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Spatial interferences of photodetachment near a repulsive center
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We study the detached-electron flux distributions from the photodetachment of a negative ion near a repulsive
center. Using a semiclassical approach, we calculate the electron flux on spherical detectors with various radii.
The classically allowed angular range of the interference patterns on the spherical screen increases as the
detached-electron energy is increased. In the classically allowed range, we find that there are always two
trajectories going from the negative ion to the observation point on the screen, inducing quantum interference
patterns. We have also extended the formulas into the tunneling region. The interference patterns also reflect the
quantum angular distribution of electrons leaving the ion. A scaling property for the detached-electron flux is
investigated. The accuracy of our semiclassical formulas is established by comparison with a quantum treatment
using the exact Coulomb Green’s function.
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I. INTRODUCTION

Angle-resolved photoelectron spectra from doubly
charged anions having the structure of a linear chain,
−O2C − (CH2)m − CO2

− (with 3 � m � 11), have recently
been observed experimentally [1]. These experiments are an
interesting extension of photoelectron microscopy, for which
the theory was first developed by Fabrikant, Demkov and
Du [2–4], and which was first implemented by Blondel and his
co-workers [5]. Inspired by the above studies, we explore in
this paper photodetachment of electrons from certain types of
doubly charged anions, hν + M−2 → M−1 + e−. Specifically,
we consider differential cross section for photodetachment
of electrons from one negative ion that is close to another
negative ion. In our theoretical model (Fig. 1), the loosely
bound electron is detached by absorption of a single photon,
and it escapes out the repulsive force field provided by the other
negative ion. Deviations from the predictions of this simple
model would be related to interactions of the escaping electron
with the neutral framework of the molecule or polarization of
the residual molecular ion.

We have previously examined photodetachment from
singly charged atomic anions in an electric field [6] and in
parallel or perpendicular electric and magnetic fields [7]. Re-
lated experiments have been reported [8], and other theoretical
methods can also be found in [9]. In that work, interference
oscillations were found in the differential and total cross
sections. Those in the differential cross section result from
waves traveling along various paths from source to detector.
Oscillations in the total cross section arise from interference
of outgoing and returning waves, going from source to
source. The general framework describing these interference
structures is called closed-orbit theory, which was initially
developed to deal with the quasi-Landau resonances in the pho-
toionization of atom in a magnetic field by Delos and Du [10].

The present study is a natural extension of that work. Instead
of an externally imposed uniform electric field, the negatively
charged center provides a repulsive central field. Electrons are
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emitted from a “source” anion, and follow paths governed by
the repulsive Coulomb field around the other negative ion. The
problem is like Rutherford scattering, except that the paths
begin from a point source close to the charged target. The
detached-electron wave can be constructed using a semiclassi-
cal approximation by propagating classical paths from source
to detector. We will see that either zero or two paths go from
the source anion to a given location on a detector, and a simple
interference pattern is found in the differential cross section.

This is a system for which an exact wave function can
be obtained in closed form, because the Coulomb Green’s
function can be written in terms of Whittaker functions of the
first and second kinds [11,12]. It turns out, however, that this
seemingly simple expression [Eq. (E1) in our Appendix E] is
not very informative—we have not extracted any meaningful
physics from it. In contrast, the semiclassical approximation
gives a clear intuitive picture of flow along a family of hyper-
bolic orbits; it delineates classically allowed from classically
forbidden regions; it involves nothing more complex than
the trigonometric integrals that are characteristic of repulsive
Coulomb systems; in addition the semiclassical computations
require less computer time than the exact computations.

In most of our calculation, a “primitive” semiclassical
approximation is sufficient. However, as is well known,
the primitive semiclassical approximation diverges near any
boundary between classically allowed and forbidden regions.
We repair this divergence using Airy-function formulas. The
accuracy of the semiclassical formulas is shown to be excellent
through comparison with the exact Coulomb Green’s function
for an s-wave source.

The remainder of this article is organized as follows. In
Sec. II, the theoretical model for photodetachment of electrons
from a negative ion near a fixed negatively charged center is
described, and the classical motion of the detached electron
in the repulsive central field is described quantitatively. In
Sec. III, we use these trajectories to compute the semiclassical
approximation to the electron waves. In Sec. IV, the electron
flux is calculated for the classically accessible region away
from the boundary of classical motion. Then we correct the
wave function near the caustic surface and extend it into
the classically forbidden region. In Sec. V, calculations are
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FIG. 1. Schematic representation of the theoretical model for
the scattering of electrons outgoing from a point source by a
repulsive force center. The open and solid circles denote the electron
source and the negatively charged center, respectively. The electron
source is supplied by the photodetachment of the negative ion. After
the electron is detached by a photon, it escapes following a hyperbolic
trajectory as shown by the heavy solid curve on which a dark point
indicates the closest point to the force center.

displayed for representative cases, and several important and
interesting aspects are discussed. In Sec. VI, a brief conclusion
is given. Atomic units are used throughout this work unless
specified otherwise.

II. THEORETICAL MODEL AND CLASSICAL
TRAJECTORY STRUCTURE

Here we set out the basic aspects of the theoretical model
(Fig. 1): Photodetachment of electrons from a singly charged
atomic anion near a second anion that acts as a fixed repulsive
force center. We set the z axis along the line connecting the
ions and the force center. When a laser light is applied, the
loosely bound electron may be detached, leaving a neutral atom
behind. The electron goes into a spherically outgoing wave,

ψout(R,β,φ) = C(k)Ylm(β,φ)
eikR

R
, (1)

where (R,β,φ) are spherical coordinates for the electron
relative to the residual neutral atom, that is, the source point;
C(k) is a factor dependent on the electron energy E, and
k = √

2E. The angle-dependent factor Ylm(β,φ) is a spherical
harmonic function representing the angular distribution of
outgoing waves. The specific expression for this source
wave can be calculated for the specific ion and various laser
polarizations [4,6]. Thereafter, the theoretical model is simply
scattering of an electron wave emerging at fixed energy from
a point source by a fixed repulsive force center.

Polar coordinates (r , θ ) centered at the force center are a
better choice for describing the electron motion. We set the
polar axis along the positive z axis (from the force center
toward the source of electrons), and θ is the corresponding
polar angle. We also select the source point to be the zero-
potential-energy point. Then the Hamiltonian governing the
motion of detached electron can be written as

H = p2
r

2
+ p2

θ

2r2
+ α

r
− α

d
, (2)

where d is the distance between the wave source and the
repulsive center, and α denotes the negative-charge number
at the force center. The last term is a constant and it makes the
potential energy zero at the source.

We introduce the scaled energy Ẽ = Ed/α, which is the
only parameter determining the shape of the electron trajectory
when the position of the detector is fixed. It is convenient
to define also two complementary parameters ξ > 0 and
η > 0 as

ξ 2 = 2p2
0

p2∞ − p2
0

= 2Ẽ; (3)

η2 = 2p2
∞

p2∞ − p2
0

= 2(Ẽ + 1), (4)

using the magnitude of the initial momentum p0 = √
2E =

k and the final momentum at infinity p∞ = √
2(E + α/d).

Following the standard method usually applied for the Kepler
problem in classical mechanics [13], the orbit equation of the
Hamiltonian in Eq. (2) can be written as

r =
(

ξ 2 sin2(β)

ε cos(θ − θ0) − 1

)
d, (5)

where ε is the eccentricity of the hyperbolic orbit (Fig. 1),

ε =
√

1 + ξ 2η2 sin2(β), (6)

and θ0 is the polar angle of the nearest point to the force center,
which can be written as

θ0 =
{
π
2 − arcsin

( 1+ξ 2 sin2(β)
ε

)
if β > π

2 ,

−π
2 + arcsin

( 1+ξ 2 sin2(β)
ε

)
if β � π

2 .
(7)

The orbit equation in Eq. (5) contains all the information
needed in the following discussions.

As a result of the cylindrical symmetry of the present
system, we only need to describe the trajectories in the right
half plane in Fig. 1. On the other hand, due to the central field
property, the natural choice to collect the scattered electron is a
spherical detector centered at the force center. Hence, spherical
coordinates (r ,θ ,ϕ) relative to the force center will be adopted
in the following analyses (Fig. 1).

Giving a point (r ,θ ), the condition for the existence of real
roots β of orbit equation can be obtained from Eq. (5),

δ = (Ẽ + 1)2 cos(θ ) + Ẽ2 − 1 − 2Ẽ
d

r
� 0, (8)

which gives the classically accessible region of the plane
(Appendix A). The caustic (the boundary between allowed
and forbidden regions) occurs where the discriminant equals
zero:

r = 2Ẽd

(Ẽ + 1)2 cos(θ ) + Ẽ2 − 1
, 0 � θ < arccos

(
1 − Ẽ
1 + Ẽ

)
,

(9)

which is also a hyperbola.
Structures for the classical trajectory pattern can be found

from the caustic equation (Fig. 2). If 0 < Ẽ < 1 [Fig. 2(a)],
the hyperbolic caustic curves upward, and electrons emitted in
any direction are turned back to the positive z direction. When
Ẽ = 1 [Fig. 2(b)], the caustic surface becomes a plane located
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FIG. 2. (Color online) Three typical trajectory patterns
determined by the scaled energy Ẽ; here d = 300a0, α = 1,
r = 500a0, and a0 is the Bohr radius. For each point in the classically
allowed region on the spherical detector with radius r , there are
always two trajectories with different initial angles β1 and β2. The
initial angle β is indicated in Fig. 1. At the classically allowed region
boundary θm on the spherical detector, the two trajectories become
identical as represented by the green and thick curve. The caustic
surface is given by the dashed line.

at z = d/2 and the plane bisects the line between the source
point and the force center. If Ẽ > 1 [Fig. 2(c)], the hyperbolic
caustic curves downward.

With the help of an expression for the spherical angle from
Eq. (5),

θ = θ0 + arccos

(
1 + d

r
ξ 2 sin2(β)

ε

)
, r > d, (10)

and its asymptotic value when r → ∞,

θ∞ = θ0 + arccos
1

ε
,

we can further depict the details of the three different trajectory
structures. Specifically, as illustrated in Fig. 2(a), all the
detached-electron trajectories with scaled energy Ẽ < 1 are
turned back to the upward direction. In the second case when
Ẽ = 1 [Fig. 2(b)], electron trajectories are turned back to the
positive z direction except for the one trajectory with initial
angle β = 3π/4 which propagates toward the midperpendic-
ular plane, approaching the caustic surface asymptotically
as r → ∞. In the third case when Ẽ > 1 [Fig. 2(c)], only
the trajectories with the initial angle falling in the interval
[0,βb1 ) or (βb2 ,π ] are turned back to the upward direction,
while the trajectories with the initial angle between βb1 = π

2 +
1
2 arcsin( 1

Ẽ
) and βb2 = π − 1

2 arcsin( 1
Ẽ

) propagate downward
and end in the lower half plane. The two trajectories with the
initial angles equal to βb1 and βb2 go out downward initially,
and finally go out horizontally with z = L/

√
2(E + α/d) at

r → ∞, where L = kd sinβ is the angular momentum in the
spherical coordinates.

The caustic equation Eq. (8) also gives us the maximum θ

value on the spherical detector,

θm = arccos

(
2Ẽ d

r
− (Ẽ2 − 1)

(Ẽ + 1)2

)
, (11)

which then tells us the range of the interference pattern on
the spherical detector. Another special and important angle
corresponds to the trajectory with initial angle β = π/2, which
can be calculated specifically after Eq. (10),

θc = arccos

(
1 + 2Ẽ d

r

1 + 2Ẽ

)
. (12)

Finally, when we solve the orbit equation in Eq. (5), we find
that for each point on the detector in the classically accessible
region, there are always two trajectories, and they came from
initial angles β1 and β2, given by the following formulas
(Appendix A).

β1 = π − arcsin(
√
x1), (13)

where

x1 = (1 − cos θ )

×
Ẽ+1

2 (
√

1 + cos θ − √
cos θ − cos θm)2 − 1

Ẽ+1
d
r

(2Ẽ + 1)
(
1 − d

r

)
(1 − cos θc) + 4Ẽ d

r
(1 − cos θ )

.

(14)

β2 =
{

arcsin(
√
x2) if 0 � θ � θc,

π − arcsin(
√
x2) if θc < θ � θm,

(15)

where

x2 = (1 − cos θ )

×
Ẽ+1

2 (
√

1 + cos θ + √
cos θ − cos θm)2 − 1

Ẽ+1
d
r

(2Ẽ + 1)
(
1 − d

r

)
(1 − cos θc) + 4Ẽ d

r
(1 − cos θ )

.

(16)

The above analysis is illustrated in Fig. 2 and in more detail
in Fig. 3. With the detection position θ away from the z axis,
the initial angle β2 for the up (blue online) trajectory increases
from 0◦, meanwhile, the initial angle β1 for the down (red
online) trajectory decreases from 180◦. When the detection
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FIG. 3. (Color online) (a) Details of the electron trajectories in
Fig. 2(c); (b) initial angles for the two trajectories vs the detection
angle on the spherical detector.

position reaches the caustic θm, the two trajectories coincide,
β1 = β2, which is indicated by the green trajectory in Figs. 2
and 3.

Here we also mention that both of the initial angles for the
trajectories reaching the detector between θc and θm are larger
than π/2; this will have an effect on the electron flux that will
be discussed in the following section.

III. SEMICLASSICAL WAVE PROPAGATION

A. Quantum wave construction from classical trajectories

The standard method for constructing a quantum wave
function from classical trajectories is given in Ref. [14].
Assuming the wave function on an initial spherical surface
is given by ψout(R,β,ϕ), then the semiclassical wave for the
present cylindrical case can be constructed as

ψ(r,θ,ϕ) =
∑
ν

ψout(R,βν,ϕ)Aν exp

[
i

(
Sν − μν π

2

)]
, (17)

where the summation is over all trajectories arriving at the
final point (r ,θ ,ϕ), and ν is the label for those trajectories. Sν

is the classical action,

Sν =
∫

p · dq, (18)

along the ν th trajectory from the initial surface to any given final
point on that trajectory, and μν is the corresponding Maslov
index. The semiclassical amplitude Aν is defined as

Aν =
∣∣∣∣ J (t = 0)

J (t = T )

∣∣∣∣1/2

, (19)

and

J (t) = det

(
∂(x,y,z)

∂(t,β,φ)

)
, (20)

evaluated at the initial and final points, (x,y,z), and at β = βν
(the initial angles for the ν th trajectory). We call this quantity
the classical Jacobian.

B. Amplitude reduction

Given the cylindrical symmetry of the present system, we
first reduce the above classical Jacobian to two dimensions
[10],

J (t) = r2 sin θdet

(
∂(r,θ )

∂(t,βν)

)
. (21)

The difficulty to obtain the Jacobian is the calculation of
the determinant on the right side of Eq. (21), which is
always encountered in the present studies. We find the above
two-dimensional Jacobian Eq. (21) can be actually reduced to
(Appendix B)

J (t) = prr
2 sin θ

(
∂θ

∂βν

)
r

. (22)

The partial derivative ( ∂θ
∂βν

)r can be calculated straightfor-
wardly from Eq. (10) as (Appendix C)(
∂θ

∂βν

)
r

= 1 + 1 − η2

ε2
+ η2 − d

r
(1 + ε2)

ε2
× k

pr
cosβν, (23)

where

pr =
√

2

(
E − L2

2r2
− α

r
+ α

d

)
is the radial momentum with initial angle βν .

For the Jacobian at t = 0, one can readily show

J (t = 0) = kR2 sinβν. (24)

Therefore we obtain

Aν =
∣∣∣∣∣ kR2 sinβν

p
r
r2 sin θ

(
∂θ
∂βν

)
r

∣∣∣∣∣
1/2

, (25)

and, if θ = 0, we have

Aν = R

r
×

√
k

pr
× 1∣∣( ∂θ

∂βν

)
r

∣∣ . (26)

When the detection distance r is chosen and fixed, the
detection angle θ is a function of β. To simplify the notations,
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the partial derivative ( ∂θ
∂βν

)r can be denoted as dθ
dβ

. Thereafter,
we can write the amplitude in Eq. (25) as

A =
∣∣∣∣∣ kR2 sinβdβ

p
r
r2 sin θdθ

∣∣∣∣∣
1/2

, (27)

at a spherical detector of radius r , where the subscript ν is
omitted.

The result in Eq. (27) can be understood by considering the
following electron-flow process. Assuming, near a differential
area (R2 sinβdβdφ) on the initial sphere, the electron number
density is ρ

e
(R,β,φ). Then, the total electron number dN

streaming through the initial differential area per unit time can
be obtained as

dN = ρ
e
(R,β,φ)kR2 sinβdβdφ. (28)

These electrons will flow through the corresponding differen-
tial area (r2 sin θ |dθ |dϕ) on the final spherical detector, and
the same argument gives the total electron number as

dN = ρ
e
(r,θ,ϕ)prr

2 sin θ |dθ |dϕ. (29)

Given the cylindrical symmetry of the present system, the ratio
of Eq. (29) to Eq. (28) gives us∣∣∣∣∣ kR2 sinβdβ

p
r
r2 sin θdθ

∣∣∣∣∣ = ρ
e
(r,θ,ϕ)

ρ
e
(R,β,φ)

. (30)

Based on the above discussion, we have

A =
√
ρ
e
(r,θ,ϕ)

ρ
e
(R,β,φ)

. (31)

Finally, we reach the specific physical meaning of the con-
structed amplitude: the constructed-amplitude square along
the classical trajectory is actually the ratio of the particle
density on the final position to that on the wave-source
location. This physical interpretation, which is consistent
with the Born’s probability interpretation of the quantum
matter wave, ensures that the constructed semiclassical wave
is reasonable.

C. Phase accumulation

The semiclassical phase accumulation is dependent on the
Maslov index and the action variation. The Maslov index can
be obtained from the classical trajectory structure, and the
classical action can also be calculated analytically after some
manipulations.

According to the trajectory analyses in Sec. II (Figs. 2
and 3), the down (red) trajectory “1” has one touch with the
caustic surface, and the corresponding Maslov index μ1 = 1,
while, the up (blue) trajectory “2” has no touch with the caustic
surface and μ2 = 0.

For an electron ejected with an initial angle β, arriving at
the final spherical detector of radius r , the action variation
can be expressed as a function of β and r , that is, S(r,β). On
the other hand, the classical action can also be expressed as a
function of the electron coordinates (r , θ ), where the detector
angle θ is determined by the detector radius r and the initial
angle β. Thereafter, we have

S(r,β) = S(r,θ (r,β)), (32)

the partial derivative of which to the initial angle β gives us(
∂S(r,β)

∂β

)
r

=
(
∂S(r,θ )

∂θ

)
r

(
∂θ (r,β)

∂β

)
r

. (33)

What is more, according to the definition of classical action,

dS(r,θ ) = prdr + Ldθ, (34)

we get the well-known relation in analytical mechanics,(
∂S(r,θ )

∂θ

)
r

= L. (35)

Since L = kd sinβ, we reach an important partial differential
equation about the classical action,(

∂S(r,β)

∂β

)
r

= kd sinβ

(
∂θ

∂β

)
r

. (36)

After integrating the above partial differential equation over
β from 0 to βν , we arrive at

S(r,βν) = S(r,β = 0) +
∫ βν

0
kd sinβ

(
∂θ

∂β

)
r

dβ. (37)

Furthermore, substituting the partial derivative in Eq. (23) into
the right side of the above expression, the action variation can
be written out as (Appendix C)

S(r,βν) = S(r,β = 0) + kd
(

1− cosβν + 1

ξη
ln

1 + γ cosβν
1 + γ

+ 1

ξη
ln
η2 − d

r
+ ξη

k
p0r

η2 − d
r

+ ξη

k
pνr

−
kd
r

sin2 βν

p0r + pνr

)
, (38)

where

γ = 2ξη

ξ 2 + η2
, (39)

andp0r andpνr are the radial momentum with the initial angles
β = 0 and βν , respectively. The action with initial angle β = 0
in Eq. (38) can be calculated easily. However, it is not needed
in the following analysis and not presented here.

IV. DIFFERENTIAL CROSS SECTION

The differential cross section can be defined from the
electron flux jr crossing the spherical detector surface as [4]

d2σ (r,θ,ϕ)

r2 sin θdθdϕ
= 2πEph

c
jr , (40)

and

jr = Im(ψ∗∇rψ), (41)

where Eph and c are the photon energy and the light speed,
respectively.

A. In the classically allowed region away
from the caustic surface

Based on the above calculations, the electron wave arriving
at the detector position (r ,θ ,ϕ), away from the classical bound
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θm, can be constructed semiclassically as

ψ(r,θ,ϕ) = ψout(R,β1,ϕ)A1 exp

[
i

(
S1 − μ1

π

2

)]
+ψout(R,β2,ϕ)A2 exp

[
i

(
S2 − μ2

π

2

)]
. (42)

Substituting the expression in Eq. (1) for the outgoing wave
and Eq. (42) into the electron-flux definition in Eq. (41), we
have

jr = k

r2
× |C(k)|2 ×

{
A2

1|Ylm(β1,ϕ)|2 + A2
2|Ylm(β2,ϕ)|2

+p1r + p2r√
p1rp2r

A1A2Re(Ylm(β1,ϕ)Y ∗
lm(β2,ϕ))

× cos

(
�S − π

2

)}
, (43)

where Re means real part,

Aν = r

R
×

√
pr

k
× Aν, (44)

and�S = S1 − S2, which can be written out as (Appendix C)

�S = kd

(
cosβ2 − cosβ1 + 1

ξη
ln

1 + γ cosβ1

1 + γ cosβ2

+ 1

ξη
ln
η2 − d

r
+ ξη

k
p2r

η2 − d
r

+ ξη

k
p1r

+
kd
r

(sin2 β2 − sin2 β1)

p1r + p2r

)
.

(45)

For numerical calculations, it is convenient to define a
reduced flux,

j̃r = jrr
2 × 1

k
× 1

|C(k)|2 × 1

N2
lm

, (46)

where

Nlm =
√

(2l + 1)(l −m)!

4π (l +m)!

is a coefficient in spherical harmonic function.
The expressions of electron flux in Eqs. (43)–(46) should

be accurate in the classically allowed region not too close
to the caustic (where �S � π ). [As usual when calculating
differential cross sections, the gradient in Eq. (41) acts on both
the phase and on the amplitudes Aν ; the latter fall off as r−1

giving a term which is proportional to r−2, which is negligible
at large r , and which is ignored.] Formulas for the detached
electron flux on a planar detector are presented in Appendix D.

B. Near the caustic surface and extending
to the classically forbidden region

Near the caustic surface, the flux expressed in Eq. (46)
diverges, and a corrected approximation is needed. The caustic
surface is a fold catastrophe, where the wave function can be
approximated by an Airy function [15]. Such approximation
gives a finite result at the caustic surface, and a result which,
when �S is large, approaches that in Eq. (46).

The usual way to obtain this corrected approximation is
to convert the wave function to an Airy-function form. We

use a somewhat different but similar approach, converting the
differential cross section to an Airy-function form. To be clear,
we take an s-wave source, for example.

First, Eq. (46) gives the behavior of the electron flux at large
�S,

j̃r = A2
1 + A2

2 + 2PratioA1A2 cos

(
�S − π

2

)
. (47)

where,

Pratio = p1r + p2r

2
√
p1rp2r

. (48)

The expression in Eq. (47) can be separated as

j̃r = (
A2

1 + A2
2 + 2PratioA1A2

)
sin2

(
�S

2
+ π

4

)
+ (

A2
1 + A2

2 − 2PratioA1A2
)

cos2

(
�S

2
+ π

4

)
. (49)

Note that the asymptotic behavior of Airy function Ai(ζ ) at
negative large ζ is just such a form as the first factor on the
right side of the above expression,

Ai(ζ )
.= 1

√
π |ζ | 1

4

sin

(
2

3
|ζ | 3

2 + π

4

)
, ζ is negative large,

(50)

and also,

Ai′(ζ )
.= −|ζ | 1

4√
π

cos

(
2

3
|ζ | 3

2 + π

4

)
, ζ is negative large,

(51)

is the same form as the second part on the right side of the
above expression. Therefore, the expression Eq. (49) can be
replaced by

j̃r = [
π |ζ | 1

2
(
A2

1 + A2
2 + 2PratioA1A2

)] × Ai2(ζ )

+ [
π |ζ |− 1

2
(
A2

1 + A2
2 − 2PratioA1A2

)] × Ai′2(ζ ), (52)

where

ζ = −(
3
4�S

)2/3
, θ < θm. (53)

Equation (52) can be used directly in the classically allowed
region θ ∈ [0,θm) to calculate electron flux.

As the detection angle θ approaches the classical allowed
boundary θm on the spherical detector, the flux expressed in
the formula in Eq. (52) will converge to a finite value, noting

A2
1(�S)1/3 → sinβ1

sin θ

{
−2kd cosβ1

3
[(
∂2θ

∂β2
1

)
r

]2

}1/3

, θ → θm, (54)

where [(
∂2θ

∂β2
1

)
r

]
θ=θm

= �−�
ε2

, (55)

and

� = 2ξ 2η2 sinβ1 cosβ1

(
1 − kd

rp1r
cosβ1

)
; (56)

� = k

p1r
sinβ1

(
1 − k2d2

r2p2
1r

cos2 β1

)[
η2 − d

r
(1 + ε2)

]
.

(57)
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FIG. 4. (Color online) Linear approximation for the argument of
the Airy function near the caustic, where the following parameters
are used: d = 300a0, α = 1, Ẽ = 2, and r 
 d . The argument in the
classically allowed region, ζ = −( 3

4�S)2/3, is given by the blue solid
curve, and the linear approximation near the caustic is displayed by
the red dotted line.

In the classically forbidden region, the electron flux can be
obtained by extending the flux in Eq. (52) in the classically
allowed region. One can expand both the prefactors and the
argument of the Airy functions as a power series of (θ − θm)
near the caustic surface to get approximations. Here, we find
the linear approximation for the argument of Airy functions is
sufficient, that is,

ζ = 21/3k2/3d2/3

[
cos2 β1

−(
∂2θ

∂β2
1

)
r

]1/3

θ=θm
(θ − θm), θ � θm. (58)

Figure 4 demonstrates the approximation near the caustic. The
linear approximations for the quantities in the square brackets
before the Airy functions in Eq. (52) can be obtained con-
veniently by numerically applying the least square procedure
inside the classically allowed region which should not be too
far away from the boundary θm to ensure accuracy.

For other wave sources and laser polarization, the flux can
also be obtained following the above procedure. Taking a p-
wave source and the linearly polarized laser along the z axis,
the flux can be obtained as

j̃r = [
π |ζ | 1

2
(
B2

1 + B2
2 + 2PratioB1B2

)] × Ai2(ζ )

+ [
π |ζ |− 1

2
(
B2

1 + B2
2 − 2PratioB1B2

)] × Ai′2(ζ ), (59)

where B1 = A1 cosβ1 and B2 = A2 cosβ2. The flux can also
be extended into the classically forbidden region in a similar
way.

C. Asymptotic behavior

The above formulas have been presented for any spherical
detector with a finite radius r . When the spherical detector is

far away, that is, r 
 d, these expressions can be simplified
greatly. Here, we present some useful quantities.

First, the cross-over angle θc can be simplified as

θc = arccos

(
1

1 + 2Ẽ

)
, (60)

and the classically allowed maximum angle θm on the detector
can be written as

θm = arccos

(
1 − Ẽ
1 + Ẽ

)
. (61)

Second, the partial derivative of the detector angle with
respect to the initial angle can be simplified as(

∂θ

∂β

)
r

= 1 − 1

ξη
× γ

1 + γ cosβ
, (62)

and (
∂2θ

∂β2

)
r

= − 1

ξη
× γ 2 sinβ

(1 + γ cosβ)2
. (63)

Third, the action difference becomes

�S = kd

(
cosβ2 − cosβ1 + 1

ξη
ln

1 + γ cosβ1

1 + γ cosβ2

)
. (64)

Finally, the flux expression can also be simplified. Specifi-
cally for the s-wave source, we have

j̃r =π ×
[
(A1 +A2)2|ζ | 1

2 × Ai2(ζ ) + (A1 −A2)2

|ζ | 1
2

× Ai′2(ζ )

]
.

(65)

And for thepz-wave source and the linear polarized laser along
the z axis, we also have

j̃r =π ×
[

(B1 +B2)2|ζ | 1
2 × Ai2(ζ ) + (B1 −B2)2

|ζ | 1
2

× Ai′2(ζ )

]
.

(66)

V. CALCULATIONS AND DISCUSSIONS

We now calculate and discuss the detached-electron flux
using the above formulas. In Fig. 5, we display the spatial
variations of detached-electron flux for both an s-wave source
and a pz-wave source corresponding to the trajectory patterns
in Fig. 2 and analyzed previously in Sec. II. One can see that
the caustic surfaces always correspond to enhanced quantum
flux distributions. In the following, we discuss several specific
physical effects.

A. Effects of the observing distance from the force center

We first examine an s-wave source such as in the pho-
todetachment of S−. Some results for different distances
are displayed in Fig. 6. For this s-wave source, alternative
calculations indicated by dots based on the exact Coulomb
Green’s function (Appendix E) confirm the accuracy of the
present method, and meanwhile exhibit the following merits
of our present semiclassical calculation. The semiclassical
calculation turns out to be much faster than the calculation
based on the exact Coulomb Green’s function, which proved
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FIG. 5. (Color online) Spatial distributions of the quantum flux plotted from r = 1000a0 to r = 5000a0 with the corresponding trajectory
patterns shown in the regions r < 1000a0. Here d = 300a0 and α = 1. (a)–(c) are for an s-wave source and (d)–(f) for a pz wave. Note for
Ẽ = 1/2, different color bars are used for an s-wave source and for a pz-wave source.

to be time-consuming as a result of the Whittaker function of
the second kind. Besides that, the definition of the Green’s
function implicitly involves a spherically symmetric source;
treatment of other sources is not available to our knowledge.
In contrast, the present semiclassical approach and its resulting
expressions are valid for s waves or any other sources. Most
important, a very clear physical picture is obtained from the
semiclassical analysis, which the exact Green’s function does
not provide.

Let us examine the dependence of the differential cross
section on the radius r of the spherical detector centered at
the force center. We observe that in Fig. 6 the greatest change
is near θ ≈ 0 (backward-scattered electrons). There is a large
current near the positive z axis at small r , but it drops off
rapidly at large r . We see also with increasing r a shift in the
boundary of the classically allowed region from about 90◦ to
110◦, and with it a shift in the interference pattern. However,
the number of peaks is unchanged. It is determined by the
classical action SCOT along a closed orbit lying on the z axis
going from the source to the classical turning point and back
to the source,

SCOT = kd

(
2 + 1

ξη
ln

1 − γ
1 + γ

)
, (67)

obtained from Eq. (45) or Eq. (64), which is independent of
the detector distance r .

For a pz-wave source, similar effects on the observing
distance are displayed in Fig. 7 but now the detached-electron
flux is considerably reduced near the center of the observing
angles.

B. Effect of scaled energy

Differential cross sections at three different scaled energies
are shown in Fig. 8. The boundary of the allowed region
for each case is marked by a dashed line. We see that as
the scaled energy increases, the allowed region increases,
crossing 90◦ when Ẽ = 1. The boundary of that region is
close to an inflection point in the graph of the differential
cross section, where the behavior changes from oscillatory in
the allowed region to decaying exponential in the forbidden
region. Also, as Ẽ increases, the number of interference peaks
in the differential cross section increases.

C. Effect of the angular distribution of outgoing waves

For a pz-wave source, the outgoing wave has a node at
β = π/2. This means that the trajectory going out at that
angle has zero amplitude. At the corresponding point θc in
the differential cross section, only one term contributes. These
points are marked as dotted lines in Fig. 8. The effect of the
node is greater at large scaled energy (Fig. 9). There, the
cross-over angle θc tend to π/2 and the flux profile gives the
p-wave spatial structure more clearly.

D. Effect of the distance between the source and the force center

The classical differential cross section for large r depends
only on the scaled energy Ẽ = Ed/α, so the distance between
the ion and the force center has the same effect as the
energy. However, when we include the interference effects,
the distance has a large effect. According to Eq. (45), the
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FIG. 6. (Color online) Calculated differential cross sections on
spherical screens at different detection distances for an s-wave
source. Here d = 300a0, α = 1, and Ẽ = 2. The results from our
semiclassical propagation approach are displayed as solid curves.
They are compared with the results from the exact Coulomb Green’s
function method (dots). The agreement between the two independent
approaches indicates that results from both approaches are correct.

action difference between the two interfering trajectories is
proportional to d. Therefore, as d increases, the number of
oscillations in the interference pattern also increases.

E. Dependence of the electron flux on the model parameters

The dependence of the interference structure on the other
parameters, such as the electron energy E, the distance
d between the wave source and the force center, and the
negative-charge number α at the force center, is also very
interesting. Generally, with all the parameters increasing, the
number of interference rings also increases, but the details are
different.

Here, we display the dependence of the differential cross
sections on the distance d between the wave source and the
force center (Fig. 10). As d is increased, the position θc and the
electron-signal range θm are almost fixed for large r . Actually,
for large r , the envelop of the differential cross sections hardly
changes but the number of oscillations in the envelop increases
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FIG. 7. (Color online) Differential cross sections for a p-wave
source on spherical detectors at different distances, here d = 300a0,
α = 1, and Ẽ = 2. The green, red, and blue curves are calculated,
respectively, at r = 500a0, r = 1000a0, and r = 0.5m. Note the
asymptotic behavior for r 
 d denoted by the dotted line is hardly
distinguishable from the one at r = 0.5m.

significantly. One can understand this point from the scaling
property in the system.

F. Scaling spectroscopy

Going through the analytical formulas presented in the
previous sections, one can verify that the differential cross
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FIG. 8. Differential cross sections observed on spherical detectors
at very large distances r 
 d for a pz-wave source. The three curves
correspond to the three typical trajectory patterns in Fig. 2. Here
d = 300a0 and α = 1. The cross-over angle θc and the classically
allowed boundary θm on the spherical screen are indicated by the
dotted lines and the dashed lines.
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FIG. 9. (Color online) The angular distribution of outgoing waves
from the source dramatically affects the differential cross section at
high energy. Here we compare the differential cross sections of a
p-wave source (blue and thick) and of an s-wave source (black and
thin). Here Ẽ = 20, d = 300a0, α = 1, and r 
 d . The dashed curve
(red) depicts the spatial structure (cos2 θ ) of the p-wave source itself.
The dot-dashed line and the dotted one indicate the position of θc and
θm, respectively.

section is completely determined by the following three scaled
parameters: Ẽ = Ed/α, r̃ = r/d, and ω = kd, not dependent
on α, d, E, and r separately. The scaled Hamiltonian can be
written as

h = p̃r
2

2
+ L̃2

2r̃2
+ 1

r̃
− 1, (68)
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FIG. 10. Differential cross sections (solid lines) for a p-wave
source with different distances d between the wave source and the
repulsive force center. Hereα = 1, Ẽ = 2, and r 
 d . The dotted line
and the dashed one indicate the position of θc and θm, respectively.

where

L̃ = k̃d̃ sinβ,

with k̃ =
√

2Ẽ, d̃ = 1 and α̃ = 1.
If the four model parameters, including the negative-charge

number α in the force center, the distance between the wave
source and the force center d, electron energy E, and the
detector location r relative to the force center, satisfy the
scaling relations Ẽ = Ed/α and r̃ = r/d, the scaled classical
trajectory pattern is unchanged, such as the patterns displayed
in Fig. 2. As a direct result, for large r , the envelop for the
oscillating differential cross section on the spherical detector
does not change as illustrated in Fig. 10.

G. Comparison with the photodetachment
in a homogeneous electric field

It is beneficial to compare the present system with the
photodetachment of negative ion in a homogeneous electric
field [4]. Here, we discuss some important differences and
similarities between the two systems.

As we have shown in the previous sections, in the present
system, the electron flux at dark-ring positions is not zero.
This is because the amplitudes A1 and A2 corresponding to
the two interference trajectories are quite different in value.
This is true even when the spherical detector is far away from
the force center. However, in a uniform electric field, when the
plane detector is located sufficiently away, the initial angles for
the two interference trajectories are approximately symmetric
relative toπ/2, and the amplitudes are almost equal. This leads
to the zero-flux dark rings for detachment in an electric field
when the observation plane is far away from the ion.

One advantage of the present system is the clear separation
and manipulation of θc and θm appearing in the differential
cross sections. This makes it feasible to observe the quantum
wave-source angular structure in photodetachment microscopy
experiments [5]. In contrast, in a uniform electric field, large
separation of θc and θm is difficult to achieve.

We note that in the limit of low scaled energy Ẽ, the
potential function in Eq. (2) acting on the detached electron
near the wave source can be approximated as

V (r) = α

r
− α

d
≈ − α

d2
(z− zion),

where zion is the z coordinate of the negative ion relative to the
force center. Therefore, in the limit of low scaled energy the
dynamics of the present system near the wave source resembles
that in a uniform electric field with an effective field α/d2.

VI. CONCLUSIONS

Inspired by an experiment of the Washington group [1]
and based on our previous studies on the photodetachment of
negative ion in an external field, we constructed a theoretical
model of the scattering of a point wave source near a repulsive-
force center. Completely analytical results for the classical
trajectory and the quantum differential cross section have been
presented in this paper.

For the classical motion, three typical trajectory patterns
were obtained, which correspond to the scaled energy smaller
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than, equal to, or larger than unity (Fig. 2). To obtain
the semiclassical differential cross section, two problems
have been solved: first, the reduced semiclassical amplitude
was obtained, whose physical interpretation was given and
illustrated; second, the flux expression, for the classically
accessible region, was obtained, and then was extended
to the classically forbidden region. The accuracy of the
semiclassical propagation method is shown to be excellent
through comparison with an exact Coulomb Green’s function
for an s-wave source.

Finally, we have demonstrated and discussed some in-
teresting phenomena occurring in the present system. They
include the interference patterns on the spherical detector
corresponding to the three cases and their dependencies on
the parameters, the scaling property of the differential cross
sections, and the comparison with photodetachment in a
uniform electric field.
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APPENDIX A: THE DERIVATION OF
EQ. (8) AND EQS. (13)–(16)

First we set

x̃ = 2Ẽ sin2(β).

Then, from the orbit equation Eq. (5), we have

[(d − r cos θ )2 + r2 sin2(θ )]x̃2 + [2r(1 − cos θ )(d − r cos θ )

− 2Ẽr2 sin2(θ )]x̃ + r2(1 − cos θ )2 = 0. (A1)

The discriminant for the existence of real root x can be
calculated as

� = 4r4 sin2(θ )(1 − cos θ )

×
[

(Ẽ + 1)2 cos(θ ) + Ẽ2 − 1 − 2Ẽ
d

r

]
� 0, (A2)

which gives us

δ = (Ẽ + 1)2 cos(θ ) + Ẽ2 − 1 − 2Ẽ
d

r
� 0. (A3)

Using the maximum θ expression in Eq. (11), we can write
δ as

δ = (Ẽ + 1)2(cos θ − cos θm). (A4)

Furthermore, we can get the solution x̃ from Eqs. (A1)–(A4)
as

x̃1,2 = (1 − cos θ )(Ẽ + 1)

×
(1 + cos θ ) − 1+ d

r

Ẽ+1
± √

(1 + cos θ )(cos θ − cos θm)(
1 − d

r

)2 + 2 d
r
(1 − cos θ )

.

(A5)

For convenience, we define

ã = (1 + cos θ )/2; (A6)

b̃ = (cos θ − cos θm)/2. (A7)

Then,

(1 + cos θ ) − 1 + d
r

Ẽ + 1
= ã + b̃ − 1

(Ẽ + 1)2
· d
r

; (A8)√
(1 + cos θ )(cos θ − cos θm) = 2

√
ãb̃. (A9)

In addition, we have

1 − cos θc = 2Ẽ

2Ẽ + 1

(
1 − d

r

)
. (A10)

Substituting Eqs. (A8)–(A10) in Eq. (A5), we have x̃1,2 =
2Ẽx1,2, and

x1,2 = (1 − cos θ )

×
Ẽ+1

2 (
√

1 + cos θ ± √
cos θ − cos θm)2 − 1

Ẽ+1
d
r

(2Ẽ + 1)
(
1 − d

r

)
(1 − cos θc) + 4Ẽ d

r
(1 − cos θ )

,

(A11)

which gives us the value of sinβ1,2 = √
x1,2.

After a brief analysis, one finds these trajectories touching
the caustic correspond to the larger value of sinβ with an
obtuse angle β. The initial angle β for another trajectory also
becomes greater than π/2 as the observing spherical angle θ
increases and crosses over the critical angle θc.

APPENDIX B: REDUCTION OF THE JACOBIAN IN EQ. (21)

Here we present the details going from the two-dimensional
Jacobian in Eq. (21) to the simpler expression in Eq. (22). The
present reduction can be considered as the continuation of an
Appendix of [10]. First, the motion equation can be formally
written as

r = r(t,β); (B1)

θ = θ (t,β), (B2)

from which, if the distance r is fixed as a constant, we have
the following two relations:(

∂r

∂β

)
t

= −
(
∂r

∂t

)
β

(
∂t

∂β

)
r

; (B3)

(
∂θ

∂β

)
t

=
(
∂θ

∂β

)
r

−
(
∂θ

∂t

)
β

(
∂t

∂β

)
r

. (B4)

On the other hand, the orbit equation can be formally written
as

r = r[θ (t,β)], (B5)

from which we have(
∂r

∂β

)
t

= dr

dθ

(
∂θ

∂β

)
t

. (B6)

Now eliminate the partial derivative ( ∂t
∂β

)r in Eq. (B4) using
the relations in Eqs. (B3) and (B6), we get(

∂θ

∂β

)
t

=
(
∂r
∂t

)
β(

∂r
∂t

)
β

− dr
dθ

· (
∂θ
∂t

)
β

(
∂θ

∂β

)
r

. (B7)
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After substituting the expressions in Eqs. (B6) and (B7) into
the two-dimensional determinant in Eq. (21), we have

det

(
∂(r,θ )

∂(t,βν)

)
= pr

(
∂θ

∂βν

)
r

. (B8)

APPENDIX C: THE DERIVATION OF EQS. (23) AND (38)

From Eq. (10), we have

θ = θ0 + θp, (C1)

where

θp = arccos

(
1 + d

r
ξ 2 sin2(β)

ε

)
. (C2)

According to Eq. (7),

cos θ0 = 1 + ξ 2 sin2 β

ε
; (C3)

sin θ0 = −ξ
2 sinβ cosβ

ε
, (C4)

we obtain(
∂ cos θ0

∂β

)
r

= ξ 2 sinβ cosβ

ε

(
1 + 1 − η2

ε2

)
. (C5)

Thus, (
∂θ0

∂β

)
r

= 1 + 1 − η2

ε2
. (C6)

According to Eq. (C2),

cos θp = 1 + d
r
ξ 2 sin2 β

ε
; (C7)

sin θp = ξ sinβ

ε
×

√
η2 − 2

d

r
− d2

r2
ξ 2 sin2 β, (C8)

we obtain(
∂ cos θp
∂β

)
r

= −ξ
2 sinβ cosβ

ε
× η2 − d

r
(1 + ε2)

ε2
. (C9)

Using Eq. (C8) and the following relationship,√
η2 − 2

d

r
− d2

r2
ξ 2 sin2 β = pr

k
× ξ, (C10)

we have (
∂θp

∂β

)
r

= η2 − d
r
(1 + ε2)

ε2
× k

pr
cosβ. (C11)

Combining Eqs. (C6) and (C11), we arrive at(
∂θ

∂β

)
r

= 1 + 1 − η2

ε2
+ η2 − d

r
(1 + ε2)

ε2
× k

pr
cosβ. (C12)

We denote the action difference S(r,βν) − S(r,β = 0) as
Sd , then from Eq. (37),

Sd =
∫ βν

0
kd sinβ

(
∂θ

∂β

)
r

dβ. (C13)

Using Eq. (C12), the above Sd can be written out completely
as

Sd = kd ×
[

(1 − cosβν) + (1 − η2)�

+ ξ
(
η2 − d

r

)
�− ξ × d

r
×�

]
, (C14)

where

� =
∫ βν

0

sinβ

1 + ξ 2η2 sin2 β
dβ; (C15)

� =
∫ βν

0

sinβ cosβ√
η2 − 2 d

r
− d2

r2 ξ 2 sin2 β

dβ; (C16)

� =
∫ βν

0

sinβ cosβ

(1 + ξ 2η2 sin2 β) ×
√
η2 − 2 d

r
− d2

r2 ξ 2 sin2 β

dβ.

(C17)

The � and � can be integrated straightforward as

� = − 1√
1 + ξ 2η2

× 1

2ξη
× ln

(
1 + γ cosβν
1 − γ cosβν

× 1 − γ
1 + γ

)
;

(C18)

� = sin2 βν√
η2 − 2 d

r
− d2

r2 ξ 2 sin2 βν +
√
η2 − 2 d

r

. (C19)

Using the following relationships in order,

1 − η2 = −
√

1 + ξ 2η2; (C20)

1 − γ 2 cosβν = ε2

1 + ξ 2η2
; (C21)

1 + ξ 2η2 = 1

1 − γ 2
, (C22)

� can be written as

� = 1

1 − η2
× 1

ξη
×

[
− ln ε + ln

1 + γ cosβν
1 + γ

]
. (C23)

Using the relationship Eq. (C10), � can also be written as

� = k

ξ
× sin2 β

p0r + pνr . (C24)

Replacing the variable β by

y(β) =
√
η2 − 2

d

r
− d2

r2
ξ 2 sin2 β, (C25)

then � can be calculated as

� = 1

2
(
η2 − d

r

)
ξ 2η

×
[

ln
η2 − d

r
− ηy(β)

η2 − d
r

+ ηy(β)

]βν
0

. (C26)

Substituting the expression y(β) into the above equation, we
have

� = 1(
η2 − d

r

)
ξ 2η

×
[

ln ε + ln
η2 − d

r
+ η

√
η2 − 2 d

r

η2 − d
r

+ η
√
η2 − 2 d

r
− d2

r2 ξ 2 sin2 βν

]
.

(C27)
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Using the relationship in Eq. (C10), we arrive at

� = 1(
η2 − d

r

)
ξ 2η

×
[

ln ε + ln
η2 − d

r
+ ξη

k
p0r

η2 − d
r

+ ξη

k
pνr

]
. (C28)

Equation (38) is obtained by substituting Eqs. (C23), (C24),
and (C28) into Eq. (C14).

APPENDIX D: SPATIAL INTERFERENCE
ON A PLANE SCREEN

Here, we present some useful formulas for the spatial
interference pattern on a plane detector perpendicular to the
z axis. Similar to the formula in Eq. (43) for the flux on a
spherical detector, the spatial interference pattern on a plane
detector, which intersects the z axis at z > d, has the following
“primitive” form in the classically allowed region,

jz = k

r2
× |C(k)|2 ×

{
p1z

p1r
A2

1|Ylm(β1,ϕ)|2

+ p2z

p2r
A2

2|Ylm(β2,ϕ)|2

+ p1z + p2z√
p1rp2r

A1A2Re(Ylm(β1,ϕ)Y ∗
lm(β2,ϕ))

× cos

(
�S − π

2

)}
, (D1)

where

pνz = pνr cos θ − kd

r
sinβ sin θ, (D2)

and Re means real part.
For scaled energy Ẽ � 1, the above flux expression can be

used everywhere on the plane detector due to the absence of
the caustic surface on the plane detector. For scaled energy
less than a unity, a classical boundary will be found at

ρm = 2
√
Ẽ

1 − Ẽ2
×

√
[(Ẽ + 1)z− Ẽd][(Ẽ + 1)z− d],

0 < Ẽ < 1, (D3)

which is from the caustic surface in Eq. (9) and has the
following asymptotic form,

ρm = z× 2
√
Ẽ

1 − Ẽ ,

(D4)

for z 
 d. Near the boundary between classically allowed
and forbidden regions, the above semiclassical formula can be
extended to the forbidden region using the Airy function in a
similar way. Similar to Eq. (46), the reduced flux on the plane
can be defined as

j̃z = jzz
2 × 1

k
× 1

|C(k)|2 × 1

N2
lm

, (D5)

then

j̃z = z2

r2
× 1

N2
lm

×
{
p1z

p1r
A2

1|Ylm(β1,φ)|2

+ p2z

p2r
A2

2|Ylm(β2,φ)|2

+ p1z + p2z√
p1rp2r

A1A2Re(Ylm(β1,φ)Y ∗
lm(β2,φ))

× cos

(
�S − π

2

)}
. (D6)

For z 
 d, the results for the plane detector can be obtained
from the results for the spherical detector by using pνz =
pνr cos θ,jz = jr cos θ , and j̃z = j̃r cos3 θ .

APPENDIX E: EXACT COULOMB GREEN’S FUNCTION
METHOD FOR AN S-WAVE SOURCE

The exact Coulomb Green’s function can be written as [11]

G(r,d,ε) = �(1 − iι)
2π |r − d| [W ′

iι,1/2(�)Miι,1/2(ϑ)

−Wiι,1/2(�)M′
iι,1/2(ϑ)], (E1)

which satisfies the inhomogeneous Schrödinger equation with
a delta source,(

1

2
∇2 − α

r
+ ε

)
G(r,d,ε) = δ(r − d), (E2)

where, ε = E + α/d and ι = −α/κ with κ = √
2ε; � =

−iκ(r + d + |r − d|), andϑ = −iκ(r + d − |r − d|);�(1 − iι)
is a gamma function [16]; Miι,1/2(ϑ) and Wiι,1/2(�) are,
respectively, the Whittaker functions of the first kind and the
second kind [16].

Based on the above Coulomb Green’s function, an exact
quantum-mechanical flux generated by an s-wave source can
be obtained from Eq. (41),

jr = |�(1 − iι)|2
4π2|r − d|2 Im(�∗ ), (E3)

where

� = W ′
iι,1/2(�)Miι,1/2(ϑ) − Wiι,1/2(�)M′

iι,1/2(ϑ), (E4)

and

 = W ′′
iι,1/2(�)Miι,1/2(ϑ)

∂�

∂r

+W ′
iι,1/2(�)M′

iι,1/2(ϑ)

(
∂ϑ

∂r
− ∂�

∂r

)
−Wiι,1/2(�)M′′

iι,1/2(ϑ)
∂ϑ

∂r
, (E5)

with [16]

W ′′
iι,1/2(�) =

(
1

4
− iι

�

)
Wiι,1/2(�); (E6)

M′′
iι,1/2(ϑ) =

(
1

4
− iι

ϑ

)
Miι,1/2(ϑ); (E7)

W ′
iι,1/2(�) = − 1

�
Wiι+1,1/2(�) +

(
1

2
− iι

�

)
Wiι,1/2(�);

(E8)

M′
iι,1/2(ϑ) = iι+ 1

ϑ
Miι+1,1/2(ϑ) +

(
1

2
− iι

ϑ

)
Miι,1/2(ϑ).

(E9)
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The free-electron Green’s function satisfies(
1
2∇2 + E)

Gfree(r,d,E) = δ(r − d), (E10)

and has the following expression,

Gfree(r,d,E) = − eik|r−d|

2π |r − d| , (E11)

which serves as a reference for the initial outgoing wave.
Following the definition in Eq. (46) in Sec. IV, the reduced
expression for the exact quantum flux on a spherical detector
of radius r can be written as

j̃r = r2

√
2E|r − d|2 |�(1 − iι)|2Im(�∗ ). (E12)

In Figs. 6(a)–6(f), the above formula in Eq. (E12) has been
compared with the semiclassical result in Eq. (52) for the s
wave. The agreement between the two independent approaches
indicates that both results are reliable.

We have also found as the detection distance increases, the
computation using Eq. (E12) becomes more and more difficult
because of the Whittaker function of the second kind. However,
it is possible to simplify the expressions in the large r limit.
Note when r 
 d, Eqs. (E6) and (E8) can be simplified to

W ′′
iι,1/2(�)

.= 1

4
Wiι,1/2(�); (E13)

W ′
iι,1/2(�)

.= − 1

�
Wiι+1,1/2(�) + 1

2
Wiι,1/2(�). (E14)

In addition, when r 
 d, we have |�| 
 1. The following two
approximations related to the Whittaker function of the second
kind [17] can be used,

Wiι,1/2(�)
.= �iιe−�/2, (E15)

and

Wiι+1,1/2(�)
.= �Wiι,1/2(�). (E16)

The detached-electron flux on a spherical detector can be
written as

jr = κeιπ |�(1 − iι)|2
4π2|r − d|2 ×

∣∣∣∣M′
iι,1/2(ϑ) + 1

2
Miι,1/2(ϑ)

∣∣∣∣2

.

(E17)

Note that the exponential contains ι, not i.
When Eq. (E9) is used, the above expression can be written

alternatively as

jr = eιπ |�(1 − iι)|2
4κπ2|r − d|2

× |iιMiι,1/2(ϑ) − (iι− 1)Miι−1,1/2(ϑ)|2
d2(1 + cos θ )2

, (E18)

where the following recurrence relation was also needed [18],

(iι− 1)Miι−1,1/2(ϑ) + (ϑ − 2iι)Miι,1/2(ϑ)

+ (iι+ 1)Miι+1,1/2(ϑ) = 0. (E19)

Using a relationship between the Whittaker function and the
Kummer function [16],

Mμ̃,η̃(ϑ) = e−ϑ/2ϑ
1
2 +η̃M

(
1
2 + η̃ − μ̃,1 + 2η̃,ϑ

)
, (E20)

the expression in Eq. (E18) can be written alternatively as

jr = κeιπ |�(1 − iι)|2
4π2|r − d|2

× |iιM(1 − iι,2,ϑ) − (iι− 1)M(2 − iι,2,ϑ)|2. (E21)

Furthermore using a recurrence relation for the Kummer
functions [18],

M(1 − iι,1,ϑ) − iιM(1 − iι,2,ϑ) − (1 − iι)M(2 − iι,2,ϑ)

= 0, (E22)

the above expression in Eq. (E21) can be simplified as

jr = κιeιπ

4π sinh(ιπ )|r − d|2 × |M(1 − iι,1,ϑ)|2, (E23)

where the explicit expression for |�(1 − iι)|2 has been used
[16].
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FIG. 11. (Color online) Comparing calculations from different
approaches. The red and thick lines are from the present semiclassical
propagation method [Eq. (D6) and its extension into the classically
forbidden region], and the dots represent the calculations from the
Coulomb Green’s function we derived in Appendix E [Eq. (E27)].
We emphasize the above two approaches are independent of each
other. The results given in Eq. (E28) [19] are displayed by the
thin solid curves. Note the calculations are matched with our
results at the point ρ = 0. The one-dimensional WKB approxima-
tion of Miι,1/2(ϑ) [19] described in Appendix E are the dashed
lines. (a) z = 5 cm, E = 0.1 cm−1, d = 66100a0, and Ẽ = 0.16925.
(b) d = 300a0, α = 1, z = 1m, and Ẽ = 0.5.
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Finally, when r 
 d, from Eq. (E23) and using the
relationship between the Whittaker function and the Kummer
function in Eq. (E20) again, the expression in Eq. (E3) is
simplified to

jr = ιeιπ

4π sinh(ιπ )|r − d|2 × |Miι−1/2,0(ϑ)|2
d(1 + cos θ )

, (E24)

and the reduced flux in Eq. (E12) can be written as

j̃r = ιπeιπ√
2E sinh(ιπ )

× |Miι−1/2,0(ϑ)|2
d(1 + cos θ )

. (E25)

For a plane detector at z 
 d, the reduced flux is described
by

jz = ιeιπ

4π sinh(ιπ )|r − d|2 × cos θ

d(1 + cos θ )
× |Miι−1/2,0(ϑ)|2,

(E26)

and the corresponding reduced flux in Eq. (D5) can be obtained
as

j̃z = ιπeιπ√
2E sinh(ιπ )

× (cos θ )3

d(1 + cos θ )
× |Miι−1/2,0(ϑ)|2.

(E27)

Note the first subscript in the Whittaker function is iι− 1/2,
not iι.

When this work was nearly complete, we noticed that
Golovinski and Drobyshev have also examined the present
model for an s-wave source based on the Coulomb Green’s
function [19]. However, they obtained

jz ∼ |Miι,1/2(ϑ)|2, (E28)

which differs from our result in Eq. (E26). Golovinski
and Drobyshev also used a semiclassical approximation to
calculate Whittaker’s equation Miι,1/2(ϑ). Note that the

Whittaker function Miι,1/2(ϑ) satisfies the following Whit-
taker’s equation [16],

d2Miι,1/2(ϑ)

dϑ2
−

(
1

4
− iι

ϑ

)
Miι,1/2(ϑ) = 0, (E29)

which can be written as

d2Miι,1/2(ϑ)

dy2
+

(
κ2 − 2α

y

)
Miι,1/2(ϑ) = 0, (E30)

where

y = 1
2 (r + d − |r − d|). (E31)

Equation (E30) corresponds to a one-dimensional Schrödinger
equation for a particle with energy ε = κ2

2 in a potentialV (y) =
α
y . Therefore, the semiclassical approximation or the WKB
approximation can be obtained [19] as

MWKB

iι,1/2(ϑ) ∼ 1

κ1/2(1 − 1
s
)1/4

sin

[
S(y) + π

4

]
, y > y0,

(E32)

where,

S(y) = κy0[
√
s(s − 1) − ln(

√
s − 1 + √

s)], (E33)

and s = y/y0 with y0 = α/ε being the turning point.
In Fig. 11 our results are compared with the results of

Golovinski and Drobyshev [19]. While the WKB approx-
imations (dashed lines) are rather good to reproduce the
differential cross sections in Eq. (E28) (blue and thin lines)
[19] in the small ρ region, their results, however, differ
significantly from ours. Our calculations using the three-
dimensional semiclassical propagation approach (red and thick
lines) agree well with the results based on Coulomb Green’s
function (dots). And, furthermore, these two approaches are
independent.
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