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The paper explores the prospects of observing the phenomenon of dynamical Anderson localization via
nonresonant Raman-type rotational excitation of molecules by periodic trains of short laser pulses. We define
conditions for such an experiment and show that current femtosecond technology used for nonadiabatic laser
alignment of linear molecules is sufficient for this task. Several observables which can serve as indicators for
Anderson localization are suggested for measurement, and the influence of experimental limitations imposed by
the laser intensity noise, finite pulse duration, limited number of pulses in a train, and thermal effects is analyzed.
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I. INTRODUCTION

Despite its simplicity, the periodically kicked rotor has
attracted much attention in the recent decades. One of the
major reasons for the interest in this system is the research on
quantum chaos. In the classical regime, a periodically kicked
rotor can exhibit chaotic motion, leading to unbounded growth
of the angular momentum. A quantum mechanical rotor shows
chaotic behavior for a limited period of time. Eventually, the
discreteness of the rotor energy leads to at least quasiperiodic
motion and therefore a suppression of the diffusive growth
of the angular momentum [1,2]. It was shown [3] that this
quantum suppression is due to a mechanism closely related
to the Anderson localization of electronic wave functions
in disordered solids [4]. Destructive interferences lead to an
exponential localization of the wave function. Another distinct
feature of the quantum kicked rotor is the effect of quantum
resonance [1,5]. If a rotor is kicked at a period that is a rational
multiple of the rotational revival time [6,7], its energy grows
quadratically with the number of kicks.

Linear molecules are a basic example of a quantum rotor.
Consequently, an early proposal [8] for experiments on the
quantum kicked rotor suggested using diatomic molecules
kicked by a pulsed electric field. It was proposed [8] to use
a combination of several harmonics of a microwave field
to create a train of microwave pulses, which would then
interact with polar diatomic molecules like CsI. This scheme
(using a rotor with a permanent dipole moment) has since
been analyzed in many theoretical works during the last two
decades [9–12]. However, to the best of our knowledge, no
experiment along these lines has been done yet (probably due
to the complexity of the required field source).

A different experimental approach to the kicked rotor
problem was introduced by Raizen and coworkers [13,14],
who used a substitute system of ultracold atoms interacting
with a pulsed standing light wave. This system has become
the standard setup for observing the effects of the δ-kicked
rotor, including quantum resonance and dynamical localiza-
tion [13], or the effects of noise on dynamical localization
[15,16]. However, the nondiscrete character of the atomic
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momentum complicates the observation of certain phenomena
like quantum resonances and chaos-assisted tunneling. To
some degree, this was overcome by using a very narrow
initial momentum distribution [17–19]. Periodically kicked
molecules circumvent this problem, since the quantization
of the angular momentum ensures discreteness of the energy
spectrum.

Recently [20], we drew attention to the fact that the
current technology used for laser alignment of nonpolar
molecules offers an alternative for exploring the dynamics of
the periodically kicked quantum rotor in a molecular system
(see Refs. [21,22] for a recent review of laser molecular
alignment and Ref. [23] for earlier studies). Here, the laser
field affects the molecular rotation via Raman-type interaction
[24,25]. The electric field of the pulse induces anisotropic
molecular polarization, interacts with it, and tends to align
the molecular axis along the laser polarization direction. An
ultrashort laser pulse acts like a kick, and the alignment
is observed under field-free conditions after the pulse is
over [26–29]. In a recent experiment, a periodic train of
eight pulses was used for inducing an enhanced molecular
alignment by repeated kicking under the condition of exact
quantum resonance [30]. Direct experimental observation of
the quantum resonance in periodically kicked molecules was
achieved recently in [31] by employing laser pulse trains with
a variable period. In this paper we extend our previous theoret-
ical studies on periodically kicked molecules and elaborate in
detail on the prospects of observing Anderson localization
via nonresonant Raman-type rotational excitation by short
laser pulses.

This paper is structured as follows. In Sec. II we introduce
our model for the laser-molecule interaction and briefly review
the connection between the dynamics of a periodically kicked
molecule and the phenomenon of Anderson localization.
In this section we also describe our numerical methods.
In Sec. III we demonstrate different manifestations of the
Anderson localization phenomenon in the considered system.
These effects include exponential localization of the angular
momentum distribution, suppression of energy diffusion, and
finite survival probability of the initial state. Section IV is
devoted to experimental limitations and how they influence
the prospected observations. Finally, in Sec. V we discuss the
results and conclude.
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FIG. 1. (Color online) The considered model: a train of ultrashort
linearly polarized laser pulses interacts with linear molecules. The
time delay τ between subsequent pulses is constant.

II. MODEL AND CALCULATION METHODS

A. Model

We consider interaction of linear molecules with a periodic
train of linearly polarized laser pulses, as depicted in Fig. 1.
The laser pulses interact with a molecule via its electric
polarizability. The pulse’s electric field induces a dipole and
subsequently interacts with it. After averaging over the fast
oscillations of the electric field, the interaction potential for a
single pulse is given as

V (θ,t) = − 1
4 (�α cos2 θ + α⊥)E2(t). (1)

Here, θ is the angle between the molecular axis and the
laser polarization direction, E(t) = E0 exp[−t2/(2σ 2)] is the
envelope of the electric field, where σ is a measure for
the pulse duration, and �α = α‖ − α⊥ is the polarizability
anisotropy, where α‖ and α⊥ are the molecular polarizabilities
along and perpendicular to the molecular axis, respectively.
We drop the second term in brackets, as it has no angular
dependence and therefore does not influence the rotational
dynamics. In the following, we express energy in units of 2B

and time in units of h̄/(2B). Here, B = h̄2/(2I ) is the rotational
constant of the molecule, with I being its moment of inertia.
Also, we introduce the dimensionless interaction strength P =
�α/(4h̄)

∫
E2(t), which corresponds to the typical angular

momentum (in units of h̄) transferred by the laser pulse to
the molecule. With these units, the Hamiltonian describing
our system is given as

Ĥ = Ĵ 2

2
− P√

πσ
cos2 θ

N−1∑
n=0

exp[(t − nτ )2/σ 2], (2)

where Ĵ is the angular momentum operator, τ is the period of
the pulse train, and N is the number of pulses.

B. Mapping to a tight-binding model

We now briefly review how the mechanism of Anderson
localization is related to the localization in angular momentum
space of a periodically kicked linear molecule. The connection
between the kicked rotor and Anderson localization was first
established by Fishman, Grempel, and Prange [3], and later
extended to kicked linear molecules [8]. Here, we closely
follow these references.

In order to show the relationship between the two phe-
nomena, it is convenient to describe the dynamics in terms of
the quasienergy states [32] |χα〉 (also called Floquet states)
and the quasienergies ωα . The quasienergy states are solutions
of the periodic time-dependent Schrödinger equation which
reproduce themselves (up to a phase factor) after every period

of the field:

|χα(t + τ )〉 = e−iωατ |χα(t)〉. (3)

The quasienergy states may be expressed as

|χα(t)〉 = e−iωαt |uα(t)〉, (4)

where |uα(t)〉 = |uα(t + τ )〉 is a periodic function. The
quasienergy states are assumed to form a complete basis, and
the wave function in terms of the quasienergy states is given
as

|�(t)〉 =
∑

α

e−iωαt |uα(t)〉〈uα(0)|�(0)〉. (5)

Here, |�(0)〉 is the initial state. Note that the expansion
coefficients 〈uα(0)|�(0)〉 are time independent [32].

In order to show the connection to Anderson localization,
we have to look at the one-cycle propagator Û (t + τ,t), which
propagates the wave function over one period. The propagator
can be expressed as

Û (t + τ,t) = e−iĴ 2τ/2T exp

[
−i

∫ t+τ

t

dt ′Ṽ (t ′,t)
]

, (6)

where T is the time-ordering operator and

Ṽ (t ′,t) = eiĴ 2(t ′−t)/2V (t ′)e−iĴ 2(t ′−t)/2. (7)

With a suitable Hermitian operator Ŵ , the propagator can be
expressed as [8]

Û (t + τ,t) = e−iĴ 2τ/2 1 + iŴ

1 − iŴ
. (8)

In the case of δ pulses, W (θ ) is given as [8]

W (θ ) = − tan[V (θ )/2]. (9)

The quasienergy states are related to the one-cycle propa-
gator Û (t + τ,t) via

Û (t + τ,t)|χα〉 = e−iωατ |χα〉. (10)

By the use of Eq. (8), one can express the one-cycle
evolution (10) as (compare with [3] and [8])

T
(α)
J u

(α,M)
J +

∑
J ′

W
(M)
J,J ′u

(α,M)
J ′ = 0, (11)

where

u
(α,M)
J = 〈J,M| 1

1 − iŴ
|uα〉, (12a)

T
(α)
J = tan

(
τ

ωα − EJ

2

)
, (12b)

W
(M)
J,J ′ = 〈J,M|Ŵ |J ′,M〉. (12c)

Here, |J,M〉 are the spherical harmonics, the eigenfunctions
of a free rotor, and EJ = J (J + 1)/2 are the corresponding
eigenvalues (neglecting the centrifugal distortion term). Note
that the interaction, (1), leaves the quantum number M

unchanged, so the latter becomes a mere parameter defined by
the initial conditions. Equation (11) displays the problem of
the periodically kicked molecule in the form of a tight-binding
model and, therefore, establishes the connection between
localization in the periodically kicked rotor and the Anderson
model of localization in disordered solids.
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C. Numerical method

For numerical purposes, it is convenient to work in the basis
of the spherical harmonics, |J,M〉. Since the interaction does
not change M , we can treat it as a parameter.

The matrix elements of the one-cycle propagation operator
U are obtained as follows. First, we expand the wave function
in the spherical harmonics,

|�(M)(t)〉 =
∑

J

C
(M)
J (t)e−iEJ t |J,M〉. (13)

Inserting this expansion into the time-dependent Schrödinger
equation with Hamiltonian (2), we obtain a set of coupled
differential equations for the expansion coefficients:

∂C
(M)
J (t)

∂t
= i

P√
πσ

N−1∑
n=0

exp[(t − nτ − τ/2)2/σ 2]

×
∑
J ′

C
(M)
J ′ (t)e−i(EJ ′−EJ )t 〈J,M| cos2 θ |J ′,M〉.

(14)

Here, we chose the timing of the pulses such that they are in
the middle of the cycle. The matrix elements of U are obtained
by solving (14) over one cycle (including a single pulse). In
particular, the element U

(M)
J,J ′ is given as C

(M)
J (t0 + τ )e−iEJ τ

with the initial conditions C
(M)
J (t0) = δJ,J ′ , with t0 = 0.

The quasienergy states and the quasienergies are obtained
numerically as eigenstates and eigenvalues of U [see Eq. (10)].
The wave function after N pulses can be obtained either by
solving Eqs. (14) for the whole pulse train or by multiplying
the initial state N times by U. Which method is better suited
depends mainly on the number of pulses and the pulse duration.

D. Dependence of the dynamics on the period

The dynamics of the kicked rotor depends strongly on the
term T

(α)
J from Eq. (11). In particular, there are four regimes.

First, T (α)
J can be identical for every J . This situation is called

quantum resonance [1,5] and is achieved if the period τ is
an integer multiple of 2π . (Note that the quantum resonance
exists exactly only if the molecular centrifugal distortion
is neglected.) Under the condition of quantum resonance,
all quasienergy states are extended over the full angular
momentum space, as shown in Fig. 2(a). Second, T

(α)
J can be

a periodic series in J . This case is called fractional quantum
resonance. It occurs if the kicking period is not an integer, but
just a rational multiple of 2π , τ = 2πq/r . Here, most states are
still extended over the full range of J space, but there are few
states which are exponentially localized close to J = 0 [see
Fig. 2(b)]. These localized states may be regarded as “surface
states.” They are due to a “surface effect” of the tight-binding
model, (11), since J = 0 is a lower limit for J . The third case
is when T

(α)
J is nearly periodic over a limited range of J . This

effect occurs if τ is slightly detuned from the resonant values,
τ = 2π + ε. As a result, the quasienergy states are extended
over a limited range of J , as shown in Fig. 2(c). The latter case,
with which we mainly deal in this paper, occurs when T

(α)
J is a

random series in J . In this case, the tight-binding model, (11),
exhibits the phenomenon of Anderson localization [4]. All
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FIG. 2. (Color online) Absolute square of the projection of
selected quasienergy states on the angular momentum states |J,0〉.
Shown is the case of δ pulses with P = 3. (a) Full quantum resonance,
τ = 2π . Under this condition, all quasienergy states are extended over
the full J space. (b) Fractional quantum resonance, τ = π/3. Most
states are extended over the full J space, but some are localized
close to J = 0. (c) Slight detuning from full quantum resonance,
τ = 2π + 0.01. The states are extended over several J states.
(d) Far detuned from any resonance, τ = 1. All states are exponen-
tially localized.

states are exponentially localized in the angular momentum
space, as shown in Fig. 2(d). In particular, at each site J there
is one state localized, although it may occur that two states
mix and then occupy the same sites [8].

In general, following the expansion, (5), the wave function
shows the same characteristics of extension or localization
in the momentum space as the quasienergy states. If the
quasienergy states are spread over the whole momentum
space under the condition of quantum resonance, also the wave
function will spread over the whole momentum space. Vice
versa, it will be localized like the quasienergy states under
the condition of Anderson localization. A special case is
fractional resonances. If the wave function is initially localized
close to J = 0, the localized “surface states” will have a
significant overlap with the initial wave function, and therefore
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FIG. 3. (Color online) Final population of the angular momentum
states of a quantum rotor, after it was kicked by a train of eight pulses
with P = 3, for different pulse train periods. The rotor was initially
in the rotational ground state.

part of the wave function will remain localized to J = 0, while
another part will spread in momentum.

To finish the introductory section, we show the actual
population distribution of the wave function for the above
three cases of the train period, using a train of a finite number
of pulses. In Fig. 3 the population of the rotational levels J

after a train of eight pulses is shown for different train periods
τ . Due to the selection rules of the Raman-type excitation
(J = 0, ± 2), the subsets of even and odd rotational levels
evolve independently, so for clarity we show only the even
ones. The population of the odd levels behaves similarly. Under
the condition of exact resonance [τ = 2π ; (blue) circles], the
distribution is divided into a flat (in logarithmic scale) plateau
region, and a fast decay after some cut-off value of J . The
cutoff marks the maximum angular momentum supplied by N

pulses to a classical rotor (for a rigid rotor this is J = NP ),
and the fast decay is due to the tunneling into the classically
forbidden region. When the detuning is increased, one can see a
monotonous deformation of the population curve (squares and
diamonds), while the general shape (plateau and fast decay
after a cutoff) remains intact. A more rigorous analysis of
this close-to-resonance region can be found in [20,33,34].
For larger detuning (crosses), the distribution is completely
different and reflects Anderson localization in the system. In-
stead of the plateau, a clear linear (in logarithmic scale) decay
over several orders of magnitude is seen, starting from J = 0.
In the remainder of this work, we only consider the latter
situation.

III. ANDERSON LOCALIZATION IN
A LINEAR RIGID MOLECULE

Anderson localization is characterized by eigenfunctions
that are exponentially localized in space, and consequently, the
motion is confined in the vicinity of the initial position. Here
we consider Anderson localization in the angular momentum
space [3,8,20]. As outlined in the following, Anderson local-
ization is reflected in several observables amendable to direct
experimental observation.

In this section, we consider three manifestations of
Anderson localization—exponential localization in angular
momentum space, suppression of energy diffusion, and finite
survival probability of the initial state—and show that they
can be observed for a periodically kicked molecule with
current laser technology. Due to the exponential localiza-
tion of the quasienergy states—discussed in Sec. II D—the
population distribution of the angular momentum states is
exponentially localized at the initial state. The localization
length is a property of the time-evolution operator, (6),
and can therefore be controlled by experimental parameters.
Another manifestation of the Anderson localization is the
suppression of energy diffusion. While a periodically kicked
classical rotor undergoes diffusive growth of the angular
momentum (for sufficiently strong kicks), for a quantum rotor
the localization of the quasienergy states in angular momentum
space suppresses this diffusive growth after a few kicks. When
observing the absorbed rotational energy, one can therefore
see an initial diffusive growth, which later changes to an
oscillatory pattern. As the third observable we consider the
survival probability of the initial state. If there is localization,
it remains finite.

In our simulations we include the effects of amplitude
noise. Anderson localization is due to coherent effects and,
in principle, is destroyed by an arbitrarily weak noise [35,36].
In particular, for sufficiently strong noise, the phase coherence
is destroyed such that the classical diffusion in the phase space
is recovered [35–37]. Therefore, noise can be used as a test
to rule out localization mechanisms which are not affected
by noise, like adiabatic localization (see Sec. IV). On the
other hand, noise can also be a problem in experiments by
preventing the observation of localization. In our simulations,
we demonstrate the effects of noise by introducing random
Gaussian variations in the interaction strength.

In this section, we consider the simplistic model of a rigid
linear molecule at zero temperature, kicked by ideal δ pulses. In
particular, this means that the initial state for the calculations
is the rotational ground state |0,0〉, and the rotational levels
are given as EJ = J (J + 1)/2 (in units of 2B). The effects of
deviations from this idealized case are considered in Sec. IV.
In the case of noisy pulse trains, the results shown are the
average of 50 pulse train realizations.

The mechanism of Anderson localization causes the
quasienergy states to be exponentially localized in momentum
space. As a result, the population distribution of the angular
momentum states is exponentially localized around the initial
state. The localization length is a property of the time-evolution
operator Û [see Eq. (6)] and is, therefore, independent of the
number of pulses applied. In the regime we consider in this
paper (τ sufficiently remote from any quantum resonance), the
localization length is also nearly independent of the pulse-train
period τ and, therefore, is solely a function of the effective
interaction strength P [or, generally, the interaction potential
V (θ )]. In Fig. 4 we show the population distribution of
the angular momentum states for different parameter values.
One can clearly see the exponential shape of the distribution
(note the logarithmic scale). In Figs. 4(a) to 4(c) only noise-free
pulse trains are considered, and the interaction strength P

[Fig. 4(a)], the number of pulses N [Fig. 4(b)], and the pulse
train period τ [Fig. 4(c)] are varied. One can clearly see that
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FIG. 4. (Color online) Population of the even rotational states
after a train of δ pulses. In each panel, one parameter is varied:
(a) interaction strength P , (b) number of pulses N , (c) pulse train
period τ , and (d) standard deviation σP of the interaction strength.
The nonvaried parameters are P = 3, N = 32, τ = 1, and σP = 0.

an increase in the interaction strength leads to an increase in
the localization length, but the number of pulses and the pulse
train period have no influence (as long as the pulse train period
is sufficiently detuned from a quantum resonance).

Figure 4(d) shows the influence of noise. It can be
seen that even for strong noise (diamonds), the population
distribution still resembles an exponential curve. Therefore, an
exponential-like shape of the angular momentum population
distribution is not an unambiguous criterion for Anderson
localization. However, the introduction of noise leads to a
dependence of the width of the population distribution on the
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FIG. 5. (Color online) Population of the even rotational states
after a train of noisy δ pulses. The pulse train period is τ = 1; the
average effective interaction strength is P = 3.

number of pulses, as shown in Fig. 5. For σP = 0.2P (σP

being the standard deviation of the interaction strength), the
dependence is still very weak, but for stronger noise one can
see the increase in the width of the distribution with N , which
clearly demonstrates the destruction of Anderson localization
by strong noise.

The periodically kicked classical rotor can show chaotic
dynamics with a diffusive growth of energy; in the quantum
mechanical regime this diffusion is suppressed due to An-
derson localization [1,3]. If the product of the kick strength
P and the kicking period τ exceeds a critical value, the
classical rotor exhibits unbounded chaotic motion. The angular
momentum undergoes (approximately) a random walk, and
the mean square deviation of the angular momentum grows
with the number of pulses. This leads to a diffusive growth
of the rotational energy. For a quantum mechanical rotor,
this diffusive growth is stopped after a few pulses due to
the Anderson localization. One can therefore see a linear
increase in the energy till some critical number Nbreak of
pulses. For later pulses, the energy oscillates but does not grow
on average [1]. In general, Nbreak increases with the effective
interaction strength P [36].

In Fig. 6 we show the suppression of the energy diffusion
for a periodically kicked linear molecule. Shown are the results
for different noise strengths: no noise (circles), moderate noise
(squares; σP = 0.2P ), and strong noise (diamonds; σP =
0.5P ). The interaction strength is chosen as P = 3, which
is comparable to laser intensities used in current experiments
on laser alignment [30]. Regardless of the amount of noise, we
can see a fast energy growth over the first two pulses. After
this initial phase, there is a diffusive growth in energy for
noisy trains, where the diffusion coefficient increases with the
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FIG. 6. (Color online) Absorbed rotational energy for a period-
ically kicked quantum rotor. Compared are the cases of a noiseless
(circles) and a noisy (squares and diamonds) pulse train. The effective
interaction strength is P = 3, the pulse train period is τ = 1, and σP

is the standard deviation of the interaction strength noise.

strength of the noise. This is exactly what one would expect
for a dynamically localized, periodically kicked rotor: without
noise, the energy diffusion is suppressed, but with increasing
noise, the classical diffusion is eventually recovered [35,36].
On the other hand, if the noise is too strong, the dynamics
become dominated by the noise, but not by the underlying
classical system.

Instead of measuring the population of all rotational levels
after N pulses, one can also observe localization via the
population of a single level measured as a function of N .
For a system localized at a level J0, the population of this level
must remain finite for N → ∞, thus demonstrating nonzero
survival probability.

In Fig. 7 we show the population of the initial state (here,
the ground state) for an off-resonant pulse train with P = 3 as
a function of the number of pulses. For a noiseless pulse train
the survival probability remains finite and oscillates around
0.6. For a slightly noisy pulse train with σP = 0.2P , one can
see a slow decline in the survival probability for more than 32
pulses. For a pulse train with strong noise, a clear power-law
decay (note the double-logarithmic scale) is seen already after
32 pulses.

Note that a finite survival probability does not nec-
essarily mean that the whole system is localized. For a
three-dimensional rotor like a linear molecule, the angular
momentum J can only take positive values, so one can expect
“surface effects” for Eqs. (11). We observed that these surface
effects lead to a trapping of some population in the low-lying
initial J state for fractional quantum resonances, although this
system can still be excited unboundedly. This issue is discussed
in more detail in a future publication.

IV. CONSIDERATIONS FOR AN EXPERIMENT

In the preceding section, we considered a rigid molecule at
zero temperature interacting with ideal δ kicks. We now show
that current experimental techniques are close enough to this
idealized case to allow observation of Anderson localization.
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FIG. 7. Population of the state |0,0〉 as a function of the number
of pulses for trains with different standard deviations σP of the
interaction strength. The pulse train period is τ = 1, and the effective
interaction strength P = 3. Note the logarithmic scales.

A. Experimental constraints

A long pulse duration can be a rather trivial cause for
localization in angular momentum space. If the pulse is long
compared to the relevant excitation periods, the interaction is
adiabatic and no net excitation is observed after the pulse. This
prevents the excitation of higher angular momentum levels,
leading to localization of the molecule in angular momentum
space. In the following, we refer to this localization mechanism
as adiabatic localization, in contrast to Anderson localization.
In order to exclude the adiabatic localization effect, the pulse
duration should be much shorter than the rotational period of
the molecule. For a molecule in the level J , this period is
given as

texc(J ) ≈ 2πI

L
= trev

J
, (15)

where I is the moment of inertia, L = h̄J is the angular
momentum, and trev = 2πI/h̄ is the so-called rotational revival
time, which in dimensionless units is trev = 2π . As an example,
for 14N2 the rotational period is approximately 8.4/Jps.

From Fig. 4 we can see that the exponential localization
can already be very well observed if it covers the levels up
to J = 20. Using Eq. (15), the excitation period of J = 20
is texc ≈ 0.05trev, so we may expect a pulse duration shorter
than 0.01trev to be sufficient for clear observation of Anderson
localization.

In Fig. 8 we show the rotational energy of a kicked rotor
for different pulse durations and different amounts of noise. It
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FIG. 8. (Color online) Rotational energy as a function of the
number of pulses for three pulse durations. Shown are the results
for different standard deviations σP of the kicking strength. For
comparison we also show the energy absorption of a corresponding
classical rotor (black crosses). The effective interaction strength is
P = 3 and the pulse train period is τ = 1.

can be seen that for pulse durations of σ � 0.01trev, indeed the
suppression of diffusion can be observed as well as for a δ pulse
(see Fig. 6). For a slightly longer pulse [σ = 0.02trev; shown
in Fig. 8(c)], on the other hand, the adiabatic localization
is no longer negligible and leads to additional localization.
A good test for adiabatic localization is the comparison
of a kicked quantum rotor to a kicked classical rotor. The
Anderson mechanism does not apply to a classical rotor, so
the localization seen for the classical rotor is only due to the
adiabatic localization. In Fig. 8 we therefore also show the
rotational energy of a kicked classical rotor (black crosses). As
shown, in all cases the quantum rotor is much more strongly
localized than the classical rotor, even for the rather long pulse
duration of σ = 0.02trev. This shows that even for long pulses,
one may still observe dynamical localization, although it is
mixed with adiabatic localization.

Up to now, we have treated the molecules as rigid rotors,
neglecting vibrational motions. For diatomic molecules this is
a well-justified approximation: Although the vibrations change
the moment of inertia, the vibrational motion is much faster
than the rotation, so one can average over the vibrations and

arrive at an average moment of inertia. The rotational levels
including the vibrational effects are given as

EJ,v = BeJ (J + 1) − DeJ
2(J + 1)2

−αe

(
v + 1

2

)
J (J + 1). (16)

Here, Be is the rotational constant of the molecule in its
equilibrium configuration, and v is the vibrational quantum
number. The second term in (16) accounts for centrifugal
forces, i.e., bond stretching due to fast rotations, and the
third term accounts for the change in the average bond
distance in higher rotational levels. Since the laser pulses
under consideration do not couple different vibrational states,
v can be treated as a parameter and the rotational levels can be
written as

E
(v)
J = BvJ (J + 1) − DeJ

2(J + 1)2, (17)

where Bv = Be + αe(v + 1/2). The condition for Anderson
localization is that the series, (12b),

T
(α)
J = tan

[
τ

2
(EJ − ωα)

]
, (18)

is random (see above). Obviously, if this series is pseudoran-
dom for a rigid rotor (De = 0), it is thus also for a nonrigid
rotor with De �= 0. Therefore, Anderson localization can be
observed in a nonrigid diatomic molecule as well as in a rigid
one.

More complicated is the case of polyatomic linear
molecules like carbon disulfide. Here, only in the vibrational
ground state can the molecule be regarded as linear. Vibrational
excitations, e.g., by thermal effects, can render the molecule
a symmetric-top rotor, strongly influencing the rotational
dynamics [38]. Although Anderson localization in a symmetric
top may be an interesting case as well, we restrict ourselves
to linear molecules here and, therefore, do not consider
polyatomic molecules in more detail.

In order to investigate the influence of the temperature,
it is convenient to introduce an effective thermal value
of the angular momentum, JT = √

T kB/(2B), where kB is
Boltzmann’s constant. For numerical purposes, we include the
temperature by doing ensemble averaging over the initial state,
weighting each result by its initial state’s Boltzmann factor. In
Fig. 9 we show the absorbed rotational energy for a rigid
diatomic molecule at different temperatures, corresponding
to JT = 0, 1, and 5. For nitrogen, e.g., these temperatures
correspond to T ≈ 0, 6 K, and 143 K, respectively. It can be
seen that an increase in the temperature leads to an increase in
the baseline and a slight smoothing of the oscillations but not
to a qualitative change of the energy absorption.

An additional effect of an increased temperature is vibra-
tional excitation. Since the laser does not couple different
vibrational states, the thermal population of excited vibrational
levels would not change the system in general. However,
it would lead to independent ensembles with a different
rotational constant, which may disturb the observations. In
molecular beams, a rotational temperature of less than 10 K
is generally reached. However, the vibrational motion is only
slightly cooled in a molecular beam. This can be a complicating
problem for heavy diatomic or polyatomic linear molecules.
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FIG. 9. (Color online) Rotational energy of a rigid diatomic
molecule as a function of the number of pulses for three effective
temperatures JT = √

T kB/(2B). The effective interaction strength is
P = 3 and the pulse train period is τ = 1.

For the latter, excitation of the bending modes may change
them from linear rotors to symmetric tops [38]. In this paper
we therefore consider only light diatomic molecules, for
which vibrational excitation is negligible; e.g., for N2 at room
temperature, the population of the first excited vibrational state
is only 10−5 of the ground-state population.

B. Example calculation

To demonstrate that the proposed experiments are possible
with current laser technology, we now show simulations
for 14N2 molecules, interacting with laser pulse trains with
experimentally feasible parameters. The pulse duration is
chosen as σ = 0.005trev ≈ 40fs, and the peak intensity is
I0 = 3 × 1013 W/cm2, which corresponds to P = 2.9. These
pulse parameters are close to the ones used by Cryan et al.
[30] for laser alignment of nitrogen. As the initial rotational
temperature we chose T = 8 K. For the vibrations, we assume
that the whole population is in the ground state, which is well
justified even if the vibrational temperature is equal to the room
temperature (the vibrational frequency of 14N2 is 2359 cm−1).
We compare a slightly noisy pulse train with σP = 0.2P and
a pulse train with stronger noise, σP = 0.5P .

In Fig. 10(a), we show the rotational energy as a function
of the number of pulses. One can clearly see a suppression of
the diffusion. Moreover, this suppression is weakened when
the noise is increased. Note that the rotational energy for the
slightly noisy case seems to decrease after 16 pulses, but it
actually starts to oscillate. These oscillations could be seen
more clearly if a train of more than 32 pulses were used. The
population of the rotational ground state [Fig. 10(b)] shows
a very slow decay for the weakly noisy train and a faster
decay for the strongly noisy train. In Fig. 11 we finally plot
the population of the rotational levels. Since the even and odd
rotational levels are independent ensembles (the interaction
couples only �J = ±2), we show only the even levels for
clarity. One can clearly see the exponential decay of the
population with increasing J . For the pulse train with weak
noise, the population distribution is almost independent of
the number of pulses. With increased noise, the population
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FIG. 10. (Color online) (a) Absorbed rotational energy and
(b) population of the ground rotational state for 14N2 molecules
interacting with a train of linearly polarized laser pulses, shown for
weak (circles) and strong (squares) noise. The pulse duration is σ =
0.005trev ≈ 40 fs, and the peak intensity is I0 = 3 × 1013 W/cm2,
corresponding to an effective interaction strength of P = 2.9 for
every pulse. The initial rotational temperature of the molecules is
T = 8 K. In (a), the rotational energy for the slightly noisy case
seems to decrease after 16 pulses, but it actually starts to oscillate.
These oscillations could be seen if a train of more than 32 pulses was
used. Note the logarithmic scale in (b).

distribution and, in particular, its width in J space become
more dependent on the number of pulses.

Concluding, one can see clear signs of localization in
nitrogen molecules interacting with state-of-the-art laser pulse
trains. In particular, one can see a weakening of the localization
when introducing noise, which is an indication that the
Anderson mechanism is causing the localization.

V. DISCUSSION AND CONCLUSION

The arguments presented in this work show that the current
laser technology used for molecular alignment is sufficient
for inducing Anderson-like localization of kicked molecules
in the angular momentum space. In the experiment by Cryan
et al. [30], a train of eight pulses with a duration of 50 fs
and peak intensity of 36 TW/cm2 was used to induce a strong
molecular alignment. In this work we have shown that in the
very same experiment one could have induced Anderson-like
localization, if the pulse train period had not been chosen
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FIG. 11. (Color online) Population of the even rotational levels
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pulse duration is σ = 0.005trev ≈ 40 fs, and the peak intensity is I0 =
3 × 1013 W/cm2, corresponding to an effective interaction strength
of P = 2.9 for every pulse. The initial rotational temperature of the
molecules is T = 8 K.

as exactly the rotational revival time, but had been generally
detuned from it.

The main remaining challenge is not inducing Anderson
localization but observing it. We have presented and analyzed
different indicative signatures of the dynamical localization in
laser-kicked molecules. The hardest to observe, but the most
direct one, is the exponentially falling-down distribution of
the population of molecular rotational states. Our simulations
indicate that it will be necessary to measure the population
of several tens of rotational states with the population values
over a range of at least two or three orders of magnitude.
However, instead of measuring the population of all rotational
states, one may opt to monitor the population just of the ground
state and demonstrate that it has a finite survival probability.
For this purpose, much less accurate measurement of the
rotational state population is sufficient. Moreover, suppression
of the energy diffusion due to Anderson localization causes

molecules to stop absorbing the energy after the first few
pulses. This might be observed as an increased transparency
of the medium.

Measurements on molecular alignment induced by laser
pulse trains may provide the information needed for detecting
dynamical Anderson localization. The alignment is usually
quantified by the expectation value 〈cos2 θ〉(t), called the
alignment factor, and there are multiple techniques to measure
it [21–23]. Time analysis of the time-dependent alignment
signals as measured in the experiment by Cryan et al. [30]
could provide data on the population of rotational levels with
the help of reconstruction procedures similar to those described
in [39].

A different approach may rely on the measurement of the
time-average value of the alignment factor, also called the pop-
ulation alignment. For a molecule in thermal equilibrium, the
population alignment is exactly 1/3. On the other hand, under
diffusive conditions, the angular momentum J is “unlimitedly”
increasing by the periodic train of linearly polarized pulses,
while the projection quantum number M remains constant.
Under these conditions, the molecules are finally rotating in
vertical planes (containing the polarization vector), and the
time-averaged alignment factor asymptotically approaches the
value1/2. If the measured population alignment saturates at a
level below 0.5, this may be an indicator of the suppression of
chaotic diffusion due to Anderson localization.

The results presented here show that the goal of observing
Anderson-like localization in a molecular system can be
achieved by using proven laser technology. We hope that
this work will encourage corresponding experiments in the
near-future.
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