

0 at unity filling ν = 1.
As discussed above, the normal-density auxiliary field χ ′

c(i)
for the first-order phase transition solution II(i) is not defined
for Tc < T0. That leads to the possibility of a critical point
(CP) at coordinates TCP = T0 and (U/J )CP � 46.02.

Recalling that in LOAF the superfluid density is propor-
tional to the square of the anomalous-density auxiliary field
A (see discussion in Ref. [32]), it follows that the phase
diagram of the Bose-Hubbard model in LOAF features two
regions: First, for coupling values (U/J ) < (U/J )CP, both
solutions II(i) and II(ii) are possible and we may have either a
first-order or a second-order phase transition solution. Because
Veff,c(i) < Veff,c(ii), LOAF predicts a first-order phase transition
from the superfluid to the normal phase in this region. This
scenario corresponds to the solution II(i). Second, for coupling
values (U/J )CP < (U/J ) < (U/J )c, we have Tc < T0 and
the solution II(i) is not possible for temperatures Tc < T <

T0. Hence, the transition is second order as described by
solution II(ii). Because T � > T0 for all couplings, solution
II(ii) applies only for temperatures Tc < T < T0. In this
temperature range LOAF predicts a diatom condensate A 	= 0
in the absence of the usual Bose-Einstein condensate fraction
and the system is in a superfluid state for all temperatures 0 <

T < T0. As seen in Fig. 1, for all temperatures Tc < T < T �

we have Veff,(i) < Veff,(ii). Therefore at T0 the system undergoes
a first-order phase transition from the superfluid to the normal
phase.

The LOAF phase diagram for the BH model can be
compared with predictions of quantum Monte Carlo (QMC)
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FIG. 4. (Color online) Comparison of the coupling constant
dependence of the LOAF critical temperature Tc at unity filling
ν = 1 with experimental [6] and quantum Monte Carlo (QMC)
results [20]. The LOAF value of the critical Hubbard parameter
value (U/J )c = 56.076 should be compared to the QMC critical
value (U/J )c = 29.34(2) reported in Ref. [20]. LOAF also predicts a
critical point at (U/J )CP = 46.02. The solid and dashed lines indicate
first- and second-order phase transitions predicted by LOAF theory,
respectively. The shaded area depicts the region where a diatom
condensate without the usual Bose-Einstein condensate is expected.

simulations [20]. The depression in the critical temperature
was observed experimentally in ultracold Bose atom systems
in three-dimensional lattices [6] and the QMC compares
well with experiments for couplings (U/J ) � 20. The QPT
predicted by Monte Carlo occurs for (U/J )c = 29.34(2), so
about half the critical value predicted by LOAF. In Fig. 4 we
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FIG. 5. (Color online) Weak-coupling limit behavior of the
critical temperature Tc and corresponding critical value of the scaled
normal-density auxiliary field χ ′

c as a function of the Hubbard
interaction parameter value U/J at unity filling ν = 1.
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FIG. 6. (Color online) Ideal gas critical temperature T0, critical
value of the scaled Hubbard parameter (U/J )c, and the corresponding
critical value of the scaled normal-density auxiliary field χ ′

c as a
function of the filling factor ν.

show that our LOAF results compare qualitatively well with
existing experimental and ab initio QMC results [6,20]. The
shaded area in Fig. 4 is the region where a diatom condensate
is expected to be present in the system in the absence of the
usual Bose-Einstein condensate [39].

Just like in the continuum case, the LOAF results for the
lattice show that the critical temperature Tc departs from the
ideal gas result (see Fig. 1). Numerical results depicted in Fig. 5
show that in the weak-coupling limit (�Tc) increases linearly
with the coupling (U/J ) with a slope parameter �0.0737.
Furthermore, we find that the critical value of the auxiliary
field χc is proportional with the square of the coupling (U/J )2.

Finally, in Fig. 6 we plot the ideal gas critical temperature
T0, critical value of the scaled Hubbard parameter (U/J )c, and
the corresponding critical value of the scaled normal-density
auxiliary field χ ′

c as a function of the filling factor ν.

VI. CONCLUSIONS

In this paper we developed the leading-order auxiliary
field approximation (LOAF) for the Bose-Hubbard model
corresponding to a system of Bose atoms confined in a
three-dimensional lattice. The auxiliary-field formalism treats
on equal footing condensates associated with the normal and
anomalous densities.

For temperatures T < Tc we showed that LOAF is the same
as the “two-collective” field theory introduced by Kleinert
et al. [34]. Here Tc is the temperature where the usual
Bose-Einstein condensate vanishes. For temperatures T > Tc,
LOAF has two possible solutions corresponding to either
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a first-order or a second-order phase transition. For both
solutions, the superfluid state is indicated by the presence of
an anomalous-density diatom condensate in the system.

The BH phase diagram in LOAF features a line of first-order
transitions ending in a critical point at TCP = T0 and a finite
coupling (U/J )CP. In the first-order phase transition solution,
the diatom condensate auxiliary field A vanishes at Tc, so the
system evolves from a superfluid to a normal phase. First-order
phase transition solutions are limited to temperatures T > T0,
where T0 is the critical temperature of the noninteracting
system.

Beyond the critical point, the transition is second order.
In the case of the second-order phase transition, the diatom
condensate auxiliary field A goes to zero smoothly and
vanishes at the critical temperature T �. For Tc < T < T �,
the system is still in the superfluid phase, because in LOAF
the superfluid density is proportional to the square of A, and
not to the usual condensate fraction n0. For T > T � we have
A = 0 and the system is in the normal phase. This scenario
provides for the second-order phase transition known to take
place in liquid helium and dilute gases of Bose atoms. The
critical temperature T � does not vanish either in the continuum
or the lattice cases. In the case of the BH model, T � is
always greater than T0, so the system never reaches T �, but
rather exhibits a first-order phase transition at T0 from the
superfluid to the normal phase. Contrary to the conclusions of
Kleinert et al. [34], for couplings (U/J )CP < (U/J ) < (U/J )c
and temperatures Tc < T < T0, we have a region where a
diatom condensate is expected in the absence of the usual
Bose-Einstein condensate.

For Bose systems on a lattice the critical temperature Tc

goes to zero for a finite value of the Hubbard interaction
parameter (U/J )c, indicating a quantum phase transition
(QPT) similar to the superfluid to Mott insulator transition.
For continuum systems, Tc does not vanish [31] and LOAF
predicts no QPT in the case of infinite Bose matter. So in
LOAF the QPT is due to the spatial confinement of the Bose
atoms on the lattice. The LOAF phase diagram of the BH
model compares qualitatively well with existing experimental
and ab initio quantum Monte Carlo results [6,20].

It is clear that in order to understand the LOAF phase
diagram of strongly interacting systems of particles it is
necessary to extend this nonperturbative theory beyond the
mean-field level of approximation discussed so far.
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APPENDIX: NONINTERACTING CASE

The noninteracting case U/J = 0 is recovered by setting
χ → 0 and A → 0 in Eq. (38). Then χ ′ = −μ, ωk → εk − μ,
and the effective potential becomes

Veff[z,T ] = 1

β

∑
k

ln[1 − ze−βεk ]

= 1

β
ln[1 − z] + 1

β

∑
k

′
ln[1 − ze−βεk ], (A1)

where the primed sum omits the k = 0 term and the fugacity
z is defined by

z = eβμ, 0 � z � 1. (A2)

The particle number is

N = −∂Veff[z,T ]

∂μ
= −βz

∂Veff[z,T ]

∂z
= N0 +

∑
k

′ z

eβεk − z
,

(A3)

with N0 = z/(1 − z). Dividing by N3
s and replacing the sums

over k by an integral over d3q gives

ν = νn0 + F (z,T ), (A4a)

F (z,T ) = 1

N3
s

∑
k

′ z

eβεk − z
→

∫∫∫ +1

0
d3q

z

eβεq/T − z
.

(A4b)

The critical point is where z → 1, in which case

ν = νn0 + F (1,T ) (A5)

is an equation giving the condensate fraction n0 as a function
of T . The maximum value of T = T0 is when n0 = 0, and is
the solution of the equation

ν = F (1,T0) (A6)

for fixed value of ν. For ν = 1, we have T0/J = 5.591
consistent with the tight-binding dispersion result [20].
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