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Local dynamics in high-order-harmonic generation using Bohmian trajectories
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We investigate high-order-harmonic generation from a Bohmian-mechanical perspective and find that the
innermost part of the core, represented by a single Bohmian trajectory, leads to the main contributions to
the high-harmonic spectra. Using time-frequency analysis, we associate this central Bohmian trajectory to an
ensemble of unbound classical trajectories leaving and returning to the core, in agreement with the three-step
model. In the Bohmian scenario, this physical picture builds up nonlocally near the core via the quantum
mechanical phase of the wave function. This implies that the flow of the wave function far from the core alters the
central Bohmian trajectory. We also show how this phase degrades in time for the peripheral Bohmian trajectories
as they leave the core region.
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I. INTRODUCTION

Over the past two decades, the concept of trajectories has
been widely employed in strong-field physics. This concept
was introduced as early as 1993, together with the physical
picture known as the “three-step model” (TSM) [1,2]. Accord-
ing to this picture, strong-field phenomena are the result of the
laser-induced recollision or recombination of an electron with
its parent ion. The electron in question is freed by tunneling
or multiphoton ionization, propagates in the continuum, and
is driven by the field towards the core. If recombination
occurs, high-order-harmonic generation (HHG) takes place,
while rescattering leads to above-threshold ionization (ATI)
or nonsequential double and multiple ionization (NSDI and
NSMI). This physical picture has become the cornerstone
for describing these phenomena and has demonstrated high
predictive power, including the plateau and the cutoff in HHG
and ATI. This allows a wide range of applications of HHG such
as subfemtosecond pulses [3–5] and the attosecond imaging
of matter [6–8] (for reviews, see Refs. [9–12]).

Initially, the TSM was proposed in a classical framework.
In these early models, an ensemble of electrons released in
the continuum at different times within a field cycle was used
in order to mimic the behavior of the electronic wave packet.
Depending on this time, the kinetic energy of each electron
upon return would be different. The maximal energy upon
return gave the cutoff energy observed in experiments and in
ab initio computations, in which the time-dependent
Schrödinger equation (TDSE) has been solved numerically
[13]. Soon thereafter, the above-mentioned physical picture
was extracted from the expectation value of the dipole operator
computed in the strong-field approximation (SFA) [14]. In
the SFA, the time-dependent wave function is approximated
by the ground state and the continuum, which is taken as
a superposition of field-dressed plane waves. The electron
trajectories associated with the three-step model are then
extracted from the phase of the wave function using the
steepest descent method. This has led to the concept of
“quantum orbits,” which is widespread in the strong-field
community [15]. Furthermore, in recent years other orbit-
based approaches have been employed in the strong-field
context, such as the Volkov-eikonal approximation [16,17],

the Coulomb corrected strong-field approximation [18–20],
the adiabatic approximation [21–23], the Herman-Kluk prop-
agator [24], and the coupled coherent states method [25].

It is also well known that “cleaner” HHG spectra, with a
large plateau and a well-defined cutoff, are obtained from the
expectation value of the dipole acceleration a(t) = 〈�(t)| −
∇V |�(t)〉, rather than from the dipole length in TDSE
simulations [26,27]. The dipole acceleration probes regions
near the core, while the dipole length emphasizes regions
closer to the integration boundaries [27]. This suggests that
regions near the core, where the overlap between continuum
and bound dynamics is likely to occur, are important to HHG.
However, a legitimate question is whether one can single out a
specific region in the core as being the most relevant to HHG.
Apart from that, one may ask how the above-stated overlap
relates to the physical picture propagated by the TSM.

In this article, we investigate HHG using Bohmian me-
chanics [28,29]. Bohmian trajectories are directly extracted
from the TDSE and act as “tracer particles;” i.e., they map the
probability density flow in configuration space associated with
the time-dependent wave function. For that reason, both the
time-dependent laser field and the binding potential are fully
incorporated. Recently, Bohmian mechanics has been applied
to strong-field physics at descriptive and interpretational levels
[30–33] and has served as a source for numerical algo-
rithms [33–35]. These papers essentially follow the traditional
scheme of considering a set of Bohmian trajectories and
comparing their statistics with the corresponding quantum
results. Here, in contrast, we employ individual Bohmian
trajectories in order to probe different regions in configuration
space. Using a simplified, one-dimensional model, we show
that (i) the Bohmian trajectory located in the innermost region
of the core, in the vicinity of x = 0, leads to high-order
harmonic spectra with a plateau and a cutoff; (ii) this innermost
trajectory may be associated with an ensemble of classical
trajectories of electrons returning to their parent ion, according
to the predictions of the TSM; and (iii) in the Bohmian
scenario, the picture related to the TSM builds up nonlocally
via the phase of the wave function. Any alterations in the flow
of the wave function far from the core region will influence the
central trajectory according to what is expected from the TSM.
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This will be exemplified by employing long- and short-range
potentials for which the core region is essentially the same,
but for which the wave function propagation outside the core
changes considerably.

This work is organized as follows. In Sec. II, we provide
the necessary theoretical background in order to under-
stand the subsequent results. This includes brief discussions
on Bohmian trajectories (Sec. II B) and classical-ensemble
models (Sec. II C). We also provide the windowed Fourier
transforms employed to probe the phase of the wave function
and of the central trajectory (Sec. II D). In Sec. III, we present
the outcome of our computations. We commence by discussing
the Fourier spectra from the central trajectory, in comparison
to the TDSE (Sec. III A), and, subsequently, we analyze how
this trajectory relates to those predicted in the three-step model
(Sec. III B). Finally, in Sec. IV, we state our conclusions.

II. BACKGROUND

A. Model

In this work, we solve the TDSE in one spatial dimension.
For linearly polarized fields, this suffices for a qualitative
description of the system dynamics. We employ the length
gauge and atomic units throughout. The time-dependent
Hamiltonian is given by

H = − 1
2 ∇2 + V (x) − xE(t), (1)

where E(t) denotes the driving field and V (x) the binding
potential (note that the minus sign in the last term arises from
the electron charge: in atomic units, e = −1).

The atomic potential V (x) reads as

V (x) = − 1√
x2 + 1

f (x), (2)

where f (x) is a function that will determine the range of
V (x). If f (x) = 1 throughout, V (x) is a long-range potential.
If, however,

f (x) =

⎧⎪⎨
⎪⎩

1, |x| < a0

cos7
(

π
2

|x|−a0

L−a0

)
, a0 � |x| � L

0, |x| > L

, (3)

the tail of V (x) is truncated. Here, the parameters a0 and L

have been chosen such that the core region is left practically
unaltered, but the long tail of the potential is removed. We refer
to the long- and short-range potentials as Vsc(x) and Vtr (x),
respectively. For the parameters employed in this work, V (x)
supports several bound states. The ground-state energy is given
by ε0 = −0.66995 a.u.

The field is chosen to be a flat-top pulse E(t) =
E0g(t) sin(ωt) of frequency ω, with

g(t) =

⎧⎪⎨
⎪⎩

(t/τ0), 0 � t < τon

1, τon � t < τoff

1 − (t − τoff)/τon, τoff � t � τf

, (4)

turned on and off in 2.25 cycles, i.e., τon = 2.25τ0 and
τoff = (2.25 + N )τ0, where τ0 = 2π/ω is the field cycle
and τf = τoff + 2.25τ0. Between turn on and turn off, we
consider N = 10.

The time-dependent wave function �(x,t) is then obtained
by solving the time-dependent Schrödinger equation

i
∂�(x,t)

∂t
= H�(x,t), (5)

using the the fast Fourier transform (FFT) technique. The
system is taken to be initially in its ground state, i.e., �(x,0) =
φ0(x). For details on our method, see Ref. [36].

The expectation value of the dipole acceleration operator is
computed as

a(t) = −〈�|dV (x)/dx|�〉. (6)

B. Bohmian trajectories

In order to construct the Bohmian trajectories, first
the time-dependent wave function is written as �(x,t) =
ρ1/2(x,t)eiS(x,t), with the probability density ρ and the phase
S being real-valued functions of space and time. This leads to
the coupled differential equations,

∂ρ

∂t
+ ∇ · J = 0, (7)

where J = ρ∇S is the usual quantum probability current
density, and

∂S

∂t
+ (∇S)2

2
+ V + Q = 0, (8)

where

Q(x,t) = −1

2

∇2ρ1/2

ρ1/2
= −1

4

[∇2ρ

ρ
− 1

2

(∇ρ

ρ

)2]
. (9)

Equation (7) is known as the continuity equation, and Eq. (8)
is known as the quantum Hamilton-Jacobi equation. In Eq. (8),
Q(x,t) is the quantum potential and S is the equivalent of the
classical action.

Bohmian trajectories are obtained [37] after integrating the
(also real-valued) guidance equation

ẋ = ∇S = J
ρ

= 1

2i

(
�∗∇� − �∇�∗

|�|2
)

, (10)

at each time step, i.e., once �(x,t) is known.

C. Classical-ensemble computations

In order to compare Bohmian and classical trajectories,
we solve the classical equations of motion of an ensemble of
electrons, which are released in the laser field at a time t0. For
each electron,

ẍ = F (x,t), (11)

both in the presence and in the absence of the soft-core
potential. In the former and the latter cases, F (x,t) = E(t) −
dV (x)/dx and F (x,t) = E(t), respectively. The initial release
time t0 is then varied within a monochromatic field given by
E(t) with g(t) = 1 in Eq. (4). Only a subset of the trajectories
obtained will return to the core, depending on the time at which
the electrons are released into the field. For a monochromatic
field this will occur only for times t0 > 0.25τ0 + nτ0/2, i.e.,
after the peak-field times, and up to t0 � 0.4τ0 + nτ0/2, i.e.,
somewhat before the crossing.
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If the potential is absent, integrating Eq. (11) once and twice
gives

ẋ = E0

ω
[cos(ωt0) − cos(ωt)] + v0 (12)

and

x = E0

ω2
((t − t0) cos(ωt0) − sin(ωt) + sin(ωt0))

+ v0(t − t0) + x0, (13)

respectively. In the above-stated equations, the initial position
and velocity of the electron are x0 and v0, respectively. In this
case, we choose v0 = 0 and x0 = 0.

If the soft-core potential is included, Eq. (11) is rewritten
as the coupled first-order differential equations,

v = ẋ (14)

and

v̇ = E0 sin(ωt) − ∇V (x), (15)

which are solved employing the fourth-order Runge-Kutta
method. Note, however, that solving these equations with
the same initial conditions as in the absence of the binding
potential, that is, with x0 = 0 and v0 = 0, leads to a series
of bound trajectories whose kinetic energy is very low and
which are not appropriate for the comparison one is willing
to perform. Hence, we have placed the electrons initially at
x0 = 0 but with velocity v0 such that v2

0/2 = −V (x0). This
gives v0 = ±√

2 for the potentials employed in this work.
These trajectories will exhibit unbound dynamics. Similar
dynamics may be obtained by assuming that the electrons in the
ensemble leave with vanishing velocity v0 = 0, but are initially
located at a turning point, i.e., at x0 such that F (x0,t0) = 0.

D. Windowed Fourier transforms

Here, we calculate the standard Fourier spectrum of the
Bohmian trajectories xB(t) and of the dipole acceleration a(t),
which is given by

I (
) =
∣∣∣∣
∫

h(t)ei
tdt

∣∣∣∣
2

, (16)

where h(t) generically denotes either xB(t) or a(t) and the
integral is the standard Fourier transform aF (
). Apart from
that, we also employ windowed Fourier transforms, in the form
of

aG(
,t ′) =
∫

h(t) exp[−(t − t ′)2/(2σ 2)] exp(i
t)dt, (17)

to introduce temporal resolution in the HHG spectra.
Equation (17) is known as the Gabor transform and has
been widely used to extract temporal information from the
TDSE (see, e.g., Refs. [38–41]; or for recent references
Refs. [42–45]). If σ → ∞ the standard Fourier transform is
recovered and all temporal information is lost.

III. RESULTS

A. High-harmonic spectra

We first study the different subsets of Bohmian trajectories
and their power spectra, displayed in Fig. 1. These trajectories
illustrate the flow of the probability density in configuration
space. Throughout, the driving-field parameters are chosen
such that the system is in the tunneling regime. Unless
otherwise stated, we consider the long-range softcore potential
Vsc(x).

In Fig. 1(a), one may identify two distinct subsets of
Bohmian trajectories: those that oscillate within the core region
and those that oscillate far from the core until they eventually
leave. In Fig. 1(b), we display the spectra obtained from the
central Bohmian trajectory, i.e., that starting at x(0) = 0, and
from a trajectory starting at a few atomic units from the core
[x(0) = 1.8 a.u.]. The spectrum of the peripheral trajectory
consists of a smooth, monotonically decaying background and
a small signature around the fundamental, 
 = ω, with no
harmonic peaks. In contrast, the central Bohmian trajectory
[x(0) = 0] gives us a clear high-order-harmonic spectrum
with a large plateau followed by a sharp cutoff located at
|ε0| + 3.17Up. As the initial condition x(0) of a specific
Bohmian trajectory gets further away from x = 0, not only
does the power spectrum of the corresponding trajectory
lose the plateau and the cutoff, but it also gains intensity.
Hence, if an average of Bohmian trajectories across the whole
configuration space is taken in order to compute the spectra,
both the plateau and the cutoff will be obscured. This problem
is also encountered when computing HHG spectra using the
length form of the dipole operator and it is overcome either by
using the dipole acceleration or numerical filters in frequency
space. The former emphasizes the core region, and the latter
change the flow of the wave function in real time by forcing the
probability density to return to the core. For comparison, the
power spectrum from the dipole acceleration obtained from
the TDSE is displayed in Fig. 1(d).

In Fig. 1(c), we have a closer look at the dipole acceleration
and the central Bohmian trajectory. The figure shows that
both not only follow the field but also exhibit a series of
high-frequency oscillations. These oscillations are not present
in peripheral Bohmian trajectories. A noteworthy feature is
that, on average, the distance in time between adjacent peaks
is around 0.03 times the length of a cycle. This corresponds
to a typical frequency of about 35ω, which is roughly the
cutoff frequency. Similar oscillations have also been identified
in the dipole acceleration, both in TDSE computations [46]
and by employing other orbit-based methods [22,47–49].
In fact, early studies have identified these oscillations as
paramount for obtaining a plateau and a cutoff, together
with the strong localization of the dipole acceleration in
configuration space [46]. They have been associated with
the interference between the outgoing and incoming parts
of the electronic wave packet, which overlap near the core.
Recently, similar arguments have been put across using the
adiabatic approximation [22,23]. Therein, it has been shown
that part of the electronic wave function exhibits a highly
oscillating phase. This phase may be associated with the
classical action of an electron leaving and returning to the
core, and contributes to the action S(x,t) defining the Bohmian
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FIG. 1. (Color online) (a) Set of Bohmian trajectories obtained using a long-range soft-core potential Vsc(x) in a flat-top pulse with peak field
strength E0 = 0.075 a.u. and frequency ω = 0.057 a.u. (Keldysh parameter γ = 0.88), with initial conditions ranging from x(0) = −3 a.u.
to x(0) = 3 a.u. (b) High-order-harmonic spectra from the central Bohmian trajectory xc(t) [x(0) = 0] (solid line, red online) and from a
peripheral Bohmian trajectory starting at x(0) = 1.8 a.u. (dotted line, blue online). (c) Blowup of the central trajectory over two cycles of
the laser field (solid line, red online), together with the expectation value of the dipole acceleration computed from the TDSE (black dashed
line); note that, formally, the central Bohmian trajectory xc(t) is equivalent to the time-dependent dipole length computed using only the
innermost part of the TDSE wave function. (d) Power spectra from the dipole acceleration computed from the TDSE, plotted using the same
scale as in panel (b) to facilitate a direct comparison. The cutoff frequency according to the three-step model is indicated by the arrows in
panels (b) and (d).

trajectories. Furthermore, studies employing the Herman-Kluk
propagator [47,48] and the coupled coherent states method
[49] have found that this highly oscillating structure is related
to the quantum interference between different types of electron
trajectories returning to the core.

B. Time-frequency analysis

Next, we address the question of how the Bohmian
trajectories compare to the classical trajectories of an electron
in a strong laser field. Furthermore, we have a closer look at
the phase of the time-dependent wave function. Specifically,
we assess whether information may be transferred nonlocally
via this phase to the central trajectory by altering the flow of
the wave function far from the core.

With that purpose in mind, we truncate the long-range
potential according to Eq. (3) so that the core region is kept
practically unaltered; i.e., its field-free eigenerergies are very
close to those of the long-range potential, but the long-range
tail of the soft-core potential is eliminated. In Table I, we give
the bound-state energies for the two potentials.

For the sake of clarity, in Fig. 2 we display the probability
density flow for both potentials. The figure shows that the
outward flow is larger for the short-range potential Vtr (x)
[Fig. 2(b)] compared to its long-range counterpart Vsc(x)
[Fig. 2(a)]. This is due to the fact that the Coulomb tail restricts
this flow. This confinement is absent in the short-range case.

In order to extract such trajectories from the phase of the
wave function, we construct time-frequency maps employing
the windowed Fourier transform (17). Throughout, we use the
same window function as in Ref. [43], i.e., σ = 1/(3ω). In
Fig. 3, we show these time frequency maps for the central and
the peripheral Bohmian trajectories highlighted in Fig. 2. The

TABLE I. Eigenvalues for the long-range soft-core and the
truncated soft-core potential, for which a0 = 5.0 and L = 50. Note
that, in principle, the number of eigenstates supported by the long-
range potential is infinite; in our calculations, though, we obtain a
finite number of them because of the boundaries of the grid we are
using to solve the TDSE. All quantities are given in a.u.

n Untruncated Truncated

0 −0.66995 −0.66995
1 −0.27508 −0.27503
2 −0.15158 −0.15059
3 −0.09276 −0.08714
4 −0.06358 −0.05013
5 −0.04552 −0.02390
6 −0.03462 −0.00754
...

...
14 −0.00826
15 −0.00707
16 −0.00670
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FIG. 2. (Color online) Time evolution of the probability density distribution |�(x,t)|2 in configuration space for the long-range potential
Vsc(x) (a) and the short-range potential Vtr (x) (b) and the same laser parameters used in Fig. 1. For clarity, the peripheral Bohmian trajectories
starting at x(0) = 1.8 a.u. employed in the time frequency maps of Fig. 3 are highlighted as the white curves in the figure. The maps in panels
(a) and (b) have been multiplied by 100.

left and the right panels are related to the long- and short-
range potentials Vsc and Vtr , respectively.

Overall, the time-frequency maps associated with the
central Bohmian trajectory, shown in Figs. 3(a) and 3(b),
are in full agreement with the three-step model, regardless
of whether the long- or the short-range potential was taken.
Indeed, these maps exhibit a series of arches, which correspond
to the classical return times of an electron ensemble leaving the
core, propagating in the continuum, and recombining with their
parent ion. For clarity, these return times are indicated by the
curves in the figure. Each point in these curves gives the return
time of a classical electron in the field for a specific harmonic
energy, and thus they determine a classical orbit together with
the start time t0 [50]. Some discrepancies, however, occur
depending on whether the binding potential has been neglected
or included in the classical computations. In the latter case,
there are more solutions for the return condition x(t) = 0,
which depend on whether the initial electron velocity is on the
same direction or opposite to the field. These solutions have
been recently discussed in Ref. [51], in a Coulomb-corrected
SFA model. The lower parts of the arches correspond to
the so-called “short” trajectories, along which each classical
electron returns before the field crossing, and the upper parts
of the arches correspond to the “long” trajectories, for which
it returns after the crossing. In the time-frequency profiles
computed for the long-range potential, the lower parts of the
arches are more intense. This indicates that the contributions
of the short classical trajectories are dominant. Apart from
that, one also observes faint second arches, extending up
to harmonic energies of approximately |ε0| + 1.5Up. These
arches are related to even longer classical electron trajectories,
with excursion times t − t0 of the order of one and a half
cycles.

Figure 3 also shows that if the flow of the wave function far
from the core is altered by truncating the tail of the long-range
potential, the time-frequency maps obtained for the central
Bohmian trajectory will be influenced. Indeed, the upper part
of the arches in these maps will become more intense. This
implies that contributions from the longer classical orbits will

become more prominent, in agreement with what has been
observed in the literature [43]. Hence, the phase information
contained in the innermost part of the wave function will be
changed nonlocally by altering the flow far away from the
core.

The time-frequency profiles of the peripheral Bohmian
trajectory starting at x(0) = 1.8 a.u., depicted in the remaining
panels of Fig. 3, behave in a rather different way. We
have chosen the initial and final times so that the Bohmian
trajectories in question are still within or have just left the core
region. An illustration of how the probability flow behaves
at such times is provided in Fig. 2, for comparison. In
case the trajectory is still close the core, archlike structures
may be identified in the time-frequency maps, as shown in
Figs. 3(c) and 3(d), which, once more, correspond to the return
times predicted by the TSM. Nonetheless, these structures are
more blurred than those observed for the central trajectory. As
the Bohmian trajectories move away from the core region,
these structures degrade very quickly, and the agreement with
the TSM is lost. This can be observed in Figs. 3(d) and 3(f).

IV. CONCLUSIONS

In summary, Bohmian trajectories show that the main
contribution to the HHG spectrum arises from the most
internal part of the wave function. Indeed, a single Bohmian
trajectory contains all the information necessary to obtain the
HHG spectrum, namely the trajectory that starts at x0 = 0.
This is a stronger statement than that provided by the dipole
acceleration: By using the acceleration, one may conclude that
the overlap between the continuum and bound part of the wave
function near the core region are important. Here, we show that
the part of the wave function located in the immediate vicinity
of x = 0 provides the HHG spectrum. We have chosen several
driving-field intensities, frequencies, pulse shapes, and binding
potentials (not only those presented in this work) in order to
corroborate that these results are general. Some of these results
have been included elsewhere [36].
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FIG. 3. (Color online) Time-frequency maps as functions of the harmonic order computed using the Gabor transform (17), for the central
Bohmian trajectory [panels (a) and (b)] and the peripheral trajectory starting at x(0) = 1.8a.u. [panels (c) to (f)] for a one-dimensional atomic
model in a trapezoidal field of frequency ω = 0.057 a.u. and intensity E0 = 0.075 a.u. In panels (a), (c), and (e) the long-range potential
Vsc(x) has been used, while in panels (b), (d), and (f) the truncated potential Vtr (x) has been considered. The solid and dashed (blue online)
arches in the figure are related to the outcome of the classical-trajectory computations with and without binding potential, respectively. In
the classical-trajectory computations with binding potential, we considered that the electron ensemble was released with escape velocity v0

according to Sec. II C. The black thin lines account for the solutions obtained using positive values of v0, while the gray thick lines correspond
to the solutions obtained for negative v0. In the middle panels we consider a temporal window for which the peripheral trajectory in question is
still close to the core [between the fifth and the sixth cycle for Vsc(x) and between the fourth and the fifth cycle for Vtr (x)], while in the lower
panels we take a time interval for which it has left this region [between the ninth and the tenth cycle for Vsc(x) and between the sixth and the
seventh cycle for Vtr (x)]. The field parameters are the same as in the previous figures. The maps in panels (a) and (b) have been multiplied by
100, while those in the remaining panels have been multiplied by 10 to facilitate a better comparison.

In order to understand the above-stated results, one should
keep in mind that a Bohmian trajectory is a nonlocal entity;
i.e., it functions much more like a “slice” of the wave function
than like a trajectory in the classical sense. Only for coherent
states and very specific ranges of the Mandel parameter may
a Bohmian trajectory be associated with a classical trajectory
[52]. In general, however, this is not the case. In fact, a Bohmian
trajectory evolves under the action of the wave function,
which encompasses not only local information about the space
variations of the potential function but also information about
global changes of the quantum phase. This implies that a
Bohmian trajectory may be localized in the innermost part
of the core and still contain bound and continuum dynamics.
Any change in the wave function, be it far or close to the core
region, will be transmitted nonlocally to the central trajectory
via its phase.

This is consistent with the fact that, in quantum-mechanical
and semiclassical models, the trajectories related to the TSM

are always extracted from the phase of the wave function, i.e.,
from the action. This holds both in the SFA, when these tra-
jectories are obtained using the steepest descent method [14],
and when other methods are used, such as the Herman Kluk
propagator [47,48] or the adiabatic approximation [22,23]. Our
time-frequency maps support the fact that this phase behaves
as an ensemble of unbound classical trajectories following the
predictions of the TSM. Any alterations in the flow of the wave
function far from the core will affect how this phase builds up.
Furthermore, our results confirm the well-known fact that,
spatially, HHG takes place at the core. In fact, time-frequency
analysis of peripheral Bohmian trajectories illustrate the degra-
dation of the above-mentioned profile when the probability
density flow distances itself from the core region.

Finally, our studies also illustrate why the SFA works so
well. The SFA reduces the influence of the core to a single
point, i.e., x = 0, and approximates the continuum by Volkov
waves. This is a good approximation, because the most relevant
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part of �(x,t) for HHG is strongly localized. Further evidence
for this similarity has been provided by us in Ref. [36], in which
we show that the time profile of the central Bohmian trajectory
overestimates the influence of the long TSM trajectory, in
comparison with the TDSE. This overenhancement is also
known to occur in the SFA [53,54].
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