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Photoionization of hydrogen atoms by coherent intense high-frequency short laser pulses:
Direct propagation of electron wave packets on large spatial grids
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The time-dependent Schrödinger equation for the hydrogen atom and its interaction with coherent intense
high-frequency short laser pulses is solved numerically exactly by propagating single-electron wave packets.
Thereby, the wave function is followed in space and time for times longer than the pulse duration. Results
are explicitly shown for 3 and 10 fs pulses. Particular attention is paid to identifying the effect of dynamic
interference of photoelectrons emitted with the same kinetic energy at different times in the rising and falling
sides of the pulse as predicted by Demekhin and Cederbaum [Phys. Rev. Lett. 108, 253001 (2012)]. In order
to be able to see the dynamic interference pattern in the computed electron spectra, the photoelectron wave
packet has to be propagated over long distances. Clearly, the complex absorption potentials often employed
to compute the spectra of emitted particles cannot be used to detect dynamic interference. For the considered
high-frequency pulses of 3 and 10 fs duration, this requires enormously large spatial grids. The photoionization
and above-threshold ionization spectra presently computed are found to exhibit pronounced dynamic interference
patterns. The patterns are in very good agreement with previously published results on the photoionization spectra,
where available, which were computed using a completely different method, thus supporting the previously made
assumption that the above-threshold ionization processes are very weak for the considered pulse intensities and
high carrier frequency. The quiver motion in space and time of a free electron in strong laser pulses is also
investigated numerically. Finally, a discussion is presented of how fast the atom is ionized by an intense pulse.
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I. INTRODUCTION

Presently available light sources, like attosecond lasers [1],
high-order-harmonic generation sources [2,3], or free-electron
lasers [4,5], allow one to study the interaction of matter with
superintense coherent high-frequency ultrashort laser pulses.
Many new phenomena, which are not available or difficult to
observe with optical lasers operating in the nano- and picosec-
ond regimes, arise in experiments with such pulses [6–9]. One
of the main advantages here is that the high carrier frequencies
allow one to directly access a few well-separated highly excited
electronic states of a system. This is usually not possible with
optical pulses which trigger simultaneously a dense spectrum
of electronic states. Another advantage is that short pulses
allow one to study the initiated dynamics on the relaxation
time scale of highly excited states (typically femto- or even
attoseconds). The theoretical description of the processes trig-
gered by realistic pulses requires the propagation of electron
wave packets created by the pulse in real time and real space.

One of the phenomena arising due to the interaction of mat-
ter with coherent intense high-frequency short pulses is known
as dynamic interference [10]. There, the pulse ionizes a system
by the absorption of a single photon and, at the same time,
induces a time-dependent shift of the “dressed” ground state of
an atom relative to the continuum due to an ac Stark effect in the
electronic continuum. The energy shift adiabatically follows
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the pulse intensity envelope g2(t) [11]. Because of this time-
dependent energy shift, the photoelectrons emitted when the
pulse rises have the same kinetic energy as those emitted when
the pulse decreases. These two electron wave packets emitted
at different times superimpose and interfere, and the resulting
photoelectron spectrum exhibits a pronounced multipeak
pattern [10]. Similar dynamic interference of electrons was
also found in the above-threshold ionization (ATI) spectra of
model anions [12,13], in the sequential multiphoton ionization
of atoms exposed to optical [14] and high-frequency [15]
pulses, as well as in the resonant Auger effect of atoms in
free-electron-laser pulses [15].

In order to solve the time-dependent Schrödinger equation
for the hydrogen atom interacting with a pulse we used in our
recent work [10] a previously developed theoretical approach
[16–21]. In this approach the total wave function is expanded
in terms of the full set of the field-free stationary states of
the system. This leads to equations for the corresponding
population amplitudes which were then propagated in a large
but restricted relevant subset of these states. In particular, pos-
sible transitions between different electronic continuum states,
which are responsible for the ATI processes and contribute
also to the ponderomotive energy of an electron in the field,
were assumed to be weak and therefore neglected in [10]. In
order to verify this assumption and to have a complete account
of ponderomotive forces, we solve in the present work the
time-dependent Schrödinger equation for the same problem
numerically exactly. For this purpose we directly propagate
the single-electron wave packet during and briefly after the
pulse and extract from this wave packet the full spectrum of
the emitted electrons. This is a challenging problem by itself
(see below). To allow for the dynamic interference to take
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place, one needs to propagate the full photoelectron wave
packet in space and time without using complex absorption
potentials at the boundaries. For high-frequency pulses of even
a few femtoseconds duration the propagation requires spatial
grids of ∼104 bohr. We have found that cutting off even a small
tail of the wave packet appears to falsify the results.

To the best of our knowledge, no such explicit time-
dependent calculations on the propagation of the electron wave
packet are reported in the literature for smooth realistic pulses,
not even for a single-electron system. There is a series of
works [22–24] (see also references therein for earlier works
by the same authors) reporting calculations performed for
a smoothed Coulomb potential and short trapezoid-shaped
pulse envelopes using restricted spatial grids and a complex
absorption potential at the boundary. The pulses used consist
of a rapidly rising edge, a long plateau, and a rapidly falling
edge “to let the major fraction of photoelectrons be formed at
the pulse plateau.” We note that such a pulse cannot give rise to
dynamic interference by definition even if complex absorbing
potentials were not used. The calculations performed for ω =
30 eV [23,24] showed that the photoelectron peak position is
shifting to higher energies as the intensity of the field grows.
This finding already indicates that the binding energy of the
system decreases with the field strengths [23], which is, in our
opinion, due to the ac Stark effect in the electronic continuum.

In order to solve the technically challenging problem at
hand one needs sophisticated techniques. The required numeri-
cal algorithms are, however, already well established. It will be
demonstrated here that one is able at present to accurately de-
scribe on very large spatial grids the interaction of one electron
with intense pulses, where the absorption of multiple photons
makes the problem already quite complicated. This gives hope
that the problem of interaction of strong pulses with more
particles can also be accurately solved in the future. There are,
for instance, works reporting the efficient propagation of up to
three electrons (nine degrees of freedom) interacting with weak
fields [25,26] by the time-dependent close-coupling (TDCC)
method [27]. There are also weak-field calculations for two
electrons on relatively large (up to ∼103 bohr) radial grids [28],
but these are still ten times smaller than the grid sizes needed
here in the case of intense fields. Alternatively, the multicon-
figuration time-dependent Hartree (MCTDH) method [29,30]
could be used; this is known to be an optimal approach for
wave packet propagation in many degrees of freedom. Clearly,
this approach requires efficient propagation algorithms for
the underlying single-particle time-dependent functions [31].
When formulated for bosonic particles the method is known
as MCTDHB [32], and for fermions as MCTDHF [33–37].
In the present work which is on a single electron we utilize
a particular code implemented for the MCTDHF method [37]
which is based on the general formulation of the problem given
in [38] and has been slightly modified here to efficiently prop-
agate single-particle wave packets in the presence of strong
pulses. This code has also the potential to attack the problem
of propagation of several particles on large spatial grids.

II. THEORY

The total Hamiltonian for the hydrogen atom interacting
with the linearly polarized laser field is given by (atomic units

are used throughout)

Ĥ (t) = p̂2

2
− 1

r
+ ẑ E(t), (1)

where the electric field

E(t) = E0g(t) cos ωt (2)

is polarized along the z axis. Here, E0 is the field amplitude and
ω is the carrier frequency of the pulse with a time envelope g(t).
In order to solve the time-dependent Schrödinger equation
for the Hamiltonian (1) we use the numerical approach
implemented in the code [37] for efficiently propagating
single-electron orbitals. A few points of the approach, which
are of essential relevance to the present work, are outlined
below.

First, we make use of the axial symmetry along the z axis of
the problem and employ a partial-wave expansion of the single-
electron wave function �(r,t) in terms of spherical harmonics
Y�0,

�(r,t) =
∑

�

P�(r,t)

r
Y�0(θ ). (3)

By substituting the wave function (3) into the time-dependent
Schrödinger equation for the Hamiltonian (1), one straightfor-
wardly obtains the following system of coupled equations for
the radial harmonics P�(r,t):

i
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=

{
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∂2

∂r2
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+ �(� + 1)

2r2

}
P�(r,t)

+ rE0g(t) cos ωt

[√
(� + 1)2

(2� + 3)(2� + 1)
P�+1(r,t)

+
√

�2

(2� + 1)(2� − 1)
P�−1(r,t)

]
. (4)

The radial coordinate in the above system of coupled
one-dimensional equations (4) can further be represented by a
discrete-variable representation (DVR) basis set χi(r),

P�(r,t) =
∑

i

b�,i(t)χi(r). (5)

As usual, employing DVRs has the advantage that spatially
local operators possess a diagonal representation where a
function acquires the value on the respective DVR grid point
[39]. In order to avoid full matrices of the kinetic energy
operator, we use here the finite-element discrete-variable
representation (FEDVR) introduced in [40]. We thus divide the
radial coordinate space into a chosen number of finite elements.
In each finite element, the basis functions χi(r) are represented
by normalized Legendre interpolating polynomials

χi(r) = 1√
wi

∏
j �=i

r − rj

ri − rj

, (6)

constructed over a Gauss-Lobatto grid {ri} with weights {wi}.
Note that each basis function vanishes at all grid points except
one. Correspondingly, one arrives at a banded structure of
the kinetic energy matrix, which makes numerical solution of
Eqs. (4) faster, and, at the same time, we can use sufficiently
flexible basis sets adjustable to different physical problems.
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As a consequence of the DVR (5), the system of equa-
tions (4) can be straightforwardly transformed to a system of
equations for the evolution of the time-dependent expansion
coefficients b�,i(t) with known one-particle integrals. This sys-
tem was propagated using the short-iterative Lanczos method
employing the algorithm [41] to approximate the exponential
time-evolution operator. The initial ground state of the H atom
in the absence of the pulse (although analytically known) is
consistently obtained via imaginary-time propagation starting
from a guess function, which requires a negligible time as
compared to real-time propagation.

The final momentum distribution of the emitted photoelec-
trons was computed by Fourier-transforming the electron wave
packet �(r) = �(r,t = ∞) after the pulse has expired,

�(k) =
∫

�(r)e−ikrd3r. (7)

In order to exclude contributions to the final wave packet �(r)
from electrons remaining bound to the nucleus (i.e., from the
ground and Rydberg states), the inner part of the radial spatial
variable r was excluded from the transformation (7). Finally,
the kinetic energy spectrum σ (ε) of the emitted photoelectrons
is obtained by angular-averaging the momentum density
distribution as

σ (ε) = k

∫
|�(k)|2d
k (8)

and using that k = √
2ε.

As in our previous study [10], the present calculations were
performed for a Gaussian-shaped pulse with a time envelope
g(t) = e−t2/τ 2

and central frequency ω = 53.6057 eV, which is
40 eV above the ionization threshold of H. The electron wave
packets were propagated in the time interval of [−3τ, + 3τ ],
for which the field amplitude at the interval boundaries is
almost four orders of magnitude weaker than at the pulse
maximum (t = 0). Calculations were performed for two pulse
durations of τ = 3 fs and τ = 10 fs. The shorter pulses
but not the longer pulses were studied in our previous
work [10].

As will become evident below, the computed electron
spectra exhibit a clear sequence of ATI peaks located around
the multiphoton absorption energies εn

0 = nω − Vi . For the
largest field intensity considered here, the third ATI peak
located at ε4

0 = 4ω − Vi is about five orders of magnitude
weaker than the main photoionization peak located at ε1

0 =
ω − Vi (see the discussion around Fig. 2). Because of this
fact, we have decided to choose the parameters of the present
calculations such that the photoionization peak and the three
subsequent ATI peaks in the final electron energy spectra
are described accurately. For this purpose, we had to include
the � � 4 harmonics in the partial-wave expansion (3).

For the photon energy ω used, the third ATI peak is formed
by electrons with momentum k ∼ 3.85 a.u. Consequently, we
have chosen the size of the radial grid such that photoelectrons
with k < 4 a.u. do not hit the outward grid boundary during
the whole propagation time. During the τ = 3 fs pulse, the
photoelectrons with momentum k ∼ 4 a.u. may move off
the nucleus by Rmax = 6τk ∼ 3000 a.u., which was chosen
as the radial grid size. The latter was represented by 1000
equidistant finite elements of size 3 a.u. Each finite element was

covered by 15 Gauss-Labbato points. For the τ = 10 fs pulse,
the radial grid parameters were Rmax = 6τk ∼ 10 000 a.u.
represented by 3125 finite elements with the size of 3.2 a.u.,
and each finite element is covered by 16 Gauss-Labbato points.
The convergence of the solution with respect to the spatial grid
representation and integration time step has been ensured.

III. RESULTS AND DISCUSSION

A. Hydrogen atom in short high-frequency pulses

Figure 1 illustrates the time evolution of the total electron
wave packet computed for the hydrogen atom exposed to short
pulses of carrier frequency ω = 53.6057 eV. The upper panel
shows the results for the τ = 3 fs pulse and peak intensity of
I0 = 7 × 1016 W/cm2. Before the pulse arrives, the electron is
in the 1s ground state of H which is very close to the nucleus
(note the scale of the figure). At very early times, when the
pulse arrives, the part of the wave packet which will contribute
to the photoelectron spectrum is created around the nucleus and
starts to propagate outwards. Before the maximum of the pulse
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FIG. 1. (Color online) Time evolution of the radial electron
density (total electron wave packet |�(r,t)|2) computed for the
hydrogen atom exposed to Gaussian-shaped short pulses of carrier
frequency of ω = 53.6057 eV. Upper panel: The duration of the
pulse is τ = 3 fs, and the peak intensity I0 = 7 × 1016 W/cm2.
The wave packet shown for t = −9 fs (straight orange line near
the coordinate origin) is the ground-state wave packet. Note that the
final wave packet computed at t = 9 fs spreads out to about r ∼ 3000
a.u. Lower panel: The duration of the pulse is τ = 10 fs, and the
peak intensity I0 = 1.5 × 1016 W/cm2. The wave packet shown for
t = −30 fs is the ground-state wave packet. Note that the final wave
packet computed at t = 30 fs spreads out to about r ∼ 10 000 a.u.
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has arrived (the time 0 fs corresponds to the pulse maximum,
thick blue curve), the wave packet being continuously pumped
by the pulse does not possess a maximum. A maximum in
the radial electron density distribution starts to develop only
after the pulse maximum has arrived. For the wave packet
computed at t = 3 fs the maximum of the wave packet is
around r = 275 a.u.

As the pulse expires, the maximum becomes more and
more pronounced and it moves further outwards. At t = 6 fs
this maximum is around r = 525 a.u. In the final wave
packet computed at t = 3τ = 9 fs, the maximum is located
at about r = 750 a.u. This maximum is mainly responsible
for the photoionization peak at ε1

0 = ω − Vi in the final energy
spectrum computed via Eqs. (7) and (8). The weak humps seen
in the final wave packet at about r = 1150 a.u. and 1500 a.u.
are mainly formed by the photoelectrons contributing to the
first and the second ATI peaks in the final energy spectrum. The
lower panel of Fig. 1 depicts the time evolution of the electron
wave packet for the τ = 10 fs pulse and peak intensity of
I0 = 1.5 × 1016 W/cm2. The results are rather analogous to
those described above for the τ = 3 fs pulse except that the
time and the spatial scales are different. The detached electron
now reaches much longer distances and the calculation has
become even much more cumbersome.

The energy distributions of the electrons emitted during the
illumination of the hydrogen atom by coherent τ = 3 fs laser
pulses of different peak intensities are depicted in Fig. 2. For
transparency of the figure, the energy range is restricted to
show the photoionization peak and the two subsequent ATI
peaks (note the logarithmic scale on the vertical axis). One
can see that, as the field strength increases from the bottom to
the top of the figure, the photoionization peak and both ATI
peaks are systematically shifted to higher electron energies.
For reference, the field-free multiphoton absorption energy
positions εn

0 = nω − Vi are indicated by vertical lines.
All peaks in the electron energy distribution exhibit pro-

nounced multiple-peak structures which are due to dynamic
interference [10]. This fact is demonstrated in the insets in
the uppermost panel for the largest intensity considered here.
The left inset shows the photoionization peak on an enlarged
scale, whereas the middle and right insets enlarge the first
and the second ATI peaks, respectively. As can be seen from
these insets, the dynamic interference patterns are qualitatively
similar for the photoionization peak and for the two subsequent
ATI peaks, each possessing three well-resolved oscillations of
the intensity (the vertical axis in all insets is in a logarithmic
scale). The maximum of the intensity of each of these peaks
is, however, very different: for the photoionization peak it
amounts to 16.9 a.u.; for the first, second, and third ATI peaks
(the last is not shown in the figure), the maximum amounts to
0.31, 0.0046, and 0.00013 a.u., respectively. Clearly, the ATI
peaks are weak for the short pulses of the considered high
frequency and intensities. Using the results of Refs. [42,43]
one can conclude from the ATI spectra shown in Fig. 2 that
the present dynamics of the photoionization is governed by
a single Floquet quasienergy resonance state. Following the
formalism developed in Ref. [43], the computed ratios of the
intensities of the ATI peaks provide estimates for the branching
ratios of the partial widths of this resonance in the present
problem.
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FIG. 2. Computed energy distributions of the emitted photoelec-
trons after exposure of the H atom to coherent laser pulses of τ = 3 fs
duration, ω = 53.6057 eV carrier frequency, and different peak
intensities (indicated in each panel). Shown are the photoionization
peak and the two subsequent ATI peaks produced by multiphoton
absorption from the ground state (the next ATI peaks are weak and are
not shown). The field-free multiphoton absorption energy positions
εn

0 = nω − Vi are indicated by vertical gray lines. The insets in the
uppermost panel illustrate on an enlarged scale the similarity between
the dynamic interference patterns in the photoionization and ATI
spectra (see also the text for details).

In Fig. 3, we compare the photoionization spectra computed
in the present work by direct propagation of the electron wave
packets with those published in our previous work [10] for
the same τ = 3 fs pulses. One can see that the presently
computed spectra (right panel) are in a very good agreement
with the spectra computed by a totally different theoretical
approach (left panel). In the latter approach the amplitudes
of the populations of a restricted relevant subset of stationary
states of the field-free system are propagated (see also above).
Indeed, for every peak intensity indicated in the figure, each
pair of computed photoionization spectra possesses an equal
number of oscillations caused by the dynamic interference,
and the energy positions and relative heights of the multiple
peak structures are very similar.

As shown above and discussed in the preceding section, the
spatial grid required to directly propagate wave packets created
by the longer τ = 10 fs pulses is much larger than for the
τ = 3 fs pulses. Although the propagation time required is also
much longer (6τ = 60 fs) for the longer pulse, the calculations
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FIG. 3. Photoionization spectra of the hydrogen atom exposed to
Gaussian-shaped pulses of τ = 3 fs duration, carrier frequency of
ω = 53.6057 eV, and different peak intensities (indicated near each
spectrum) computed by two different theoretical approaches. Left
panel: by expanding the total wave function in the field-free stationary
states (results from Ref. [10]). Right panel: by direct propagation of
electron wave packet (present results, first peaks shown in Fig. 2).

are still feasible by the method and code of Ref. [37]. In
Fig. 4 we compare the photoionization spectra of H computed
for τ = 10 fs pulses at different peak intensities by the two
different approaches, i.e., by the present approach (right panel)
and by the method of our previous work [10] (left panel). The
results of the latter calculations are also new and not available
in Ref. [10]. From Fig. 4 one can see that the numerically exact
results of the direct wave packet propagation again agree very
well with the spectra computed by our previous approach [10].

It is well known [44,45] that in strong laser fields each elec-
tronic state experiences an ac Stark shift, including the ground
state, Rydberg levels, and electron continuum states. Since
an electron in the continuum interacting with an oscillating
field cannot have an energy smaller than the average energy
of its quiver motion (known as the ponderomotive energy),
one argues that a strong field shifts the ionization threshold
by this ponderomotive energy. There is a common belief [44]
that in the high-frequency limit, when the carrier frequency is
much larger than the field-free ionization potential of a system
(ω � Vi), each electronic state acquires the same ac Stark shift
given by the universal formula for the ponderomotive potential
Up = E2

0 /4ω2 (all quantities in atomic units). For this reason,
at all intensities during the pulse the ac Stark shifts of the
ground state and of the ionization threshold are expected to
compensate each other [44]. In turn, this would of course
eliminate the dynamic interference effects as these vanish if
the shift in the spectrum vanishes [10].
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FIG. 4. The same as in Fig. 3 but for τ = 10 fs pulses. The spectra
shown in the left panel are not available in Ref. [10], but are computed
here by the method of this reference.

The results obtained and the very good agreement between
the spectra in Figs. 3 and 4 computed by two very different
approaches demonstrate that the above qualitative argumen-
tation based on simple general assumptions is not correct.
The present numerically exact calculations clearly show that
the ac Stark shift of the ground state is not compensated
by the ponderomotive shift of the ionization threshold. Such
a compensation is probably possible only for very high
carrier frequencies at which both shifts vanish anyway, since
Up

ω→∞−−−→ 0. It is hence clear now that if the parameters of
the pulse, i.e., shape, intensity, and frequency, are such that
the total photoelectron spectrum experiences a shift, this shift
results from the fact that these two competing effects do not
compensate each other, and then the dynamic interference
predicted in [10] takes place.

In spite of the very good agreement, a slight quantitative
disagreement between the results of the two sets of calculations
is, however, evident from Figs. 3 and 4 and needs to be
discussed here. It is due to the incompleteness of the basis
set of stationary field-free states used to expand the total wave
function in [10]. This expansion was restricted to the ground
state, Rydberg states n�, and photoionization εp continuum
states. The convergence of the solution with respect to the
included Rydberg states of different n and � was ensured there.
However, transitions between continuum states ε�, which
are responsible for the formation of ATI peaks in the final
energy spectrum of the emitted electrons, were neglected in
our previous calculations [10]. These transitions are naturally
included in the present numerically exact calculations. We
would like to remind the reader that even for the largest
field intensity considered here, already the first ATI peak
is almost two orders of magnitude weaker than the main
photoionization peak. These weak ATI processes, neglected
in [10], are responsible for the slight disagreement between
the results of the two sets of calculations.
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B. Free-electron wave packet in short high-frequency pulses

In order to visualize how the free-electron wave packet
expands in short high-frequency pulses and to have a stringent
check of the quality of the present numerical calculations, let
us now investigate the motion of a free electron in strong laser
pulses. In the high-frequency limit [44], it is expected that a
free electron gains the ponderomotive energy Up, which is
the average energy of its quiver motion induced by a strong
oscillating external field. In order to check this prediction in the
case of short pulses, we start with the electronic wave packet
given by the 1s ground state of hydrogen, and propagate this
wave packet without the attractive Coulomb potential exerted
by the nucleus. Without the pulse, this wave packet expands in
r space as time proceeds, but it remains unchanged in k space.
In the presence of a pulse, the momentum distribution of the
electron wave packet changes as well, and it stabilizes as the
pulse expires. As a result, the kinetic energy of the wave packet
changes during the pulse. In addition to that, in the presence of
a pulse the electron wave packet also acquires potential energy
due to its interaction with the field, which is a time-dependent
quantity too.

In the numerical calculation, we used a Gaussian-shaped
pulse of τ = 3 fs duration, ω = 53.6057 eV frequency, and
peak intensity I0 = 7 × 1016 W/cm2. At t = −3τ = −9 fs,
the initial wave packet is set to the H(1s) ground-state function,
which is then propagated in the presence of the pulse to
t = 3τ = 9 fs. During the whole propagation time, we have
computed the expectation value of the total energy

〈Etot(t)〉 = 〈�(r,t)|p̂2/2 + ẑ E(t)|�(r,t)〉, (9)

which includes contributions from both kinetic and potential
energy due to interaction with the field. The instantaneous
value of 〈Etot(t)〉 was computed at 50 time points for each
optical cycle, and then used to obtain the cycle-averaged
expectation value 〈Etot(t)〉.

The expectation value of the total energy computed numer-
ically as described above for the free-electron wave packet is
depicted in Fig. 5 as a function of time. The instantaneous
value 〈Etot(t)〉 Eq. (9) is shown by the thin solid curve in blue.
The cycle-averaged expectation value 〈Etot(t)〉 is depicted in
Fig. 5 by open circles (each circle corresponds to an individual
optical cycle). Clearly, the cycle-averaged total energy of a
free electron increases as the pulse arrives, and it decreases
again as the pulse expires. The final total energy after the
pulse is off is equal to the initial total energy of the electronic
wave packet before the pulse was on. Moreover, the time
evolution of the cycle-averaged total energy follows the pulse
intensity envelope g2(t), which is also shown in the figure by
a thick solid curve in red to guide the eye. Importantly, the
maximal shift of the cycle-averaged total energy during the
pulse is about ∼3.5 eV, and it coincides with the value of
Up = E2

0 /4ω2 ≈ 3.5 eV expected in the high-frequency limit
for a field with an intensity the same as that at the pulse
maximum [44]. This fact clearly illustrates the accuracy of the
present numerical calculations.

The ponderomotive energy in Fig. 5 computed for a
free-electron wave packet (the field-free kinetic energy of
13.6057 eV must be subtracted from the plot) is expected
to be larger than that for an electron which is moving in the
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FIG. 5. (Color online) Time evolutions of the expectation values
of the energy of a free-electron wave packet. Initially, before the pulse
arrived, the electron was in a wave packet like that of the ground state
of the hydrogen atom. The electron is then exposed to a τ = 3 fs
pulse of frequency ω = 53.6057 eV and peak intensity of I0 =
7 × 1016 W/cm2. Blue thin solid curve: instantaneous expectation
value of the total energy 〈Etot(t)〉 Eq. (9), including the kinetic
and potential energies. Open circles: cycle-averaged expectation
value of the total energy 〈Etot(t)〉. Each symbol represents the value
obtained for an individual optical cycle. For comparison, the pulse
intensity envelope g2(t) is also shown on the corresponding scale (red
thick solid curve). Note that the cycle-averaged total energy gained
during the pulse coincides with the ponderomotive potential Up(t) =
E2

0 g2(t)/4ω2 dictated by the pulse envelope, as expected in the
high-frequency limit. For instance, the maximal cycle-averaged total
energy gained is ∼3.5 eV at t = 0, and Up(0) = 3.5 eV at the pulse
maximum.

field of the nucleus because of the attraction it experiences.
This is only a qualitative argument because in the presence of
the attractive Coulomb potential, the “ponderomotive motion”
of the photoelectron will be a part of the entire photoionization
process, and its contribution to the kinetic energy of the emitted
photoelectron will not be separable.

C. How fast is the atom ionized by an intense pulse?

As a final point, we would like to discuss which fraction of
the electronic wave packet remains bound to the nucleus after
the pulse has expired. As one can see from Fig. 1, a part of the
wave packet indeed remains bound to the nucleus (mainly in
the ground state of the atom). How can the time evolution of
the population of the ground state be estimated? How fast
is the hole created during ionization? In order to answer
these relevant questions, we turn to our analytical model
developed in [10], which has been proven here to be reliable.
As explicitly demonstrated there, the strong pulse induces a
time-dependent ionization rate �ph(t), which describes the
losses of the population of the ground state by ionization into
all final continuum states. The ionization rate can be computed
as the product of the total photoionization cross section at the
chosen photon energy σ tot

ph(ω) and the photon flux given by
I (t)/ω [46,47]:

�ph(t) = σ tot
ph I (t)/ω. (10)
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The rate (10) can further be factorized as �ph(t) = �g2(t).
The rate follows the pulse intensity envelope g2(t) and
is strongest at the pulse maximum. The time-independent
parameter explicitly reads � = 2π |dωE0/2|2 [17], where
dω is the dipole transition matrix element for the ioniza-
tion of the ground state computed at the chosen photon
energy ω.

With the help of this single parameter, one can compute the
time evolution of the population of the ground state via the
simple analytical expression [10]

|aI (t)|2 = e−�
∫ t

−∞ g2(t ′)dt ′ . (11)

This analytical result was found to be in excellent agreement
with the results of the full numerical calculations [10]. For the
Gaussian-shaped pulses considered here, the final population
remaining in the ground state after the pulse has expired can
be estimated analytically as |aI (∞)|2 = e−�τ

√
π/2. We now

can try to introduce the time T needed for the pulse to create
the hole as follows. A pulse can ionize only a fraction of all
atoms, which is given by Nh(∞) = 1 − e−�

∫ ∞
−∞ g2(t)dt . When

the pulse is over, this fraction defines the hole the pulse has
created. At any time t , the population of the hole is Nh(t) =
1 − e−�

∫ t

−∞ g2(t ′)dt ′ . Following the general concept of a lifetime,
we define T as the time at which the not yet populated portion
of the hole Nh(∞) − Nh(T ) is 1/e of the final population
of the hole Nh(∞), i.e., [Nh(∞) − Nh(T )]/Nh(∞) = 1/e. It
immediately follows that

∫ T

−∞
g2(t)dt = 1 − ln[1 + (e − 1) e−�

∫ ∞
−∞ g2(t)dt ]

�
, (12)

from which T is easily computed.
For strong pulses which ionize essentially the whole

ensemble of atoms [i.e., Nh(∞) � 1], condition (12) simplifies
to

∫ T

−∞ g2(t)dt � 1/�, which is a very appealing result.
The simple analytical expressions (10)–(12) allow one to
compute the fraction of atoms ionized during the pulse and
to estimate the time T needed for the pulse to create the
hole. Since the beginning of the pulse is difficult to define,
it is convenient to consider this time T relative to the pulse
maximum which is in our case at t = 0. The time T can thus
be negative. For the τ = 3 fs Gaussian pulses used in this work,
for instance, T is equal to +0.27, −0.19, −0.59, and −0.92 fs
for the peak intensities 1 × 1016 W/cm2 to 7 × 1016 W/cm2

of the spectra depicted in Fig. 2, respectively.

IV. CONCLUSIONS

The time-dependent Schrödinger equation for the hydrogen
atom exposed to coherent intense high-frequency short laser
pulses is solved numerically exactly by directly propagating
electron wave packets in space and time. The propagation is
made without employing a complex absorption potential at
the spatial grid boundary, and thus requires the use of very
large grids even for the presently considered short pulses.
In order to solve this technically challenging problem we
make use of the efficient code developed in [37], which

was additionally optimized for the presently studied problem
of an electron in intense pulses. The presently computed
electron energy spectra consist of a main photoionization
peak and a sequence of above-threshold ionization peaks
separated by the photon energy ω. Each ATI peak exhibits a
pronounced interference pattern which resembles the multiple-
peak structure observed in the photoionization peak which is
due to dynamic interference [10].

For the main photoionization peak, the present numerically
exact calculations reproduce the results of our previous
calculations [10] performed by a conceptually very different
theoretical approach [16–21]. The agreement found makes
clear that the assumptions made in the previous calculations
are valid. The explicit findings of the present calculations allow
us to conclude that the individual ac Stark shifts of the ground
state and of the ionization threshold are far from compensating
each other, as one would naively assume in the high-frequency
strong-field limit [44]. The ac Stark effect in the electronic
continuum as well as the dynamic interference effect are found
to be rather pronounced. The present numerical results are
analyzed with the help of the analytical model developed
in [10], which allows one to compute the fraction of atoms
ionized during the pulse and to estimate the time needed for
the pulse to create the hole.

In order to visualize how the free-electron wave packet
expands in space in short high-frequency pulses and to have
a stringent check of the quality of the present numerical
calculations, we have also studied the evolution of the wave
packet of an electron which is exposed to the pulse, but
does not interact with the nucleus. Our numerical results
confirm that in the presence of strong fields, the free electron
acquires additional energy which when cycle averaged can
be estimated by the value of the ponderomotive potential
Up(t) = E2

0 g2(t)/4ω2 dictated by the pulse envelope and
which can be considered as the upper limit for the implicit
ponderomotive energy of an electron moving in the field of
the nucleus. We suggest that in a real system the ponderomotive
motion of the photoelectron in the continuum is part of the
entire photoionization process, and in strong short pulses its
contribution to the energy of the emitted photoelectron is not
separable from other effects.

We would like to conclude with the following remark. In
the course of the propagation during the pulse, the electron
wave packet spreads over a large spatial region (see Fig. 1).
The parts of the total wave packet emitted on the rising and
falling sides of the pulse are always separated in r space
and do not meet, as one may naively expect for interference
to occur. Nevertheless, these two parts of the wave packet
always overlap in k space, giving rise to dynamic interference.
To measure this interference, one should not perturb by
measurement the evolution of the wave packet in a rather large
portion of space.
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