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We study the dynamics of spin-1 atoms in a periodic optical-lattice potential and an external magnetic field in a
quantum quench scenario where we start from a superfluid ground state in a shallow lattice potential and suddenly
raise the lattice depth. The time evolution of the nonequilibrium state shows collective collapse-and-revival
oscillations of matter-wave coherence as well as oscillations in the spin populations. We show that the complex
pattern of these two types of oscillations reveals details about the superfluid and magnetic properties of the initial
many-body ground state. Furthermore, we show that the strengths of the spin-dependent and spin-independent
atom-atom interactions can be deduced from the observations. The Hamiltonian that describes the physics of
the final deep lattice not only contains two-body interactions but also effective multibody interactions, which
arise due to virtual excitations to higher bands. We derive these effective spin-dependent three-body interaction
parameters for spin-1 atoms and describe how spin mixing is affected. Spinor atoms are unique in the sense
that multibody interactions are directly evident in the in situ number densities in addition to the momentum
distributions. We treat both antiferromagnetic (e.g., 23Na) and ferromagnetic (e.g., 87Rb and 41K) condensates.
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I. INTRODUCTION

Quantum degenerate ultracold atoms with a spin degree
of freedom exhibit both magnetic order and superfluidity,
offering a rich system in which to explore quantum coherence,
long-range order, magnetism, and symmetry breaking. Many
aspects of spinor atoms in a trap have been investigated
with spin F = 1 atoms, such as 23Na and 87Rb [1–5]. Spin
F = 2 [6–8] and F = 3 [9,10] spinor gases have been studied
to a lesser extent. Spinor condensates are described by a
vector order parameter [11–13]. The distinctive feature is its
spin-dependent interaction which organizes spins, giving rise
to ferromagnetic and antiferromagnetic (polar) order. It can
also coherently convert a spin m = 1 and a m = −1 atom to a
pair of m = 0 atoms, and vice versa [14–16], while conserving
magnetization and energy.

In parallel with the exploration of ultracold spinor physics,
optical lattices have become a powerful tool to create strongly
correlated many-body states of bosons and fermions [17–21].
Lattice systems offer flexibility as the lattice parameters
and particle interactions can be controlled easily, thereby
facilitating progress towards the creation of quantum emu-
lators [22,23]. Since the observation of the superfluid to Mott
insulator transition with spinless bosons [18], steady progress
has been made towards the understanding of spinor atoms in an
optical lattice [24–26]. Issues of temperature and entropy [27]
are among the challenges that need to be overcome to create
a many-body correlated state of spin-1 atoms. Theoretical
studies of lattice-trapped spinor condensates have mainly
explored the phase diagram and the nature of the superfluid–
Mott insulator transition [28–33].

Due to the tunability of cold atom and optical lattice pa-
rameters, it is also possible to study nonequilibrium dynamics.
Dynamics of many-body quantum systems is still an emerging
field, and only a few issues have been investigated [34]. An
early experiment [35] studied the dynamics of spinless bosons

in a suddenly raised optical lattice, observing the collapse and
revival of the matter-wave field in the momentum distribution.
In a more recent experiment [36], tens of oscillations in the
momentum distribution or visibility were observed, and the
predicted [37] signature of effective many-body interactions
confirmed. As for spin-1 atoms, dynamical studies have
mainly focused on large atom number continuum or trapped
systems in the mean field regime, exploring spin-mixing
dynamics [14,15], quantum quench dynamics [38,39], and
various instabilities [40].

The goal of this paper is to study the dynamics of spin-1
bosonic atoms in a three-dimensional (3D) optical lattice and
probe its many-body state and system properties. Starting with
a ferromagnetic (87Rb) or antiferromagnetic (23Na) superfluid
ground state in a shallow lattice, suddenly raising the lattice
depth creates a nonequilibrium state which can be followed
in various scenarios—with and without a magnetic field,
and with and without effective three-body interactions. The
evolution shows collapse and revival of matter-wave coherence
measured by visibility oscillations, in a more complex pattern
than for spinless bosons [35,41]. It also shows oscillations
in spin populations due to the combined effect of the spin-
mixing collisions of the m = 0 and m = ±1 components
and differential level shifts proportional to the square of the
magnetic field strength, the quadratic Zeeman shift. Linear
Zeeman shifts do not affect the behavior of spinor condensates.
Both spin mixing and visibility oscillations reveal details about
the system such as the composition of the initial many-body
state, and thereby its superfluid and magnetic properties.

By analyzing the frequency spectrum of the visibil-
ity, we show that the ratio U2/U0 of spin-dependent and
spin-independent atom-atom interactions can be deduced.
Combined with spectra of spin-mixing dynamics at various
magnetic field strengths, this gives us a method to measure the
interaction couplings for spin-1 atoms. Finally, we find that the
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presence of a quadratic Zeeman shift enhances spin-mixing
oscillations for ferromagnets and shows collapse and partial
revivals in the transverse magnetization.

The Hamiltonian that quantitatively describes the physics
of the final deep lattice is comprised of two-body as well as
effective multibody interactions, which arise due to virtual
excitations to higher bands. We derive the induced three-body
interaction parameters for spin-1 atoms in a deep harmonic
well, approximating the minimum of a single lattice site as
such, and find the existence of spin-dependent three-body
interactions. We show how to detect the signature of the three-
body interactions and argue that they are directly exhibited in
the in situ density as opposed to the time-of-flight visibility
measurements, as is the case for spinless bosons [36].

The article is organized as follows. In Sec. II we set
up the spin-1 Bose-Hubbard model, sketch the mean-field
theory to determine the initial ground state, describe the
exact Hamiltonian after the quench, and discuss observables
and computational aspects. We present our main results in
Secs. III, IV, and V. Section III explores the nonequilibrium
dynamics of antiferromagnetic spin-1 atoms, with and without
a magnetic field. Section IV describes the dynamics for a
ferromagnetic spinor. Section V shows the effects of effective
three-body interactions in the dynamics. We summarize our
results and discuss the limitations of our simulations in Sec. VI.
A derivation of the effective three-body interaction is given in
the Appendix.

II. MODEL AND COMPUTATIONAL ASPECTS

A. Shallow lattice Hamiltonian

Ultracold spin-1 bosons in the lowest band of a 3D cubic
optical lattice and an external magnetic field B along the z axis
are modeled by the free energy

H = −J
∑

〈i,j〉,m
(a†

imajm + a
†
jmaim) + U0

2

∑
i

n̂i (n̂i − 1)

+ U2

2

∑
i

( �Fi · �Fi − 2n̂i) + δ
∑
im

m2a
†
imaim

−μN̂ − μMM̂ . (1)

Here a
†
im is the creation operator of a boson in magnetic

sublevel m = −1, 0, or 1 in the energetically lowest Wannier
function or orbital of lattice site i. The first term in Eq. (1)
represents the hopping of atoms between nearest-neighbor
sites 〈i,j 〉 and is proportional to the hopping energy J . The
second term describes the on-site atom-atom repulsion with
strength U0 > 0, n̂i = ∑

m n̂im, and n̂im = a
†
imaim. The third

term is a spin-dependent atom-atom interaction with a strength
U2 that can be either positive (antiferromagnetic) or negative
(ferromagnetic). The three operators �Fi = (F̂xi ,F̂yi ,F̂zi) on
site i satisfy angular momentum commutation rules and
are defined by F̂qi = ∑

m,m′ a
†
im(Fq)mm′aim′ for q = x, y, or

z, and (Fq)mm′ are matrix elements m, m′ of component
α of the spin-1 angular momentum �F . The fourth term
corresponds to the quadratic Zeeman energy of the magnetic
sublevels with strength δ. Finally, the terms containing the
Lagrange multipliers μ and μM control the total atom number,

N̂ = ∑
i n̂i , and total magnetization, M̂ = ∑

i m̂i , respec-
tively. Here m̂i ≡ F̂zi = ∑

m m n̂im is the on-site magneti-
zation. Both N̂ and M̂ commute with H . (The large linear
Zeeman Hamiltonian of the atoms is “absorbed” in the term
−μMM̂ and is seen not to affect the physics of the spinor
condensate.)

The interaction strengths are given by U0 = 4πh̄2n̄(a0 +
2a2)/(3Ma) and U2 = 4πh̄2n̄(a2 − a0)/(3Ma) [11], where aF

with F = 0 or 2 are scattering lengths for the two allowed
values of the total angular momentum of s-wave collisions of
two spin-1 particles at zero collision energy and zero magnetic
field. S-wave scattering with total angular momentum F = 1
is prohibited due to bosonic wave function symmetry. The
mean density of the local orbital n̄ is determined by the laser
parameters and polarizability of the atom. Finally, Ma is the
mass of the atom, h̄ = h/(2π ), and h is Planck’s constant.

The ratio of the two interaction strengths is independent
of lattice parameters as the n̄ dependence cancels. For 23Na,
U2/U0 = +0.036(3) [42] and the system is antiferromagnetic.
For 87Rb, U2/U0 = −0.004 6(7) [43] and the system is ferro-
magnetic. The quoted uncertainty in U2/U0 for 23Na and 87Rb
is one standard deviation, obtained from the corresponding
references. For 41K we find U2/U0 = −0.026 [44,45]. For our
investigation we use U2/U0 = 0.04 for sodium and −0.005
for rubidium. The quadratic Zeeman strength δ = δ0B

2 with
δ0/h = 27.68 Hz/(mT)2 for 23Na and δ0/h = 7.189 Hz/(mT)2

for 87Rb.
The phase diagram for the spin-1 Bose-Hubbard model in

one-dimension has been calculated with numerical methods
such as quantum Monte Carlo [31] and density matrix
renormalization group [46]. Mean-field approaches for spin-1
bosons, which give predictions for any dimension, have
also been performed [32,47,48] and are extensions of those
for scalar bosons [49,50]. As mean-field models are most
predictive in three dimensions and we focus on such a lattice,
we use the decoupling mean-field theory [32] to find the initial
many-body ground state.

In a mean-field approximation, the hopping term in Eq. (1)
can be decoupled as

a
†
imajm � 〈a†

im〉ajm + a
†
im〈ajm〉 − 〈a†

im〉〈ajm〉 , (2)

when fluctuations around the equilibrium value are negligible.
We can define ψm = 〈ajm〉, for m = 1,0, − 1, as the site-
independent superfluid order parameter. Using Eq. (2) we
can rewrite Eq. (1) as a sum of independent single-site
Hamiltonians, H = ∑

i H
mf
i , where

H mf
i = U0

2
n̂i (n̂i − 1) + U2

2
( �Fi · �Fi − 2n̂i)

+ δ
∑
m

m2a
†
imaim − μn̂i − μMm̂i

− zJ
∑
m

(ψma
†
im + ψ∗

maim) + zJ
∑
m

|ψm|2 , (3)

and z is the number of nearest neighbors, e.g., z = 6 in 3D. For
a given μ and μM the superfluid order parameters and ground-
state wave function are obtained by finding those values of
ψm for which the energetically lowest eigenstate of H mf

i is
smallest.
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The character of the ground state depends on whether
the spin-dependent term U2 is positive or negative [11]. For
the antiferromagnetic U2 > 0 superfluid ground states, the
order parameters can be written as ψm = √

ρse
iθD1

m0(α,β,γ ),
while for the ferromagnetic U2 < 0 superfluid we have ψm =√

ρse
iθD1

m1(α,β,γ ). Here the functions DJ
MM ′ (α,β,γ ) are

Wigner rotation matrices [51], with Euler angles α, β, and γ

determined by minimizing H mf
i . The real valued ρs and angle θ

are the spin-independent superfluid density and a global phase,
respectively. We have ρs � 〈n̂〉.

Within mean-field theory the many-body superfluid wave
function is given by the product wave function

∏
i |GS〉i over

sites i, where |GS〉 = ∑
�n c�n|�n〉 and kets |�n〉 = |n−1,n0,n1〉

are elements of the occupation-number basis of Fock states
of the three m projections. The single-site wave function
is a superposition of Fock states with amplitudes c�n. In
fact, it is also a superposition of Fock states with different
magnetization.

We present only results for homogeneous ground states
with zero magnetization 〈mi〉 = 0 at every site, ensured by
setting μM = 0. Results for other magnetizations show similar
physics. For U2 > 0 the bosons condense into a state with
〈 �Fi〉 = 0. This is called a polar (antiferromagnetic) superfluid.
There are two kinds of polar order [32]: the ground state is
a transverse polar state with (ψ−1,ψ0,ψ1) = √

ρs(1,0,1)/
√

2
when δ < 0, and a longitudinal polar state with (ψ−1,ψ0,ψ1) =√

ρs(0,1,0) when δ > 0. For ferromagnetic atoms with U2 < 0
the magnetic order maximizes the total angular momentum
with 〈 �Fi〉2 = 1 [11], leading to a partially magnetized super-
fluid with order parameters (ψ−1,ψ0,ψ1) = √

ρs(1,
√

2,1)/2
for 0 < δ < 2U2, and a longitudinal superfluid with order
parameters

√
ρs(0,1,0) for δ > 2U2.

Our numerical simulations are performed in the occupation
number basis. Only basis functions with n−1 + n0 + n1 �
nmax are included. We use nmax = 6, leading to 84 basis
functions in a site and negligible truncation errors when the
mean atom number per site is less than three. All current
optical-lattice experiments use mean atom numbers of this
order of magnitude.

B. Deep lattice Hamiltonian

After preparing the initial superfluid, the depth of the optical
lattice is suddenly increased so that tunneling is turned off.
This lattice ramp up is assumed to be slow enough to prevent
excitations to a higher band yet fast enough compared to
interactions. We can then treat subsequent time evolution due
to the single-site Hamiltonian

H final = U0

2
n̂(n̂ − 1) + U2

2
( �F · �F − 2n̂) + δ

∑
m

m2a†
mam

(4)

exactly. As each site evolves under the same Hamiltonian,
we have suppressed the site index. For induced three-body
interactions, additional terms appear in H final as discussed in
Sec. V. For a recent observation of multibody effects for lattice-
trapped spinless bosons [36], where a similar quench was used,
a mean-field treatment [37,52] of the initial state followed by
exact on-site evolution was found to agree well with the ex-

periment. If lattice sites are not completely decoupled (J 
= 0)
during the evolution, a correlated multisite treatment is
necessary [53]. We do not study that scenario in this paper.

Following Ref. [14] we realize that, in addition to the
occupation number basis, eigenfunctions of the operators n̂,
�F2 = �F · �F , and Fz also form a complete basis for the on-site

Hilbert space of H final. In fact, these angular-momentum basis
states |n,F,M〉 diagonalize H final when δ = 0 with energy
spectrum

Efinal(δ = 0) = U0

2
n(n − 1) + U2

2
[F (F + 1) − 2n] , (5)

where n is the local atom number and the quantum number
F is restricted to F � n and even(odd) F for even(odd)
n. The integer M is the magnetization quantum number
with |M| � F . For δ 
= 0 the quadratic Zeeman interaction
couples the angular-momentum basis states. Finding its matrix
elements is involved, leading us to perform all simulations in
the occupation number basis.

C. Observables

To analyze the nonequilibrium dynamics of our system, we
follow several observables. The first is the atom number per
lattice site in each spin component 〈n̂im〉, which can be detected
eitherin situ [54] or, after release of the atoms from the lattice,
by the Stern-Gerlach separation method where the spin states
are first spatially separated and then detected [16]. The second
observable is the visibility, which is a measure of coherence of
the wave function and equals the number of atoms with zero
momentum in the spin-dependent momentum distribution.
This is the standard quantity measured after releasing atoms
from the lattice and a time-of-flight expansion [36,55]. Within
our simulation it is given by |〈âim〉|2 for any site i. Finally,
we study the square of the in situ transverse magnetiza-
tion |〈F̂ix〉|2. Transverse magnetization can be measured by
Faraday rotation spectroscopy, which allows for continuous
observation of spin population in a BEC [2,56].

III. DYNAMICS OF AN ANTIFERROMAGNETIC SPINOR

A. Evolution without magnetic field

In this section we analyze the dynamics of a longitudinal
polar superfluid ground state after the optical lattice strength is
rapidly raised. The condensate evolves under H final, with δ = 0
for hold time t , after which one or more of the observables is
measured. Figure 1(a) shows the typical evolution of the in situ
population of spin components m = ±1, 0 as a function of hold
time. Here we use typical numbers for 23Na atoms: in the initial
lattice with U0/(zJ ) = 2, U2 = +0.04U0, and a mean atom-
number per site of 〈n̂〉 = 1.31, and in the final lattice U0 =
0.1h̄ωf ,U2 = +0.04U0, where ωf is the harmonic frequency
near the minima of the lattice potential. (An infinitesimal δ > 0
is applied to ensure formation of the longitudinal polar state.)

Initially, all atoms are in the m = 0 state and as time
evolves, atoms begin to appear in states m = ±1 because of
spin-changing collisions, and a pattern of periodic modulation
emerges with a period of h/U2, while conserving zero
magnetization. This spin-mixing time trace also contains
information about the composition of the initial many-body
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FIG. 1. (Color online) Spin-mixing dynamics after a sudden in-
crease of lattice depth starting with the longitudinal antiferromagnetic
ground state of spin-1 23Na in a zero magnetic field. (a) The on-site
atom number of the spin components, 〈n̂m=0,±1〉, as a function of
hold time showing spin mixing. Time is in units of h/U2, and system
parameters are described in the text. (b) Fourier spectrum of the
time trace in (a) showing the frequencies involved in the spin-mixing
dynamics. The inset shows the initial ground-state Fock-state number
probabilities |c�n=(0,n0,0)|2 as a function of atom number n0 in spin
component m = 0. Atom numbers with m = ±1 are vanishingly
small. (c) Contribution P0 to 〈n̂m=0〉 of having n0 atoms in the
m = 0 state, where P0(n0) = ∑

nm=±1
n0|c�n|2. The curves are for

n0 = 1, 2, 3, and 4, showing that the 3h/U2 periodicity is due to
n0 = 2 and 5h/U2 periodicity due to n0 = 1 and 3, respectively.

state. To explore this, we further analyze the dynamics in
Figs. 1(b) and 1(c). Figure 1(b) shows the Fourier analysis
of the time trace in panel (a), and the inset shows on-site
Fock state probabilities |c�n|2 for the initial state. The shape
of the initial state number distribution is characteristic of a
nearly coherent or a slightly squeezed state. In the frequency
spectrum, peaks are observed at frequencies that are integer
multiples of U2/h. In fact, they occur at 3U2/h, 5U2/h, and a
small contribution at 7U2/h. These features can be understood
from an analysis of the eigenenergies in Eq. (5) of H final

at δ = 0. Similar to number Fock state composition of the

initial state, it is also a superposition of angular momentum
states |n,F,M〉. The observables n̂m commute with total atom
number n̂ and thus only measure the coherence between states
with different F but the same n. For states with n = 2 the
two allowed F are 0 and 2 with energy difference 3U2. This
leads to a peak at 3U2/h in Fig. 1(b). For n = 3 states,
F = 1 and F = 3 exist, leading to the frequency at 5U2/h.
The small feature at 7U2/h indicates the presence and mixing
of |n,F,M〉 = |4,4,0〉 and |4,2,0〉 states. The above analysis
of the eigenenergies is confirmed in Fig. 1(c). It depicts the
time evolution of the contribution P0 to 〈n̂m=0〉 of having
n0 atoms in the m = 0 state, where P0(n0) = ∑

nm=±1
n0|c�n|2.

Atom number n0 = 2 has a period of (h/U2)/3 as we oscillate
between states |n−1,n0,n1〉 = |0,2,0〉 and |1,0,1〉 with a total
of two atoms, while that for n0 = 1 and 3 has a period of
(h/U2)/5. Here, we oscillate between the three atom states
|n−1,n0,n1〉 = |0,3,0〉 and |1,1,1〉.

The spin-mixing dynamics can be compared and contrasted
with other spin-1 experiments. In Ref. [24], a pair of F =
187Rb atoms was prepared in a single site of a deep optical
lattice in the Fock state |0,2,0〉 and allowed to spin mix
with |1,0,1〉. Spin-mixing oscillations between two levels
analogous to Rabi oscillations were observed with a single
frequency. On the other extreme, spin mixing for a spinor
Bose-Einstein condensate (BEC) with a large number of atoms
has been discussed in theory and observed in experiments
[14,15]. They are in a regime where a classical pendulum
phase-space analysis is appropriate [57,58], and although
there can be spin-mixing oscillations for specific initial states,
quantum recurrences due to the discrete energy spectrum are
absent. Our analysis here explores the regime which is between
these two—the single Fock state regime and the regime of
large atom number condensate. As such, we are exploring a
regime which can shed light on the semiclassical transition to
large condensate dynamics, a topic for future investigation. In
our analysis here, we can analyze the multiple frequencies of
the dynamics time trace to probe the composition and atom
number statistics of the initial many-body state.

Figure 2 shows the dynamics of the visibility of the m = 0
state—the occupation of the zero-momentum state for the
m = 0 component—for the same initial state and parameters
as in Fig. 1. The visibility |〈am=0(t)〉|2 measures the phase
coherence in this spinor superfluid system. We show the
relative visibility |〈am=0(t)〉|2/|〈am=0(t = 0)〉|2 in Fig. 2(a).
We see that the atoms oscillate between being completely
coherent to completely incoherent (|〈am=0〉|2 ≈ 0). The pattern
is more complex than the spinless boson visibility [35]. There
is a fast oscillation with time scale ∼ h/U0, which is modified
by a slower envelope with a time scale ∼ h/U2. The exact
nature of the complex oscillations is revealed in the frequency
spectrum shown in Fig. 2(b). Similar to Fig. 1, features appear
at small integer multiples of U2/h. Here they are located at
2U2/h, 3U2/h, and 5U2/h. Peaks also occur at much larger
frequencies, with a dominant frequency at (U0 + U2)/h, which
is 26U2/h in this example. Twenty-six is also the number
of fast oscillations in a full period h/U2, as can be seen in
panel (a). This indicates that for an unknown ratio U2/U0,
one full revival of the oscillations of the visibility can help
determine this ratio by counting the number of fast oscillations
or equivalently, performing a frequency analysis. Combined
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FIG. 2. (Color online) (a) Visibility |〈am=0(t)〉|2/|〈am=0(t = 0)〉|2
of the m = 0 state as a function of hold time t after a sudden
increase of the lattice depth, for the same parameters as in Fig. 1.
The pattern of collapse and revival of coherence is more complex
than the spinless boson case due to the competition between spin-
dependent and spin-independent interactions. There are U0/U2 + 1
fast oscillations in one full collapse and revival period of h/U2,
yielding a method to determine the ratio U2/U0 from visibility
oscillations. (b) Spectrum of the visibility oscillations showing the
range of contributing frequencies, the most dominant one being at
U0/U2 + 1 = 26.

with the realization that this ratio is independent of lattice
parameters, this method of determining spinor interactions is
one of the key findings of this paper.

The visibility spectrum frequencies appear because the
expectation value of the annihilation operator is sensitive to the
overlap between Fock states of different atom numbers [36].
For example, |n−1,n0,n1〉 = |0,2,0〉 connects to |0,1,0〉, giv-
ing rise to the dominant frequency U0 + U2. Other frequencies
can similarly be explained by performing an expansion of
the initial state in the angular momentum basis, and applying
the evolution operator for the final Hamiltonian Eq. (4) at
δ = 0. For higher occupation numbers not shown here, we
find that the visibility patterns become more complex. In fact,
by controlling the initial squeezing [36,52] (i.e., by controlling
the initial tunneling energy J ) as well as the total occupation,
we can change the complexity of the frequency spectrum and
thereby make it amenable for analysis.

B. Effects of magnetic field

The energies of spin-1 atoms are sensitive to external
magnetic fields. Such external fields have been exploited
in manipulating spinor atoms in an optical trap—to access
ground-state properties [1,2], in detection such as in the Stern-
Gerlach separation method [16], or to influence the dynamics
in quench experiments [39]. For spinor atoms in an optical
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FIG. 3. (Color online) Spin-mixing oscillations in the presence
of a magnetic field in the form of a quadratic Zeeman shift. Panel
(a) shows the population in m = 0 as a function of hold time for
several values of the quadratic Zeeman shift. Panel (b) shows the
frequency analysis of panel (a) with two dominant frequencies in the
time evolution. At δ = 0 these frequencies are 3U2/h and 5U2/h.
The inset shows that the two dominant frequencies as a function of
δ first dip before slowly increasing due to the competing nature of δ

and U2.

lattice, external magnetic fields cannot be ignored and, in fact,
lead to unique physics. For example, the quadratic Zeeman
shift affects the phase diagram [33]. The ratio of quadratic shift
to the spin-dependent interaction strength, δ/U2, controls the
physics of this system. Two different regimes emerge—the
Zeeman regime for δ > U2 and the interaction regime for
δ < U2 [12].

Figure 3 shows an analysis of spin-mixing oscillations
〈n̂m=0〉 in the presence of a quadratic Zeeman shift δ during
the initial state preparation and during the evolution. The other
parameters are as in Fig. 1. To highlight the effects of a
magnetic field, we show a comparison of the dynamics for
δ/U2 = 0,0.5,1.5,2.5, and 5 in Fig. 3(a). We see that the os-
cillations become faster while simultaneously the amplitudes
get smaller for increasing δ in the Zeeman regime δ > U2.
The spin-mixing dynamics vanish for a large enough B field.
In panel (b) we plot their frequency spectra, comparing the
frequencies and the amplitudes. The inset shows two dominant
frequencies as a function of the Zeeman strength. A closer look
at panel (b) reveals that for a δ in the interaction regime δ < U2,
the dominant frequency initially decreases before starting to
increase, due to a competition between the spin-dependent
interaction and the Zeeman term. Much of the B-field effects
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can be understood from the eigenvalues of H final calculated in
the Fock state basis [24] using conservation of atom number
and magnetization. For up to three atoms per lattice site, this
involves diagonalizing at most a 2 × 2 matrix. The energy
splitting of the eigenvalues of the 2 × 2 matrices can thus be
calculated. In fact, from top to bottom the two curves in the
inset of panel (b) are due to contributions from three-atom and
two-atom Fock states. In a condensate with large particle num-
bers, the competition between interaction and Zeeman energy
gives rise to a sharp phase boundary at δ = U2 which can be
manifested through magnetic-field-induced resonances [59].

IV. DYNAMICS OF A FERROMAGNETIC SPINOR

A. Evolution without magnetic field

Figure 4 shows the dynamics when our initial state is a
ferromagnetic superfluid state of 87Rb with U2 < 0 created
in a shallow lattice. For a ferromagnetic state, the collective
spin configuration is such that the spin-dependent interaction
energy is maximized. This means that the ground state is a
superposition of magnetization states in the angular momen-
tum basis |n,F,M〉 with variance �m 
= 0, although it still
has magnetization 〈m̂〉 = 0. The parameters are 〈n̂〉 = 1.84,
U0/(zJ ) = 2, and U2 = −0.005U0 in the shallow lattice and
U0 = 0.1h̄ωf and U2 = −0.005U0 in the final deep lattice.
The population dynamics 〈n̂m〉 is shown in Fig. 4(a). The
oscillation amplitude is not as large as in the polar case in
the previous section. There are two reasons for this: First,
the ground state has comparable populations in all three
components and therefore, the population difference between
the spin components is smaller to begin with, unlike for 23Na

where initially only the m = 0 state is occupied. Second, the
initial state is much closer to the ground state in the deep
lattice. We would like to point out that the smallness of the
ferromagnetic interaction is not responsible for the oscillation
amplitudes being small. A Fourier analysis in panel (b) of
the m = 0 population shows that the frequencies present are
3U2/h, 5U2/h, and 7U2/h, as in the polar state. Again, energy
differences obtained from Eq. (5) give us those frequencies.
These frequencies and their spectral weight determine the
composition of different Fock components in the initial many-
body state and therefore can be used as an experimental probe.
We will show in the next subsection that adding magnetic fields
can enhance the amplitude of spin-mixing dynamics.

The visibility |〈am=0(t)〉|2/|〈am=0(t = 0)〉|2 is shown in
Fig. 4(c). It has a simpler pattern than for the polar case
in Fig. 2. The coherence of the initial matter wave exhibits
collapse and revival modulations with a fast time scale of
h/U0. Its frequency spectrum in panel (d) shows two dominant
frequencies, (U0 − U2)/h and 2(U0 − U2)/h, although other
frequencies with extremely small amplitudes do exist. For 87Rb
the dominant frequencies are 199 and 398 in units of U2/h.
As explained for 23Na, these frequencies appear from the
overlap of Fock states connected by the annihilation operator
â [36]. Here, the peak at (U0 − U2)/h appears due to the
overlap of number states |0,1,0〉 and |0,2,0〉. Similarly, the
peak at 2(U0 − U2)/h appears due to number states |0,2,0〉
and |0,3,0〉. As with 23Na, finding these frequencies yields
a method to experimentally determine U2/U0. Nevertheless,
since we need to observe many oscillations, ≈200 for 87Rb
and ≈80 for 41K, this will be a challenging application of
quantum-phase-revival spectroscopy.
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FIG. 4. (Color online) (a) Spin-mixing dynamics 〈n̂m〉 for a ferromagnetic U2 < 0 rubidium condensate as a function of hold time. (b) Fourier
spectrum showing the relevant frequencies of 3U2/h, 5U2/h, and 7U2/h, and their relative amplitudes. (c) Visibility |〈am=0(t)〉|2/|〈am=0(t =
0)〉|2 as a function of hold time. (d) Frequency spectrum of the visibility showing features at (U0 − U2)/h and 2(U0 − U2)/h, pointing a way
to measure interaction ratios U2/U0 from the visibility spectrum.
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B. Effects of magnetic field

In this section we study the effects of the quadratic Zeeman
interaction on a ferromagnetic spinor. In Fig. 5 we plot spin
population 〈n̂m=0〉 and in situ transverse magnetization |〈F̂x〉|2
for 87Rb. The parameters are 〈n̂〉 = 1.31, U0/(zJ ) = 2, and
U2 = −0.005U0 in the shallow lattice, and U0 = 0.1h̄ωf

and U2 = −0.005U0 in the final deep lattice. In plots (a)
and (b) we show spin-mixing dynamics when the quadratic
Zeeman shift is δ = U2 and 1.5U2, respectively. In all the
cases, the oscillations are no longer periodic in h/U2, but
the values of δ, U0, and U2, combined with the initial
state composition, influence the dynamics. We find that
the spin-mixing modulation amplitudes become large in the
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FIG. 5. (Color online) Effect of quadratic Zeeman interactions for
87Rb dynamics. (a, b) Spin-mixing dynamics of the m = 0 state for
δ = U2 and 1.5U2, respectively. (c) In situ transverse magnetization
|〈Fx〉|2 oscillations for various values of δ. Spin-mixing and |〈Fx〉|2
oscillations depend on a combination of δ, U2, and the initial state.
We see that the spin-mixing amplitudes increase as we increase the
field. For transverse magnetization, dynamics is related to how big δ

is compared to U2. When δf 
 U2, where δf is the final value during
the evolution, it starts to show regular oscillations, as we illustrate in
the figure.

presence of a B field, unlike the antiferromagnetic case in
the previous section. The oscillations also get faster, and the
fast spin oscillations are modified by an envelope of a slower
modulation pattern which is manifested in a beatlike pattern
involving the two dominant frequencies, as clearly evident in
Fig. 5(b). As we increase δ, the population differences in the
m = 0 and m = ±1 states become larger, and therefore large
spin-mixing modulations can occur.

Transverse magnetization |〈F̂x〉|2 in panel (c) shows that
it behaves differently in two regimes. We slowly increase δ

and show how it changes the dynamics. For small values of
δ, the initial amplitude is large but it decays and oscillates
without completely reviving. However, there is a pattern for
the modulations when δf 
 U2; here δf is the final value of
the field during the evolution, rather than its value throughout.
In this type of quench when the final evolution is mainly
due to a large magnetic field, the periodic oscillations can be
explained by the B-field induced equidistant energy spectrum.
However, the oscillations for δ = 0.5U2 and δ = 1.0U2 slowly
deviate from the two opposing limits of δ = 0 and δ 
 U2, and
have complete collapse but partial revivals. Faraday rotation
spectroscopy can be used to detect transverse magnetizations
[2]. This could give us a direct probe of the magnetic properties
in our quench setup, in addition to the coherence properties
which we can obtain through population and visibility revivals.

V. SIGNATURE OF EFFECTIVE THREE-BODY
INTERACTIONS

A. Three-body interactions

In our dynamical scheme, the evolution of the many-body
state takes place in a deep optical lattice with no tunneling to
the neighbors. In such a setting, even within the single-band
Bose-Hubbard model, there are effective three- and higher-
body interactions due to collision-induced virtual excitations
to higher bands or vibrational levels. For the spinless bosonic
case, such effective multibody interactions have been predicted
in theory [37]. A recent experiment [36] monitored matter-
wave collapse and revival dynamics for tens of oscillations and
observed the signature of higher-body effects in the visibility
time trace. A more accurate treatment of a multicomponent
system in a deep lattice should therefore also incorporate
higher-band induced multibody interaction terms. Three-body
interactions can be important for Efimov physics [60] and
for many-particle systems, giving rise to novel and exotic
phenomena [61–64].

In a deep lattice, the minimum of the potential at a single
site can be approximated as a harmonic potential. For spin-1
bosons in a single isotropic harmonic trap, the derivation of
the effective three-body interactions is given in the Appendix.
The effect can be concisely represented by adding

H3B,eff = V0

6
n̂(n̂ − 1)(n̂ − 2) + V2

6
( �F2 − 2n̂)(n̂ − 2) (6)

to H final in Eq. (4). Here, as previously, n̂ = n̂−1 + n̂0 + n̂1

is the on-site atom number and �F = ∑
m,m′ a

†
m

�Fmm′am′ is
the on-site total angular momentum. The Hamiltonian term
with strength V0 is similar to the spin-0 effective three-
body interaction of Refs. [37] and [36] and depends only
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on total particle number. The new Hamiltonian term with
strength V2 depends intricately on the atomic spin. For a
harmonic potential with frequency ωf , V0 is attractive and
equal to V0 = −1.34U 2

0 /(h̄ωf ) [37]. The strength V2 satisfies
V2 = 2(U2/U0)V0. There is no magnetic field dependence
in the effective three-body terms. Finally, we note that the
perturbative effective three-body Hamiltonian is only valid
when the three-body interaction strengths (V0,V2) are much
smaller than the corresponding two-body strengths (U0,U2).

The on-site effective Hamiltonian H3B,eff is diagonal in the
angular momentum basis states |n,F,M〉 with diagonal matrix
elements:

E3B,eff = V0

6
n(n − 1)(n − 2) + V2

6
[F (F + 1) − 2n](n − 2) ,

(7)
with the same restrictions as in Eq. (5) on allowed values
of F . Equation (7) is one of the key results in this paper.
This spectrum extends and generalizes the spectrum of the
spin-mixing spinor Hamiltonian as presented in Ref. [14] to
the effective three-body case. As discussed next, this helps us
quantify and understand the effects of three-body interactions
on our dynamics scenario.

B. Effects on dynamics

For spinless bosons in an optical lattice, a time-of-
flight measurement of the visibility dynamics determined
the strength of the effective multibody interactions [36,52].
Here for spin-1 bosons in an optical lattice, we show that
the effective three-body interaction effects can be observed
directly in the on-site population density—in the spin oscil-
lation dynamics. This opens up the possibility that in situ
measurements such as using quantum microscopes [54,65]
and other techniques [66] in lattices could be used to detect
effective multibody interactions. Because of the more complex
nature of visibility patterns, we only analyze spin-mixing
population dynamics.

In Fig. 6 we show the effects of the effective three-body
interactions in the spin-mixing dynamics of an initial polar
superfluid state of 23Na at U0/(zJ ) = 2, U2 = 0.04U0, and
δ = 0. The occupation is 〈n̂〉 = 2.35, which highlights the
three-body effects, and 〈m̂〉 = 0. The interaction strengths for
the deep lattice are U0 = 0.1h̄ωf and U2 = 0.04U0, so that
V0 = −0.134U0 and V2 = −0.268U2. In an earlier section we
have seen that spin-mixing dynamics is controlled by U2. Here,
we find that this spin-mixing scaling is also influenced by the
three-body interaction V2. Figure 6(a) shows a comparison of
the dynamics with and without the three-body term. We see
that the time traces start to differ after the first oscillation,
and the periodicity in h/U2 is destroyed. A frequency analysis
of the oscillations in panel (b) elucidates the exact nature of
the modulations. Without a three-body term, strong features
appear at 3U2/h,5U2/h, and 7U2/h. With a three-body term,
additional frequencies appear at 2.46U2/h,4.55U2/h, and
5.75U2/h, which follow from the energy differences of the
three-body spectrum in Eq. (7). Identification of any of the
frequencies gives us the V2 coupling strength. For example,
the peak at 4.55U2/h arises as the initial state contains
contributions of angular momentum states |3,1,0〉 and |3,3,0〉
containing three atoms. These two states have an energy
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FIG. 6. (Color online) Effects of effective three-body interactions
on the spin-mixing dynamics for a polar (23Na) initial state. (a)
The population 〈n̂m=0〉 as a function of hold time for occupation
〈n̂〉 = 2.35 and δ = 0 with (solid line) and without (dashed line)
the effective three-body interaction. (b) Frequency analysis of the
time trace with effective three-body interactions reveals the presence
of additional frequencies, which could be used to determine the
three-body interaction strength.

difference of 5U2 + 5V2/3, whose signature is the 4.55U2/h

frequency.
In experiments an unknown effective three-body strength

V2 can be deduced by assigning several frequencies in the time
trace. The presence of all the other frequencies can be used
to reduce error in the measurement and verify the spectrum
Eq. (7). The spectral weights and the values of the frequencies
also give us clues about the initial superfluid state. Control of
initial squeezing [36,52], by varying U0/(zJ ) in the shallow
lattice, can be used in such a way that some of the frequencies
are more dominant, so as to make detection easier.

In Fig. 7 we show the spin dynamics 〈n̂m=0〉 for a ferro-
magnetic (87Rb) initial state at U0/(zJ ) = 2, δ = 0, 〈m̂〉 = 0,
and 〈n̂〉 = 2.35 in the shallow lattice. In the deep lattice
we use U0 = 0.1h̄ωf and U2 = −0.005U0. The spin-mixing
amplitude is not that prominent for 87Rb. Nevertheless, the
influence of the three-body interaction is discernible in our
simulation. The frequency spectrum of the time trace shown in
(b) makes it clear that new frequencies emerge at 4.55U2/h and
5.75U2/h, proving the existence of three-body interactions
and yielding a method to measure its strength. The appearance
of additional frequencies is similar to the 23Na case, except
that we do not observe a feature at 2.46U2/h, which is due
to a coherence between four-atom angular momentum states
|4,0,0〉 and |4,2,0〉. For the ferromagnetic initial superfluid, the
angular momentum state |4,0,0〉 is absent. It is conceivable
that initial squeezing control of a ground state [36,52] or
other specific initial state preparations [14,15] can be used
to see larger amplitude spin-mixing oscillations to make
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FIG. 7. (Color online) Effects of effective three-body interactions
on the spin-mixing dynamics for a ferromagnetic (87Rb) initial state.
(a) The population 〈n̂m=0〉 as a function of hold time with (solid
line) and without (dashed line) the three-body interaction. For 87Rb
the oscillation amplitude is small. (b) Frequency analysis reveals the
presence of several frequencies, which are a signature of induced
three-body interactions; compared to 23Na in Fig. 6, one frequency is
missing for 87Rb due to its ferromagnetic nature.

the experimental detection of three-body effects easier for
ferromagnetic coupling.

VI. CONCLUSION

In this paper we performed a theoretical study of the
dynamics of spin-1 bosons in an optical lattice in a quench
scenario where we start from a ground state in a shallow
lattice and suddenly raise the lattice depth. We have shown
that the ensuing spin-mixing and visibility oscillations can
be used as a probe of the initial superfluid ground state.
The spectral analysis of time evolution reveals the Fock state
composition of the initial state and thereby its superfluid and
magnetic properties. Analysis of visibility oscillations, i.e.,
quantum-phase-revival spectroscopy, further yields a method
to determine the spin-dependent and spin-independent inter-
action ratio U2/U0, which is an important quantity for spinor
gases. We treat both antiferromagnetic (e.g., 23Na atoms)
and ferromagnetic (e.g., 87Rb) condensates. For ferromagnetic
interactions the spin-mixing oscillation amplitudes are small.
When external magnetic field cannot be ignored, the inclusion
of a quadratic Zeeman field is necessary, and we have
quantified such dynamics. We have shown that the presence
of a magnetic field increases the spin-mixing amplitude for a
ferromagnetic condensate.

The Hamiltonian that more accurately describes the physics
of the final deep lattice is comprised of two-body as well as
effective multibody interactions, which arise due to virtual
excitations to higher bands. We derive the induced three-body
interaction parameters for spin-1 atoms in a deep harmonic
well and show its effect on the spin-mixing dynamics. We

demonstrate that a frequency analysis of the oscillations can
detect the signature and strength of the spin-dependent three-
body interactions. We stress our finding that the three-body
interactions for spinor atoms can be observed directly in
the in situ number densities, in addition to the time-of-flight
visibility, as observed for spinless bosons [36].

Our analysis here is based on various approximations.
Our initial state is a mean-field product state which neglects
quantum and thermal fluctuations. Our calculations with spin-0
bosons [67] suggest that quantum fluctuations change the
composition of the initial state slightly but do not affect the
dynamics significantly, as the sites are completely decoupled
and on-site density fluctuations are frozen. Thermal fluctu-
ations, on the other hand, cause the visibility dynamics to
slowly decay. This would make it hard for the experimentalists
to follow the dynamics for a long time. None of our basic
conclusions in this paper are negated by these effects. For
a more complete understanding of our model, future work
should include these corrections. In experiments three-body
loss can be an important factor. However, the atom density is
small enough that the dynamics for spinless bosons have been
followed for many oscillations [36] without significant loss.
Three-body recombination should be included in our analysis
if the dynamics are to be followed over a longer period than
currently observed.

In addition to the effective three-body interactions, there
can be four-body and higher-order terms. Spin-independent
four-body terms are not negligible compared to the spin-
dependent three-body interactions, and can influence the
visibility dynamics, as seen in spin-0 collapse and revival
experiments [36]. However, in this paper we demonstrate
that the signature of three-body spin-dependent interaction
shows up in spin-mixing density dynamics, and this signal is
not affected by any spin-independent interactions. Long-range
dipolar interactions can be an important energy scale for atoms
such as Cr and Dy. For Na and Rb discussed in our paper, the
dipolar interactions are small and our estimate suggests that
they are an order of magnitude smaller than spin-dependent
three-body interaction.

Although there have been many theoretical studies for
spin-1 bosons in an optical lattice, a many-body correlated
ground state has not yet been achieved experimentally. There
are many unexplored questions in that regard. Here, we have
combined the study of dynamics with optical lattice spinors to
show how nonequilibrium dynamics can be used as a probe
for revealing ground-state properties and spinor interactions.
There are other dynamic scenarios that can give different
perspectives on spinor lattice physics, such as a quench from
Mott insulator to superfluid and evolution in a tunnel coupled
lattice, to name a couple. The interplay of superfluidity,
magnetism, and strong correlations makes this a rich system
where the study of quantum dynamics may lead to a better
understanding of collective phenomena.
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APPENDIX: EFFECTIVE THREE-BODY
SPINOR INTERACTIONS

In this Appendix we derive the effective three-body spinor
interaction due to virtual excitations to excited trap levels of
the isolated sites of the deep optical lattice. The derivation
closely follows Refs. [37] and [52]. Atoms are held in the
ground state of a site, which we approximate by an isotropic
3D harmonic-oscillator potential with frequency ωf . Then the
Hamiltonian for spin-1 bosons is H = H0 + V0 + V2 with

H0 = (εα + m2δ)a†
mαamα, (A1)

V0 = 1
2c0gαβ,γ δa

†
kαa

†
lβakαalβ, (A2)

V2 = 1
2c2gαβ,γ δa

†
kαa

†
lβ( �Fkm · �Fln)amγ anδ , (A3)

where operators amα annihilate an atom in spin projection
m = −1,0,1 and 3D harmonic oscillator state α. We use
the convention that Roman and Greek subscripts represent
spin projections and harmonic oscillator states, respectively.
Repeated indices are summed over. The single-particle en-
ergies εα and m2δ are the harmonic oscillator and quadratic
Zeeman energies, respectively. For the ground state α = 0. We
choose ε0 = 0 and will require that εα − ε0 
 δ for α 
= 0. The
spin-independent and spin-dependent atom-atom interactions
V0 and V2 have “bare-coupling” strengths c0 and c2, respec-
tively. The vector �F = (Fx,Fy,Fz) are spin-1 matrices. Each
symmetric real coefficient gαβ,γ δ is a 3D integral over the
product of the four oscillator wave functions α, β, γ , and δ.
In this Appendix the two atom-atom interactions are explicitly
normal-ordered in order to facilitate the derivation.

We can now derive the effective Hamiltonian with atoms in
the lowest oscillator state using degenerate perturbation theory
with zeroth-order Hamiltonian H0 and perturbation V0 + V2.
First, we define for every spatial mode α the spin wave function
|{n−1,n0,n1}α〉 with nm = 0,1,2, . . . atoms in spin state m.
The ground states P are formed by the orthonormal basis
functions |g〉 = |{n−1,n0,n1}0,0α 
=0〉 for any value of nm and
where 0α 
=0 indicates that there are no atoms in excited spatial
modes. Their energy is Eg = (n−1 + n1)δ. Excited states |e〉
with energy Ee are states where at least one atom occupies a
α 
= 0 spatial mode.

We reproduce the Hamiltonian in Eq. (4) in first-order
perturbation theory once we make the assignment U0 =
c0g00,00 and U2 = c2g00,00. To second order in degenerate
perturbation theory the matrix element for ground motional
states |g′〉 and |g〉 is

〈g′|δH (2)|g〉 = 1

2

∑
e 
=P

〈g′|V0 + V2|e〉

×
{

1

Eg − Ee

+ 1

Eg′ − Ee

}
〈e|V0 + V2|g〉 .

(A4)

The sum over excited states can be evaluated by realizing
that only states |e〉 ∝ a

†
kαa

†
lβam0an0|g〉 with αβ 
= 00 and k +

l = m + n contribute, as bothV0 andV2 conserve atom number
and magnetization and can only change the state of two atoms
at the same time, i.e., states |e〉 are those with at most two atoms
in the higher trap levels. By inspection, we then realize that
the energy differences Ee − Eg ≈ εα + εβ are independent of
the total number of atoms in the ground states and to good
approximation are also independent of the quadratic Zeeman
energy, as δ � εα for α 
= 0. Similar expressions hold for
Ee − Eg′ .

Inserting the (normalized) expression for |e〉 and perform-
ing the sums over |e〉 as well as those appearing in the potentials
V0 and V2, we first find

〈g′|δH (2)|g〉 = −
∑

αβ 
=00,μν

g00,μν

1

εα + εβ

gαβ,00

×
{

1

4
c2

0〈g′|a†
m0a

†
n0amμanνa

†
kαa

†
lβak0al0|g〉

+ 1

2
c0c2〈g′|a†

p0a
†
o0( �Fpm · �Fon)amμanνa

†
kαa

†
lβak0al0|g〉

}
,

(A5)

where the remaining sums over trap levels have been made
explicit, repeated roman indices are still summed over, and we
have omitted the contribution proportional to V2 × V2, as the
spin-dependent interaction strength is an order of magnitude
smaller than the spin-independent one.

By normal ordering the creation and annihilation operators
in Eq. (A5) and using the fact that ground states P contain no
atoms in excited trap levels, we find

〈g′|δH (2)|g〉 = 〈g′|δH2B + H3B|g〉 , (A6)

where

δH2B = Z2

{
− 1

2
c2

0a
†
k0a

†
l0ak0al0− c0c2a

†
m0a

†
n0( �Fmk · �Fnl)ak0al0

}

(A7)

is a correction to the pairwise two-body interaction and

H3B = Z3

{
− c2

0a
†
k0a

†
l0a

†
m0ak0al0am0

−2c0c2a
†
o0a

†
m0a

†
n0( �Fmk · �Fnl)ak0al0ao0

}
(A8)

is an effective three-body interaction. Here

Z2 =
∑

μν 
=00

g00,μν

1

εμ + εν

gμν,00 (A9)

and

Z3 =
∑
μ 
=0

g00,μ0
1

εμ

gμ0,00 . (A10)

The sums in Z2 diverge and must be regularized and
renormalized [52,68]. That is, we require that the bare coupling
constant c0 is defined such that, by combining the first- and
second-order contributions, c0g00,00 − c2

0Z2 is finite and equal
to U0. Similarly, we require that c2g00,00 − 2c0c2Z2 is finite
and equal to U2.
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The sums in coefficient Z3 of the effective three-body
Hamiltonian do converge. Hence we redefine the effective
three-body interaction as

H3B = 1

6
V0 a

†
k0a

†
l0a

†
m0ak0al0am0

+1

6
V2 a

†
o0a

†
m0a

†
n0( �Fmk · �Fnl)ak0al0ao0 , (A11)

where, consistent within our second-order perturbative calcu-
lation,

V0 = −6U 2
0

1

g2
00,00

Z3 and V2 = −12U0U2 Z3 = 2
U2

U0
V0

are the spin-independent and spin-dependent three-body in-
teraction strengths, respectively. For a spherically symmetric
harmonic oscillator, V0 = −1.34 . . . U 2

0 /(h̄ωf ) [37]. Since

U2 > 0 for Na atoms, V2 < 0, while for 87Rb, U2 < 0 and
thus V2 > 0.

The two- and three-body interactions can be rewritten in
terms of the angular momentum operators �F = (F̂x,F̂y,F̂z)
defined in Eq. (1) following Ref. [14]. By combining
the quadratic Zeeman interaction as well as the two-body
and effective three-body interactions, we find our final
result:

Heff = δ
∑
m

m2a†
mam + 1

2
U0n̂(n̂ − 1) + 1

2
U2( �F2 − 2n̂)

+1

6
V0n̂(n̂ − 1)(n̂ − 2) + 1

6
V2( �F2 − 2n̂)(n̂ − 2) ,

where we suppressed the ground-state oscillator index, and �F2

and the number operator n̂ commute.
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[24] A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel, and
I. Bloch, Phys. Rev. Lett. 95, 190405 (2005); New J. Phys. 8,
152 (2006).

[25] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger,
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