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Polytropic equilibrium and normal modes in cold atomic traps
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The compressibility limit of a cold gas confined in a magneto-optical trap due to multiple scattering of light
is a long-standing problem. This scattering mechanism induces long-range interactions in the system, which are
responsible for the occurrence of plasma-like phenomena. In the present paper, we investigate the importance
of the long-range character of the mediated atom-atom interaction in the equilibrium and dynamical features
of a magneto-optical trap. Making use of a hydrodynamical formulation, we derive a generalized Lane-Emden
equation modeling the polytropic equilibrium of a magneto-optical trap, allowing us to describe the crossover
between the two limiting cases: temperature-dominated and multiple-scattering-dominated traps. The normal
collective modes of the system are also computed.
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I. INTRODUCTION

Since the first realizations of cold atomic gases [1],
both theoretical and experimental investigations reveal that
magneto-optical traps (MOT) pave the way for very exciting
and complex physical phenomena [2]. The interest in studying
the basic properties of MOTs has, however, considerably
decreased after the production of Bose-Einstein condensates
[3,4], as they started to be used mainly as a riding horse
to achieve quantum degeneracy. However, the study of the
dynamical properties of MOTs has received much attention
recently, which revives the investigation of the basic properties
of laser-cooled gases. Examples of such a growing interest
can be found in the work realized by Kim et al. [5], where
a parametric instability is excited by an intensity-modulated
laser beam, and in the works of di Stefano [6] and coworkers
[7,8], where the feedback of retroreflected laser beams can
induce stochastic or deterministic chaos for a large optical
thickness of the MOT.

A route for the most intriguing complex behavior in
magneto-optical traps relies exactly on the multiple scattering
of light, a mechanism which has been described since the
early stages of MOTs as the principal limitation for the com-
pressibility of the cloud [9,10]. Under these circumstances, the
atoms experience a mediated long-range interaction potential
similar to a Coulomb potential (∼1/r) [11], and the system can
therefore be regarded as a one-component trapped plasma. In a
series of previous works, we have given evidence of important
consequences of such a plasma description of cold atomic
traps [12], whereas the application of plasma physics have
produced very interesting predictions. In particular, driven
mechanical instabilities [13] or even more exciting instability
phenomena, such as photon bubbles [14], phonon lasing [15],
and the appearance of a roton minimum in the classical regime
[16], form a broad set of theoretical results.

In this work, we investigate the hydrodynamic equilibrium
and normal modes of cold atomic traps. For that purpose, we
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combine the effects of multiple scattering (described by the
Coulomb-like potential) and the thermal fluctuations inside the
system, which can be cast in the form of a polytropic equation
of state. We derive a generalized Lane-Emden equation for the
equilibrium density profiles and calculate the corresponding
solutions. It is shown that the long-range interactions sig-
nificantly change the Maxwell-Boltzmann equilibrium of a
thermal gas. We linearize the equations to calculate the normal
modes of the system for both small and large clouds, dominated
by thermal and multiple-scattering effects, respectively. We de-
scribe the collective modes of the system in both temperature-
limited and multiple-scattering regimes of the gas.

II. POLYTROPIC HYDRODYNAMICS AND THE
GENERALIZED LANE-EMDEN EQUATION

A simple description of a cold gas in the presence of long-
range interactions can be done using a set of hydrodynamic
equations considered in our previous paper [12,17]:

∂n

∂t
+ ∇ · (nv) = 0, (1)

∂v
∂t

+ (v · ∇)v = −∇P

Mn
+ Ft

M
+ Fc

M
, (2)

∇ · Fc = Qn, (3)

where n and v represent the gas density and velocity, respec-
tively, and M is the atomic mass. Here, Fc is the collective
force, and Q = (σR − σL)σLI0/c represents the square of the
effective electric charge of the atoms [11,12], with c being the
speed of light and I0 being the total intensity of the six laser
beams. σR and σL represent the emission and absorption cross
sections, respectively [2]. The term Ft = −∇U stands for the
trapping force. The hydrodynamical model in Eqs. (1) and (2)
provides the best description so far of the dynamics of the
MOT in the presence of multiple scattering of light, a collective
mechanism that prevents cooling below the recoil limit, which
greatly hinders the task of increasing phase-space degeneracy
[9]. The trapping potential is assumed to be harmonic,

U (r) = 1
2κr2, (4)
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and κ represents the spring constant (in the low-saturation
Doppler limit, the spring constant is approximately given by
κ = αμB∇B/h̄k; for the sake generality, we shall consider
a generic value of κ in the remainder of the paper). Here,
μB represents the Bohr magneton, κ = κ(δ,I0/Is) is the
spring constant, α = α(δ,I0/Is) is the friction coefficient, δ

is the laser detuning, Is is the atomic saturation intensity, and
∇B = |∇B| represents the magnetic field gradient [12]. The
harmonic trapping potential (4) is valid for a MOT of maximum
radius Rmax = |δ|/(γM∇B), where γM = gJ μB/h̄ and gJ

is the Land factor. Under typical experimental conditions,
∇B � 10 G cm−1, δ = −2�0 (with �0 standing for the atomic
transition lifetime), we find Rmax ∼ 0.5 cm. Above that limit,
self-sustained mechanical instabilities take place [18], so we
should avoid this situation in the present work.

In the absence of a microscopic theory of the ultracold gas,
we assume a polytropic equation of state for the MOT of the
form

P = Cγ nγ , (5)

where γ is the polytropic exponent, Cγ = P (0)/n(0)γ is
a constant depending on conditions of the thermodynamic
transformation, and P (0) and n(0) represent the values of
pressure and density at the center of the cloud. By introducing
Eq. (5), we are considering a wide class of thermody-
namic transformations which are not necessarily adiabatic.
Therefore, “polytropes” refer to the largest family of fluids
that undergo polytropic transformations for which a relation
between pressure and density is possible. The hydrodynamic
equilibrium condition applied to Eqs. (1), (2), and (3) simply
yields

∇ · ∇P

n
= 3Mω2

0 − Qn, (6)

where ω0 = √
κ/M is the trapping frequency. Assuming radial

symmetry, the density is given by n = n(0)θ (r), where n(0)
represents the peak density. Putting Eqs. (5) and (6) together,
one easily obtains

γ
1

ξ 2

d

dξ

(
ξ 2θγ−2 dθ

dξ

)
− �θ + 1 = 0, (7)

where � = Qn(0)/3Mω2
0Cγ represents the ratio of interaction

to kinetic energy (coupling parameter). The distance ξ = r/aγ

is given in units of a generalized Wigner-Seitz radius

aγ =
√

3Mω2
0

Cγ

n(0)−(γ−1)/2. (8)

Equation (7) corresponds to a generalization to the Lane-
Emden equation derived to study astrophysical fluids [19].
The important modifications in our model include both the
trapping and the long-range interaction induced by multiple
scattering. The present model allows us to generalize the
work of Walker et al. [2] by relating γ to experimentally
accessible density profiles. The case of rotating clamps of
atoms, however, is not included in this paper and will be
considered in a separate publication. In what follows, we
examine the analytical solutions of Eq. (7) for some limiting
cases and compare them with numerical solutions.

III. MULTIPLE-SCATTERING REGIME

In the multiple-scattering regime, typically achieved for
a number of particles above N ∼ 104–105, the MOT is
essentially dominated by the collective forces [2]. In that case,
� → 1, and one can safely neglect the effects of the pressure.
By setting γ = 0, Eq. (7) simply yields the so-called water-bag
equilibrium profile

θ (ξ ) = �−1�(ξ − ξ1), (9)

where ξ1 = 3/(4π�)1/3 is the Lane-Emden radius of the MOT.
In physical units, it corresponds to a MOT of radius

R =
(

3N

4πn0

)1/3

≈ 0.92

(
Q

Mω2
0

)1/3

N1/3. (10)

This exactly corresponds to the scaling law observed in the
experiments of Ref. [20]. For a typical 85Rb MOT, δ = −�0/2
and ∇B = 10 G cm−1, we get a density n0 = 3 × 109 cm−3.
This density would be reached for N = 1500 atoms already.
This means that in typical MOTs, the large density limit very
easily holds. In this case, the restoring frequency and the
effective plasma frequency ωP = √

Qn0/M are related as

ω0 = ωp√
3
. (11)

We will later see that this is related to the Mie mode, which is
a natural consequence of treating the system as a trapped one-
component plasma. Figure 1 shows the numerical solution to
Eq. (7) for different polytropes. We observe that the Gaussian
profile is modified when � is increased towards a water-bag
profile. For traps containing a small number of particles
(N � 104), the effects of the multiple scattering can be
neglected. In that case, we set � → 0 and obtain the following
polytropic equilibrium:

θ (ξ ) =
(

1 − γ − 1

6γ
ξ 2

)1/(γ−1)

. (12)

For the interesting case of an isothermal gas, γ = 1 and
C1 = kBT , this simply leads to the Maxwell-Boltzmann
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FIG. 1. (Color online) Effect of the long-range interaction on
the density profile for different polytropic exponents. The left panel
depicts the case where thermal effects dominate (� = 0), while the
right panel illustrates the case where multiple scattering dominates
(� = 0.99). The black thick line depicts the normalized density
profile for the isothermal case, γ = 1. The red dashed and blue
dot-dashed lines are obtained for γ = 2 and γ = 4, respectively.
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equilibrium

n1(r) = n(0)e−Vt /kBT = n(0)e−r2/6a2
1 , (13)

where a1 =
√

3mω2
0/kBT .

IV. NORMAL MODES

We now discuss the case of the localized oscillations, or
normal modes, in trapped gases. By linearizing the set of fluid
equations (1), (2), and (3) we get

−ω2δn − γCγ

m
∇ · (

n
γ−1
0 ∇δn

) = 1

m
∇ · [n0(r)∇δφc],

∇2δφc = −Qδn, (14)

where we have used ∇δP � γCγ n
γ−1
0 ∇δn. Here, we have

assumed that the collective force can be derived from a
potential, i.e., Fc = −∇φc. We now define the auxiliary
quantity η, defined as δn = (1/4πr2)dη/dr , which together
with Eq. (14) implies

d

dr
δφc = − Q

4πr2
η. (15)

Making proper substitutions, the linearized equations can be
put together and result in a single expression:

−γCγ n(0)γ−1

m

1

r2

d

dr

[
r2n0(r)γ−1 d

dr

(
1

r2

dη

dr

)]

−ω2 1

r2

dη

dr
+ ω2

p

1

r2

d

dr
[n0(r)η] = 0, (16)

where we have used ω2
p = Qn(0)/m. In a dimensionless form,

one obtains

−ω2 1

ξ 2

dδθ

dξ
− 1

2
γω2

0
1

ξ 2

d

dξ

[
ξ 2θ

d

dξ

(
1

ξ 2

dδθ

dξ

)]

+ω2
p

1

ξ 2

d

dξ
(θ1/(γ−1)δθ ) = 0. (17)

Solutions to the latter eigenvalue problem depend on the details
of the equilibrium θ (ξ ) considered. The general case involves
a numerical solution, for which we hereby provide analytical
solutions for some limiting cases. For small clouds, lying in
the temperature-limited regime (N < 104) [21], the effects of
multiple scattering may be neglected, and therefore, one can set
ωp = 0 in Eq. (17). Using the equilibrium profile in Eq. (12),
the eigenvalue problem yields

− ω2δθ − 1

2
γω2

0
1

ζ 2

d

dζ
[(1 − ζ 2)ζ 2δθ ] = 0, (18)

where we have performed a change of variables, ζ =√
6γ /(γ − 1)ξ . The solution can be given in terms of the

ansatz [22]

δθ =
∑
ν,�

aν�ζ
2ν+�. (19)

Replacing this in Eq. (18), one easily obtains a recurrence
relation for the coefficients aν�, which is found to converge
provided that

ω2 = ω2
0{� + 2ν[(γ − 1)(ν + � + 1/2) + 1]}. (20)

This result resembles the solution given by Stringari for
the oscillations of a Bose-Einstein condensate (γ = 2) in
a spherical harmonic trap [23]. For comparison, we recall
the result known for the free Bose-Einstein condensate in
the collisionless regime, ω = ω0(2ν + �). The case γ < 1 is
naturally unstable. Pure surface modes, which may eventually
be more easily detectable experimentally, are obtained for
ν = 0 and have the following frequencies:

ωS = ω0

√
�. (21)

Such modes correspond to the absence of nodes in the
perturbation δn for r < R. On the other hand, breathing modes
corresponding to zero-surface fluctuations at the boundary
r = R (thus obtained for � = 0) are also theoretically possible
in small traps, with frequencies given by

ωB = ω0

√
2ν + (γ − 1)(ν + 1/2). (22)

Because experimental techniques usually make the measure-
ment of frequencies in a very precise manner possible, these
results can be very useful, as they relate the polytropic
exponent γ to the mode frequencies.

In the deep multiple-scattering regime, we can model the
equilibrium by a water-bag solution in Eq. (9). In that case,
one readily obtains (3ω2

0 − ω2)δn = 0, which corresponds to
a breathing mode in a system with long-range interactions

ωB = ωp =
√

3ω0. (23)

The latter result is very well known in plasma physics and
corresponds to an uncompressional monopole oscillation of
the system at the classical plasma frequency ωp. However,
this solution is not unique. From Eqs. (1) and (2), we
can obtain the following equation in the multiple-scattering
regime (∇P = 0): −ω2δn + ∇ · [n(0)M−1∇δφc] = 0. Com-
bining with Eq. (11) and inserting in the linearized version of
Eq. (3), ∇2δφc = Qδn, we obtain

∇ · [
ε(ω)∇δφin

c

] = 0, ε(ω) = 1 − 3
ω2

0

ω2
, (24)

which holds in the interior region of the MOT, r < R. Outside
the MOT (r > R), the collective force should not vary, so we
have ∇2δφout

c = 0. The general solution to Eq. (24) is therefore
given by

δφin
c (r) =

∑
�,m

a�,mr�Ym
� (θ,ϕ),

(25)
δφout

c (r) =
∑
�,m

b�,mr−(�+1)Ym
� (θ,ϕ).

Imposing regular continuity conditions at the surface, r = R,
φin

c (R) = φout
c (R), and d

dr
φin

c (r)|r=R = d
dr

φout
c (r)|r=R , one ob-

tains the frequencies corresponding to incompressible surface
modes:

ωS = ω0

√
3�

2� + 1
. (26)

A similar result can be obtained from the Mie theory for
scattering in the context of surface plasmon-polaritons (see
Ref. [24] for a review). We remark here that the frequency of
surface modes is bounded between the Mie and the surface
plasmon resonances, ωp/

√
3 < ω < ωp/

√
2, totally differing
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from the Tonks-Dattner resonances described in our previous
work [12]. We expect that this feature can be very easily
observed in fluorescence measurements, for which a plateau in
a frequency-resolved measurement would appear. Notice that
the modes in Eq. (26) do not depend on the size of the cloud
R. This is a result of neglecting the dispersion, introduced by
thermal fluctuations.

V. RETARDED SURFACE MODES IN LARGE TRAPS

The previous calculation of the frequencies of surface
oscillations, considered in the multiple-scattering regime,
completely neglects the effects of temperature. In reality, the
thermodynamic pressure is always present, and therefore, the
effects of dispersion must be considered. In the same spirit of
the derivation of Eq. (24), we manipulate Eqs. (1) and (2)
for an isothermal gas (P = kBT n) to obtain (−ω2 −
u2

s∇2)δn + ∇ · [n(0)M−1∇δφc] = 0, where us = √
kBT /M

is the thermal sound speed. Combining with the linearized
Eq. (3), ∇2δφc = Qδn, and after dividing everything by ω2

p,
we finally obtain

(∇2 + k2
in

)
δφin

c = 0, ∇2δφout
c = 0, (27)

where kin = √
ε(ω)ω/us and ε(ω) is the frequency response

given in (24). The general solution to Eq. (27) reads, after
ruling out exponential growth at the origin,

φin
c (r) =

∑
�,m

a�,mj�(kinr)Ym
� (θ,ϕ),

(28)
φout

c (r) =
∑
�,m

b�,mr−(�+1)Ym
� (θ,ϕ),

where j�(z) represents the spherical Bessel functions of the
first kind. Imposing the same regular boundaries as in (26), one
finally gets the eigenvalues through the following condition:

j�(
√

ε(ω)ωx)√
ε(ω)j ′

�(
√

ε(ω)ωx)
= −� + 1

x
, (29)

where x = R/λD , with λD = us/ωp standing for the effective
Debye length [12,17]. The numerical solution to the latter is
plotted in Fig. 2. Notice that the frequencies tend to decrease
their values as R increases. Such a feature is often referred to as
retardation in the context of surface plasmon-polaritons [24].
In real-life experiment, the effect of retardation can be tested by
taking the spectrum of the Fourier transform density profile. By
increasing the number of atoms N in the cloud, a broadening of
the plateau ωp/

√
3 < ω < ωp/

√
2 should be observed, as the

difference between two consecutive surface modes increases
with R (see Fig. 2).
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FIG. 2. (Color online) Effect of the retardation on the surface
modes. From bottom to top: � = 1,2,3,4, and 5.

VI. CONCLUSIONS

We have used a hydrodynamic polytropic description
of the magneto-optical trap and derived the equilibrium
condition. The equilibrium density is given as the solution of a
generalized Lane-Emden equation. We have also computed the
spectrum of the normal modes in the two relevant limits of the
system (dominated by temperature or dominated by multiple
scattering). We have established a distinction between radial
and surface modes as a function of the polytropic exponent
γ and showed that a retardation (decrease of frequency) of
the surface modes is associated with the thermal effects. The
importance of the present results is twofold: first, a polytropic
equation of state, which phenomenologically models a large
class of hydrodynamic problems, can be easily confirmed
experimentally, both by measuring the density profiles and
by determining the spectrum of the normal modes; second,
our problem may establish an important bridge to investigate
astrophysical systems in the laboratory, especially concerning
the stability and dynamics of the Lane-Emden equation.
Although we have used the parameters of 85Rb, our results
are completely general. Indeed, for the case of Na or Cs
atoms, the changes in the mass, for example, will slightly
modify the nominal value of the plasma frequency by a factor
of ωp/ωRb

p =
√

MRb/M . Although this fact could have an
important impact in experiments (a considerable variation in
the parameters would necessarily influence the measurement
techniques and even the devices involved in the measurement),
the mass difference is not significant, and the typical length
and frequency scales (λD ∼ 10–100 μm and ωp ∼ 50–100 Hz
[12]) remain the same.
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