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We investigate the influence of intense driving fields whose components exhibit orthogonal polarizations on
high-order-harmonic spectra from aligned diatomic molecules. We derive a generalized two-center interference
condition, which accounts for s-p mixing and the orbital symmetry, within the strong-field and the single-active
electron approximation. We show that the nonvanishing ellipticity introduces an effective dynamic shift in the
angle for which the two-center interference maxima and minima occur, with regard to the existing condition for
linearly polarized fields. This shift depends on the ratio between the field-dressed momentum components of the
returning electron parallel and perpendicular to the major ellipticity axis along each possible orbit. Because of
this dependence, we find that there will be a blurring in the two-center interference minima, and that increasing
ellipticity leads to splitting in such patterns. These features are investigated in detail for H, and Ar, in a

bichromatic field composed of two orthogonally polarized waves.
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I. INTRODUCTION

Since the mid 1990s, elliptically polarized fields have
been proposed as a resource for controlling strong-field
phenomena, such as high-order-harmonic generation (HHG),
and its applications. Concrete examples are the production
of isolated attosecond pulses [1-4], and, more recently,
attosecond molecular imaging [5,6]. This control is possible
due to the fact that HHG owes its existence to a three-step
physical mechanism [7], in which an electron is freed via
multiphoton or tunnel ionization. Subsequently, it propagates
in the continuum and accumulates kinetic energy from the laser
field on its return to the parent ion. If it recombines with the
ion it releases the energy in the form of emitted high-harmonic
radiation. A typical high-order-harmonic spectrum exhibits a
plateau, with harmonics of comparable intensities, followed by
a sudden cutoff, whose energy position roughly corresponds
to the maximal kinetic energy of a returning electron. Whether
an electron will return to the parent ion or not depends on
the time it is born into the continuum, and on its subsequent
propagation. By an adequate choice of the external-field
parameters, such as its temporal profile and polarization, one
may steer the motion of the active electron in the continuum
and control how it returns to the core. As a direct consequence,
one may manipulate high-harmonic spectra.

This is the key idea behind polarization-gating techniques.
An external field with nonvanishing ellipticity will introduce
a momentum component perpendicular to the momentum an
electron usually acquires from a linearly polarized laser. This
new degree of freedom may be controlled by modifying the
field ellipticity. For instance, lasers with changing ellipticity
over time were suggested in [1-4] as a way to produce
isolated attosecond pulses. This was experimentally realized
in [8,9], where the dependence of HHG on the ellipticity of
the driving pulses was used to create a temporal window [9]
of linear polarization, for which, and only then, the generation
of extreme ultra violet (XUV) harmonics is possible. This
technique allows the generation of a broadband of XUV
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pulses with the possibility of single cycle pulses. This is
an improvement on the attopulses produced through linearly
polarized pulses, for which only the spectral portion around
the cutoff can be used. Furthermore, polarization-gating
techniques allow a substantial increase in the intensity of the
attosecond pulses produced [5].

Another important application of polarization-gated pulses
is the attosecond imaging of matter, in particular, the recon-
struction of molecular orbitals [6]. This imaging has been first
realized with aligned molecules in linearly polarized fields
[10]. However, elliptically polarized fields exhibit a series of
advantages. First, they allow a greater degree of control of
the angle with which an electron leaves and returns to its
parent ion [6,11]. Hence, in principle, there is no necessity
of aligning or rotating the molecule to be imaged. Potentially,
this provides access to degenerate orbitals, or molecules that
are difficult to align. Second, they allow molecular-orbital
reconstruction from a single-shot measurement. This may be
useful for probing dynamic processes in which space, energy,
and time coherence are important. Finally, by playing around
with the field parameters, one may suppress or enhance the
contributions of individual orbits along which the recolliding
electron may return [12].

In order, however, to be able to image molecules with
elliptically polarized fields, one must disentangle the imprints
left by the field on the molecular target from the features
caused by the field itself. For linearly polarized driving fields,
molecular imprints in HHG spectra have been widely studied,
at least within the single-active electron, single-active orbital
approximation. For instance, it is by now common knowledge
that nodal planes cause a strong suppression in HHG spectra if
they are aligned parallel to the laser-field polarization [13].
Apart from that, the high-harmonic spectra from aligned
molecules exhibit a multi-slit-like interference pattern, with
pronounced maxima and minima, which is dependent on the
internuclear distance and the orientation of the molecule with
respect to the polarization of the laser field. This is a structural
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effect that results from the electron wave packet recombining
to spatially different centers. For the simplest scenario, i.e.,
a diatomic molecule, these interference patterns have been
predicted since the early 2000s [14] (for reviews, see, e.g.,
[15], and our recent publication [16]). Many of such studies
have been performed within the strong-field approximation
(SFA), which has been generalized to molecular systems (see,
e.g., [17-26]). This approach has the particular advantage of
allowing an almost entirely analytic treatment and of providing
a transparent physical interpretation in terms of electron orbits,
while retaining quantum-mechanical features such as spatial
and temporal interference. Recently, a generalized two-center
interference condition for high-order-harmonic generation
in homonuclear diatomic molecules subjected to a linearly
polarized laser field that accounts for the orbital geometry and
also s-p mixing has been introduced [25].

Studies of the above-mentioned two-center interference for
elliptically polarized fields, however, are comparatively few.
Most of the studies are focused on the harmonic yield, as
a function of the driving-field polarization [27], or on the
ellipticity of the high-order harmonics as a way to probe
the anisotropy of a molecular medium [28-30]. In particular,
recent investigations have shown that the minimum related
to two-center interference becomes increasingly blurred and
appears to split if the ellipticity of the driving field is increased
[26]. Therein, an interference condition for the perpendicular
molecular orientation was presented, which was different
along the major and the minor polarization axis of the driving
field. The focus of such papers, however, was on the vector
character of the HHG transition probabilities [26], and on
the ellipticity of the high-order harmonics [30]. So far, the
above-mentioned blurring and splitting has not been addressed.

In this paper we present a two-center interference condition
for diatomic molecules in driving fields composed of two
orthogonal, linearly polarized waves. This condition holds
for arbitrary shapes, relative phase, and frequencies of these
components. It is applicable to elliptically polarized fields,
and to bichromatic fields such as in Ref. [6]. In the limit of
vanishing ellipticity, the interference condition in Ref. [25]
is recovered. The condition derived in this work is then
tested in HHG spectra computed employing the strong-field
approximation for aligned diatomic molecules. For the sake
of simplicity, we will loosely refer to the above-stated fields
as “elliptically polarized,” regardless of whether they are
mono-, bi-, or polychromatic. Throughout, we work within
the single-active electron, single-active orbital approximation
and assume the core to be frozen. One should note, however,
that there may also be imprints caused by the dynamics of the
core [28,31]. Such effects will not be addressed in this work.

This article is organized as follows. In Sec. II, we generalize
the molecular SFA to driving fields of nonvanishing ellipticity.
We start from the standard SFA transition amplitude for
high-order-harmonic generation, which is solved employing
the steepest descent method (Sec. IT A). In Sec. II B, the gener-
alized transition amplitude is explicitly stated. Subsequently,
we derive an analytic expression for two-center interference
minima, which contains an orbit-dependent, dynamic shift
(Sec. ITC). In Sec. III, we compute HHG spectra using a
bichromatic field composed of two orthogonal, linearly polar-
ized waves, and show that this dynamic shift is responsible for
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a blurring and splitting similar to that observed in Ref. [26].
Finally, in Sec. IV, we provide our conclusions and summarize
the main aspects of this work. We employ the length gauge and
atomic units throughout.

II. MODEL

A. Transition amplitudes

The SFA transition amplitude for HHG [32] is given by

M) = —i f 1 / d1”pde(p + AD)dion(p + AG"))

x 5P e, (1)
where
dion(p) = (P H;(1))|Wo) 2)
and
drec(p) = (pIr|Wo) 3)

are the ionization and recombination dipole matrix elements,
respectively. The semiclassical action

S@t,t',Q,p) = _%/ [p+A@Pdr — I,(t — )+ Qt (4

describes the propagation of an electron of field-dressed
momentum p + A(t) in the continuum from the ionization
time ¢ to the recombination time ¢. In the above-stated
equations, A denotes the vector potential, I, the ionization
potential, 2 the harmonic frequency, and H;(¢') = r - E(¢') the
length-gauge interaction Hamiltonian at the ionization time ¢’.

In this work, we assume that all the influence of the
molecular structure is in the prefactors (2) and (3), and
that only the highest occupied molecular orbital (HOMO)
contributes to the dynamics. These are the most widely used
assumptions within the molecular strong-field approximation.
Other assumptions, such as incorporating the structure of the
molecule in the action [17,20,21] or employing models with
more than one active orbital [22,31,33], have also been used
in the literature.

We calculate the transition amplitude (1) using the steepest
descent method. This implies that we solve Eq. (1) by finding
t', t, and p for which Eq. (4) is stationary. This gives us the
saddle-point equations

05t p) _ [P+AC |
o~ 2 =0 ®
@) _ / drlp + A()] = 0, ©
3]) t
and
, 2
0S(t,1".p) _ [p+A@] +1,-Q=0. (7)

ot 2

Physically, Eq. (5) expresses the conservation of energy for
the active electron upon tunnel ionization. Since tunneling has
no classical counterpart, this equation has no real solution.
Equation (6) fixes the intermediate momentum of the electron
so that it returns to the site of its release. In the present
model, this is assumed to be the geometrical center of the
molecule, at r = 0. Finally, Eq. (7) gives the conservation of
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energy of the active electron upon recombination, in which
its kinetic energy is converted in a high-harmonic photon
of frequency 2. Throughout, when computing the transition
probabilities associated with pairs of orbits, we employ a
uniform approximation that treats each pair collectively. The
transition probabilities associated with individual orbits are
computed using the standard saddle-point approximation,
which allows the orbits to be treated individually (for details,
see Ref. [34]).

B. Elliptically polarized fields

We will now assume that the external driving field is
elliptically polarized, i.e., made up of two linearly polarized or-
thogonal laser fields. Throughout, we will adopt the subscripts
(I and (L) to designate the momentum and field components
parallel to the major and minor polarization axes, respectively.

This implies that the time-dependent electric field E(r) =
—dA(t)/dt and the vector potential A(¢) may be written as

E(t) = Ej(t)é + E (1)éL ()
and
A@) =A0)é + AL()éL, 9

where the unit vector along the major and the minor polariza-
tion axis are denoted by é; and € , respectively.
For this specific case, it is convenient to rewrite the action
as
t

1
St up) = ‘Ef dlpy + A0

1 t
1 / dlp. + AL = Lt — 1)+ 1,
;

2
(10)
and the saddle-point equations as
S’ p)  Ipy+ AP [pL+ AL
f— —|— IP = O,
at’ 2 2
(11)

8S , /’ t t
(;—;m=fdr[p+A.(r>]+f delp. +AL(2)] = 0,

(12)
and
/ 2 2
aS(.t',p) _ [p) + Ay(@)] [pL+ A ()] +1,-Q
ot 2 2
=0, (13)

respectively. From Eq. (12) we obtain an equation for the
stationary momentum for elliptically polarized fields,

Pst = Pst|€) + PstL€1, (14)
where
_1 t
pup = —— / Ay(o)dr (15)
t—t /.
and
_1 t
P = —— / AL (D). (16)
t - t r/
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Equation (14) implies that, within the saddle-point approxi-
mation, the dynamics will be concentrated along the ellipticity
plane.

C. Interference condition

In order to derive the interference condition for elliptically
polarized fields, we will focus on the explicit expression for
the recombination prefactor d,... The ionization prefactor diop
will influence the overall intensity in the spectrum, and is not
relevant for a qualitative discussion of two-center interference
effects [21].

Within our model, we represent the HOMO by a linear
combination of atomic orbitals and neglect the motion of the
nuclei. Hence, the HOMO wave function Wy(r) reads

o) =) e [% <r+§) (=)l mathay, (r _ g)] ’

a

a7

where ,(r) are the atomic orbitals, R is the internuclear
distance, ¢, is the orbital quantum number, and m, is the
magnetic quantum number. The indices A, = m, correspond
to gerade (g) and A, =m,+ 1 to ungerade (u) orbital
symmetry, respectively.

Below we extend the two-center interference condition
for linearly polarized light given in Ref. [25] to elliptically
polarized light. We first consider the dipole matrix element
diec(p + A(¢)) for the wave function (17). This gives

drecP(1) = 3 e [POR2) o (1ylam DO R/

X i 9p(t)Ya(P(1)), (18)

where p(¢) = p + A(¢) and

Ya(p(1)) = /dSr Ya(r) exp[—ir - p(®)].  (19)

Q)32

In the above-stated equations, the terms related to the lack
of orthogonality between the bound states and the continuum
introduced by the SFA have been neglected (see Refs. [21,35]
for details). The quantity of interest is d;t (p(7) - E(z)) along
the field-polarization direction. Explicitly,

dx.(p(t) - E@0)) = an [e=PO-®R/2) 4 [)la=matha oiP(0)-R/2)]
a

(=) Y O,y ¥ (PO E,(0), (20)
b

where b =|| , L indicate the components along the major and
minor polarization axes.

Following the procedure in Ref. [25] for linearly polarized
laser fields, Eq. (20) can be rewritten as

dye.(p(r) - E(1)) = cos (p(t) : %) Ay +iA_sin (p(r) : g) ,
20
where

Ar =) cal(=D“ £ 1n(p + A@).)  (22)
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and

n(p.1) = —i[0p Y (PE|(1) + 0, ¥, (PEL(D)].  (23)

Note that, because there is an electric field component E | ()
and a field-dressed momentum component p, (¢) along the
minor polarization axis, the function n(p,?), the s-p mixing
embedded in Ay, will be different from the expressions
obtained in Ref. [25] for linear polarization. Rewriting
Eq. (21) as

dreo(p(t) - E(1)) = \/ AL — AZ sin [p(t) : % + a} , (24

—iA . P
where o = arctan /; +_ we expect interference minima at

R
o+ p@)- ) =nm. 25)
For elliptically polarized fields we have
R R R .
P(t) - = = py(t)7 cosOL + pL(t)7 sinfL, (26)

where 6, is the angle between the molecular internuclear and
the major polarization axes. Using

VP +A®) cos B =[p) + Aj(t)]cos 6, + [p1

+ AL (1)] sin 0y, Q7

where \/(p + A1) = /(py + A1) + (p1. + AL(1)) and
calling

It A1 _ e, %)
(p+ A
Wi A ALON_ v, @

V@ +ADY
we obtain
vp+ A(t))zg cos[f; — ¢(t, 1) =nm — «a, 30)

where

pL+AJ_(t):|. G1)

£(t,t") = arctan [ ot AD

Physically, this equation demonstrates that a field of
nonvanishing ellipticity introduces an effective shift ¢(z,t’)
in the alignment angle 6, at which the interference minimum
in the harmonic spectrum occurs, with regard to the linearly
polarized case. Using Egs. (30) and (7) we find that the
destructive interference leading to minima in the harmonic
spectrum is determined by the expression

2[nw —al?
© R2cos? [0, — ¢(t,1)]

From Eqgs. (28) and (29) it is clear that the value of ¢ depends
upon the field-dressed momentum components p; + A (¢) and
p1 + A, (t) of the returning electron, and hence on its return
time ¢ along each orbit. Furthermore, p; and p, are functions
of the return and ionization times ¢ and ¢’ according to the
saddle-point Eqs. (15) and (16). Therefore, the location of

the minimum in the harmonic spectrum given by Eq. (32) is
dependent on the electron orbit, i.e., the elliptical polarization

+1,. (32)
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introduces a dynamical shift. This implies that, whereas in the
case of linearly polarized fields there is a clear harmonic at
which destructive interference occurs for any given alignment
angle, and the interference condition is purely structural, in the
case of an elliptically polarized field, we expect to find minima
in various places in the harmonic spectrum depending upon the
intermediate momentum components. As the overall spectrum
is constructed from the coherent sum of a large number of
electron orbits, the above condition is likely to result in blurring
and in splitting in the two-center minima found in the harmonic
spectrum. In our computations, we have included up to the
three shortest pairs of orbits. The longer pairs have little effect
in the harmonic spectrum due to wave-packet spreading [22].

III. HIGH-HARMONIC SPECTRA

In the results that follow, we analyze the interference
condition derived in the previous section, for an elliptically
polarized field of the form

E@) = [sin(wt)é + & sin(nwt —2m@)é ], (33)

Ey
N
where the frequency ratio is chosen as n = 2. This corresponds
to a two-color field composed of a monochromatic wave of
frequency w along the major polarization axis and of its second
harmonic along the minor axis, respectively. Two-color fields
with elliptical polarization have been recently employed in
[5,6,11,12].

In Eq. (33), £ determines the relative strength of the field
component along the minor polarization axis with regard to its
component along the major axis, and ¢ is a phase factor which
determines the time delay between both waves. The field has
been normalized in such a way that the overall time-averaged
intensity (E?(¢)), remains constant. For a monochromatic field
(n = 1), this implies that the total ponderomotive energy U, =
(Aﬁ(t)),/2 + (A2 (#)),/2 remains constant as well. For two-
color fields, this condition implies that U, will decrease with
the driving-field ellipticity [36].

The HOMO is constructed using Gaussian-type orbitals
computed with GAMESS-UK [37]. Only s and p orbitals are
included in the basis sets employed in this work.

A. Testing the interference condition

As a starting point, we will focus on whether the effective
shift ¢(z,¢') can be identified and whether it agrees with
Eq. (32). For that purpose, we will compute the transition
probabilities |M(w)|* associated with individual orbits along
which the active electron returns to the core, starting from
the dominant, shortest pair of orbits. These orbits are well
known in the literature as “the long orbit” and “the short
orbit” [38], and correspond to electron excursion times of the
order of three-quarters of a field cycle. Throughout, we will
classify all electron orbits according to increasing ionization
times employing positive integers. For simplicity, we will first
consider H, as a target. Since its HOMO is a 1o, orbital
composed of s orbitals only, H; is very useful for investigating
whether Eq. (32) holds. The overall field intensity has been
taken to be the same as in Ref. [39].
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FIG. 1. (Color online) Harmonic spectra along the major po-
larization axis as functions of the alignment angle 6, for H,
(I, =0.5 au. and internuclear separation R =1.4 a.u.) in an
elliptical field described in Eq. (33) with n =2, w = 0.057 a.u.,
I =5x10"Wem™2, £ = 0.3 and time delay ¢ = 0.2. Panels (a)
and (c) show the spectra for the long electron orbits 1 and 1a starting
in the first and second half cycle, respectively, while panels (b) and (d)
exhibit the spectra obtained for the short orbits 2 and 2a starting in the
first and second half cycle, respectively. The generalized interference
condition (32) is indicated by the solid lines in the figure, whereby we
have just considered the real parts Re[¢(7,¢)] of the time-dependent
shifts. For comparison, we plot the two-center interference condition
for linearly polarized fields as the dashed lines. The central white
lines indicate vanishing alignment angle 6; = 0. The harmonic yield
is given in a logarithmic scale. The increase in the harmonic yields
after the cutoffs observed in the right panels are related to a breakdown
of the standard saddle-point approximation for the short orbits (for
details, see Ref. [34]).

In Fig. 1, we display these contributions as functions of
the alignment angle 6, between the internuclear axis and the
major polarization axis. Orbits 1 and 2 [panels (a) and (b),
respectively] start in the first half cycle of the driving field,
slightly after the first field peak, and return close to the field
crossing at the end of the first field cyclet = T = 27 /w. In the
lower panels of the figure, we display the contributions from
orbits 1a and 2a [panels (c) and (d), respectively], whose start
and return times are displaced by half a cycle with regard to
those of orbits 1 and 2. Throughout, the two-center interference
conditions are indicated, both for linearly and elliptically
polarized fields (dashed and solid lines, respectively). In the
elliptic case, we have considered the real parts of the dynamic
shift, i.e., Re[¢(¢,¢")] when plotting the two-center minimum.
We have verified that this approximation is accurate enough
for individual orbits, as Im[¢ (¢,7')] is vanishingly small in the
harmonic ranges of interest.

As an overall feature, we observe excellent agreement
between Eq. (32) and the outcome of the SFA computations,
with the two-center minimum varying from orbit to orbit.
Moreover, in contrast to what happens for linearly polarized
fields, the minimum is no longer symmetric upon 6; —
—0p. These features can be explained in terms of the time
dependence of the effective shift ¢(¢,7'). For a specific orbit,
the times #,#” will only vary with the harmonic energy €.
Hence, shifting 6, to —6; does not imply shifting ¢(¢,#’) to
—£(t,t'), and the above-mentioned symmetry will be broken.
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FIG. 2. (Color online) Real parts of the effective shifts £ (¢,t) as
functions of the harmonic order computed for orbits 1 and 2 [panel
(a)] and orbits la and 2a [panel (b)], using H, in two-color laser
fields of increasing ellipticity and the same relative phase ¢, intensity,
and frequency as in Fig. 1. The ellipticities have been increased
from &£ = 0 to & = 0.3 in increments of A& = 0.05. A lighter color
indicates a higher ellipticity. For clarity, the harmonic range in which
Fig. 1 starts is indicated by a black vertical line and a vanishing shift
is indicated by a horizontal black line. The dashed lines refer to orbits
1 and 1a, while the solid lines correspond to orbits 2 and 2a.

Furthermore, because ¢ and ¢’ are orbit dependent, we observe
different shifts ¢ (¢,¢) for different orbits. In fact, for orbits 1
and 2a, the shifts displace the interference minimum to the
right, while for orbits 1a and 2, this displacement is to the left.

Interestingly, the shifts observed for orbits 1 and 2 are
the mirror image of those obtained for orbits la and 2a,
respectively. This is due to the specific behavior of the
two-color driving field fort — ¢ + T /2,where T /2 = 7 /w.In
this case, Ay(t £ T7/2) = —Ay(t),and A (t £ T/2) = A, (1).
Hence, direct inspection of Eq. (31) shows that ¢(z,¢/) =
—¢(t £T/2,t' £ T/2). For a monochromatic elliptically po-
larized field, i.e., n =1 in Eq. (33), in contrast, ¢(¢,t') =
(@t £T/2,t' &+ T/2),i.e., the shift will remain invariant if the
ionization and return times are displaced in half a cycle.

The above-stated observation is confirmed by Fig. 2, in
which the real parts of the effective shifts £(¢,t") are plotted
for driving fields of increasing ellipticity. The case considered
in the previous figure, i.e., & = 0.3, is given by the outer
curves. For the harmonic range considered in Fig. 1, i.e.,
45 < Q/w < 90, Re[¢(¢,1')] > O for orbits 1 and 2a. This is
consistent with the fact that the interference minimum shifts
to the right for both orbits [see Figs. 1(a) and 1(d)]. Indeed,
when subtracted from a positive alignment angle 6, , a positive
shift will displace the interference condition (32) towards
lower harmonics. For ; < 0, on the other hand, subtracting a
positive shift will bring the minimum towards higher energies.
Beyond the cutoff, the real parts of the shifts decrease
substantially. Consequently, the interference condition will
approach that obtained for a linearly polarized field. This is
clearly seen in Fig. 1, for harmonic order Q2 /w > 69. A similar
analysis can be performed for orbits 2 and 1a, for which the
u-shaped minimum is displaced to the left in Figs. 1(b) and
1(c). In this latter case, Re[£(#,')] < O in the harmonic range
of interest. Note, however, that there is a small residual shift
beyond the cutoff, whose real part is negative for the orbits
starting at the first half cycle, and positive for those starting
at the second half cycle [Figs. 2(a) and 2(b), respectively].
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FIG. 3. (Color online) Transition probabilities associated with
individual orbits for H; in an elliptically polarized field with the same
parameters as in Fig. 1, but time delay ¢ = O between the w and the
2w waves. Panels (a) and (c) correspond to the long orbits 1 and 1a,
while panels (b) and (d) give the contributions of the short orbits 2 and
2a. The interference minima for linear and elliptically polarized fields
are indicated by the solid and dashed lines in the figure. The increase
in the harmonic signal after the cutoff observed in the left panels is
related to a breakdown of the standard saddle-point approximation
for the long orbits (for details, see Ref. [34]). The harmonic yields
are displayed in a logarithmic scale.

Hence, the minimum for elliptic polarization will approach
its counterpart for linearly polarized fields from the right in
Figs. 1(a) and 1(b), and from the left in Figs. 1(b) and 1(d).

One should note, however, that these shifts are strongly
dependent on the time delay between the low-frequency
and high-frequency waves. An example is provided in Fig.
3, for which both driving waves are in phase, i.e., ¢ = 0.
The minima for the dominant orbits 1, 1a, 2, and 2a once
more follow the generalized interference condition (32). The
curves, however, are markedly different from those displayed
in Fig. 1. A noteworthy feature is that there are now large
residual shifts beyond the cutoff. This is explicitly shown in
Fig. 3. There is once more very good agreement between Eq.
(32) and the minima encountered.

This agrees with Fig. 4, in which the real parts of the
shifts are displayed for the dominant orbits and ¢ = 0. In
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FIG. 4. (Color online) Real parts of the shifts ¢(¢,¢") computed
for a two-color elliptically polarized field (33) withn = 2and ¢ = 0.
Panels (a) and (b) refer to the orbits released in the first and second half
cycle, respectively. The remaining molecular and field parameters are
the same as in Fig. 2.
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contrast to what has been observed in Fig. 2, Re[¢(#,¢)] has
a nonvanishing value at the cutoff. For instance, for orbits 1
and 2, the residual shift at the cutoff is positive. However, if
the electron returns half a cycle later, i.e., along orbit la or 2a,
this shift is negative. This is expected as the major component
Aj(t) and A (¢ £ T/2) have different signs.

The behavior with the time delay ¢ may be understood
if one takes into consideration that this phase difference has
a strong influence on the velocity p; + A (¢) of the electron
upon return along the minor polarization axis. We have verified
that, for a wide range of phases ¢, including ¢ =0 and
¢ = 0.2, the electron return times are practically identical
to those obtained for linearly polarized fields. Thus, at the
cutoff, the electron will return near a crossing of the electric
field E(¢) along the major polarization axis. If ¢ = 0.2, the
amplitude |E, (¢)| will be close to its maximum. This implies
that |A (t)|/Ay < 1. Hence, Re[¢(z,t')] is very small for the
harmonics at and beyond the cutoff. On the other hand, if
¢ = 0, the perpendicular component A (t)/A¢ = £1 for the
cutoff return times. This implies that the residual shifts will be
large.

This can be seen in Fig. 5, where we provide an illustration
of the vector potentials A () and A | (#.) for the return times at
a crossing. For ¢ = 0.2 [Fig. 5(a)], the vector potential A (¢.)
is very small, and so is the shift at and beyond the cutoff.
There is, however, a residual shift as the vector potential is
not exactly zero. For ¢ = 0, the transverse vector potential
A (t.) = §Ey/(Qw) is at its maximum at ¢ = ¢, as shown in
Fig. 5(b), so that the transverse velocity of the electron upon
return will be nonvanishing. Hence, at and beyond the cutoff
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FIG. 5. (Color online) Schematic representation of the major and
minor components of the vector potential A(z) for ellipticity & = 0.3,
frequency ratios 1:2 [n = 2 in Eq. (33)], and relative phases ¢ = 0.2
and ¢ = 0 [panels (a) and (b), respectively]. The electron return time
at t = 27 /w is indicated by the thick black lines in the figure. For
simplicity, all fields have been normalized to the vector potential
amplitude Ay = Ey/w.
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FIG. 6. (Color online) Harmonic spectra along the major polarization axis computed for individual orbits as functions of the alignment angle
0, for Ar, (ionization potential /,, = 0.58 a.u. and internuclear separation R = 7.2 a.u.). For comparison, the individual-orbit contributions
obtained for linear polarization are displayed in the far left panels (a) and (d), while in the middle and far right panels (b), (c), (e), and (f) the
same w — 2w elliptically polarized field as in Fig. 1 has been employed. Panels (b) and (c) exhibit the contributions from the long orbits 1 and
1la, while panels (e) and (f) depict the contributions from the short orbits 2 and 2a. For the upper and lower panels, the orbits start at the first and
second half cycle, respectively. The interference conditions for elliptically and linearly polarized fields are indicated as the solid and dashed
lines in the figure, respectively. The harmonic yield is given in a logarithmic scale. The increase in the harmonic yields after the cutoff observed
in panels (e) and (f) are related to a breakdown of the standard saddle-point approximation for the short orbits (for details, see Ref. [34]).

Re[¢(t,1")] # 0. This will leave large residual shifts beyond
the cutoff, as shown in the previous figures.

In order to see the behavior outlined in Fig. 2 more clearly,
it is desirable to seek a parameter range for which several
minima are present over a wide harmonic energy range. This
can be achieved by choosing a target with a large equilibrium
internuclear distance, such as Ar,. The spectra computed for
this target using individual orbits is displayed in Fig. 6, for
the same driving field as in Figs. 1 and 2. For each panel,
one may identify three interference minima. The lowest-order
minimum spans the whole harmonic range displayed in Fig. 2,
the intermediate minimum starts at approximately 2 = 30w,
and the highest minimum covers similar harmonic frequencies
to those studied in Fig. 1. The figure shows very distinct
behaviors for the long and short orbits. For the long orbits there
is a monotonic shift, either to the right [Fig. 6(b)], or to the left
[Fig. 6(c)], while for the short orbits the sign of Re[¢(z,7')]
varies. As a direct consequence, the elliptical minima“wiggle”
around their linear counterparts. For example, for orbit 2 [Fig.
6(e)], there is a shift to the right for harmonic frequencies 2 <
30w in the two lower minima. Around this harmonic energy,
the minimum crosses that obtained for linear polarization, and
moves to the left. This is consistent with the behavior of the red
solid curves in Fig. 2(a). For orbit 2a, the minimum follows the
red curves in Fig. 2(b), i.e., they are the mirror image of those in
Fig. 6(e) with regard to the shift 6, — —6,. This is explicitly
shown in Fig. 6(f). Once more, beyond the cutoff the elliptical
and the linear minima approach each other for ¢ = 0.2.
In general, the outcome of the strong-field approximation
follows the minima predicted by Eq. (32) reasonably well.
An exception is, however, the interference minimum »n = 1
obtained for the short orbits in very low (2 < 20w) and very

high (i.e., beyond the cutoff) harmonic ranges [see Figs. 6(e)
and 6(f)]. These discrepancies are possibly due to the fact
that, in these regions, the imaginary parts Im[Z (¢,¢)] increase
considerably for orbits 2 and 2a. Thus, the approximation
employed in the figure ceases to be accurate. Nevertheless, we
have verified that the analytic condition (32) is also valid in
this energy region for £ < 0.2 (not shown).

B. Coherent superpositions of orbits

In this section, we will study how the dynamic shifts
discussed above will add up if a coherent superposition of
orbits is taken into account. This is important as, in a high-
harmonic spectrum, there will be several possibilities for the
electron to return. Quantum mechanically, the corresponding
transition amplitudes will interfere, so that not only the
real parts of such shifts, but also their imaginary parts,
become important. For comparison, we include the spectra
computed for molecules in linearly polarized fields using the
three shortest pairs of orbits. These spectra are displayed in
Fig. 7, for H, and Ar, (upper and lower panels, respectively).
The figure also shows other types of interference that arise
from the coherent superposition of ionization and recombina-
tion events displaced in time. In all panels, we notice that both
the temporal interference patterns and the spatial, two-center
interference minima are symmetric upon 6; — —0;. This is
expected from our previous line of argument, and holds if
orbits starting in the first half cycle [Figs. 7(a) and 7(c)],
or in both half cycles [Figs. 7(b) and 7(d)] are included.
Another noteworthy feature is the presence of well-defined
odd harmonics when the orbits starting at subsequent half
cycles are added coherently, which can be clearly observed in
Figs. 7(b) and 7(d). They are a consequence of the periodicity
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FIG. 7. (Color online) Spectra computed for H, [panels (a) and
(b)] and Ar;, [panels (c) and (d)] in a linearly polarized field (¢ = 0),
including the six shortest pairs of orbits starting in the first [panels
(a) and (c)] and in both half cycles [panels (b) and (d)]. The field
intensity and frequency have been chosen as I =5 x 10'* W/cm?
and o = 0.057 a.u., respectively. The internuclear distances are
R™) = 1.4 auand RA? = 7.2 a.u. The white dashed lines indicate
the energy positions of the two-center interference minima. The yield
is displayed in a logarithmic scale.

of the field, and are not present if the start times are restricted
to the first half cycle.

In Fig. 8, we consider several coherent superpositions of
orbits for elliptically polarized fields. We will first focus on
the dominant pairs of orbits, i.e., 1 and 2, and, 1a and 2a, for
H; and ¢ = 0.2. These contributions are displayed in Figs. 8(a)
and 8(b), together with the coherent superposition of the two
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dominant pairs [Fig. 8(c)]. These results are then compared to
the spectra displayed in the lower panels of the figure, obtained
using the three shortest pairs. Specifically, in Figs. 8(d), 8(e),
and 8(f), we take orbits 1 to 6 starting in the first half cycle,
orbits la to 6a starting in the second half cycle, and all six
pairs of orbits, respectively.

All panels exhibit the u-shaped interference minimum,
whose approximate position is roughly indicated by the
interference conditions for linear and elliptical polarization
(see the three curves in the figure). The outcomes of our
simulations, however, do not follow a single interference
curve. This is expected as the contributions from each orbit in
a pair carry comparable weights, so that temporal interference
effects between the long and short orbits play a role. The
interference minima appear most clearly in the cutoff region,
at roughly Q =7lw, and at the bottom of the u-shaped
minimum, near 2 = 55w. This is due to the fact that, in these
energy regions, the interference conditions are closest. At
the lower-energy end of the u-shaped minimum, the three
interference curves cross. Hence, the two-center minimum
is very visible. In the vicinity of this point, however, the
three curves are very distinct. This implies that a blurring
in the interference condition for a coherent superposition
is expected in this region. At the cutoff, both Re[¢(¢,t)]
and Im[¢(¢,¢')] are closest and approach the interference
condition for linear polarization. As a direct consequence, the
two-center minimum is sharp around this frequency. Beyond
the cutoff, the imaginary parts of the shifts start to increase in
absolute value and move away from each other. This will have
little influence if only individual orbits are taken, as shown
in the previous section, but will be critical for a coherent
superposition of orbits. For that reason, the minimum becomes
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0.2
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FIG. 8. (Color online) Spectra computed for the same field and molecular parameters in Fig. 1 (¢ = 0.2), but considering the coherent
sums of the transition amplitudes associated to orbits 1 and 2 [panel (a)]; orbits 1a and 2a [panel (b)]; orbits 1, 1a, 2, and 2a [panel (c)]; the
three shortest pairs of orbits starting at the first half cycle; i.e., the pairs composed of orbits (1,2), (3,4), and (5,6) [panel(d)]; the three shortest
pairs of orbits la to 6a starting at the second half cycle [panel (e)]; and the three shortest pairs of orbits, i.e., orbits 1 to 6a [panel (f)]. The
interference conditions for the long and short orbits are given by the solid orange and white curves in panels (a) and (b), while the condition
for linearly polarized fields is indicated by the dashed gray lines in panels (a), (b), and (c). The yield is displayed in a logarithmic scale.
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blurred in this region. As in the linear case, there are high-order
harmonics if orbits starting at different half cycles are included.
The interference patterns, however, are no longer symmetric
with regard to 6, — —6;, not even if the orbits starting in
both cycles are taken into account [see Figs. 8(c) and 8(f)]. As
expected, the spectra obtained for orbits starting at the second
half cycle of the field, displayed in Figs. 8(b) and 8(e), are the
mirror images of those computed using the orbits starting at
the first half cycle, shown in Figs. 8(a) and 8(d). This holds
not only for the u-shaped minimum, but also for the patterns
associated with the interference of events displaced in time.

If the longer orbits are included, this leads at most to
additional substructure in the low-plateau region, as a direct
comparison of the lower and the upper panels of Fig. 8§ shows.
This is caused by two main reasons. First, the excursion times
of the electron in the continuum are much longer, in fact over
one and a half cycles. Hence, a larger degree of wave-packet
spreading occurs for the active electron, and this renders the
contributions of such orbits less relevant. Second, the cutoff
determined by such pairs is lower than that determined by the
dominant orbits. In fact, for the parameters employed in the
figure, itlies around 1, + 1.48U , for orbits 3 and 4, and around
I, +2.42U, for orbits 5 and 6. This implies that, beyond
harmonic frequencies 2 >~ 55w, the contributions from such
orbits are strongly suppressed. Finally, we observe an overall
decrease in intensity, in comparison to the linearly polarized
case. This is expected, as a nonvanishing ellipticity leads to a
decrease in the tunnel ionization rate [40] and also in the return
probability for the electron [41]. There is also a displacement
of the cutoff frequency towards lower energies, in agreement
with previous studies in the literature [42—44].

In Fig. 9, we display the results obtained considering
different coherent superpositions if both waves are in phase,
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FIG. 9. (Color online) Spectra computed for the same field and
molecular parameters in Fig. 3 (¢ = 0), but considering the coherent
sums of the transition amplitudes associated to different combinations
of orbits. Panels (a) and (b) include the dominant pair starting at the
first half cycle and at both half cycles, respectively, while panels
(c) and (d) include the contributions from orbits 1 to 6 and 1 to
6a, respectively. The interference condition for linear polarization is
indicated by the dashed lines in the upper panels, while its counterpart
for elliptically polarized fields is given by the solid lines in panel 1.
The orange and white lines refer to orbits 1 and 2, respectively. The
yield is displayed in a logarithmic scale.
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i.e., for ¢ =0. Also in this case, the main effect is a
blurring of the structural interference condition, except at
the lowest-energy part of the interference minimum and near
the cutoff. An interesting aspect is how the residual shifts
that exist beyond the cutoff behave. If one considers start
times in a specific subcycle, these shifts are apparent in the
u-shaped structure. For instance, in Figs. 9(a) and 9(c), in
which only orbits starting at the first half cycle have been
included, one clearly sees that the suppression observed in
the harmonic spectrum matches the solid lines in the cutoff
region much more accurately than the interference condition
for linear polarization (dashed gray line). Apart from that,
this suppression is asymmetric and much more pronounced
for 6, > 0, i.e., on the right-hand side of these panels. This
is in agreement with the previous discussions. If, however,
the contributions from the first and second subcycles are
added coherently, both this asymmetry and the residual shifts
are washed out [see Figs. 9(b) and 9(d)]. As expected from
our previous discussion, (i) odd harmonics appear due to the
periodicity of the field, as shown in the right panels, and (ii)
the longer orbits do not influence the spectra considerably, as
shown in the lower panels. An interesting effect is a blurring
in the two-center minimum near the cutoff frequency (see
harmonics Q2 = 65w to 2 = 69w) identified in Figs. 9(b) and
9(d). This blurring is caused by the nonvanishing residual
shifts from orbits located at different half cycles. These shifts
are different for the orbits starting in the first and second half
cycles, and smear the minimum if a coherent superposition is
taken. For comparison, see Figs. 8(c) and 8(f), computed for
¢ = 0.2. As in this latter case the residual shift is vanishingly
small near the cutoff, this blurring is absent.

In Fig. 10 we exhibit the results computed for Ar, in
an elliptically polarized field with ¢ = 0.2. We focus on
the two-center minima n = 2 and n = 3 in Eq. (32). Apart
from the above-mentioned inaccuracies close to the threshold,
inclusion of the minimum n = 1 would require a much larger
range of intensities and would obscure the effects we intend
to analyze. The minimum n = 3, located in the high-plateau
region, behaves in a very similar way as that encountered
for H,, i.e., there is an overall blurring with regard to the
linearly polarized case and the minimum is clearest near
the cutoff and at the bottom of the u-shaped minimum. The
minimum n = 2 spans a much larger harmonic region, so that
the features observed are more dramatic. For this minimum,
we no longer observe a structure as in Fig. 7, but a whole
region in which suppression of the harmonic signal occurs,
i.e., there is a splitting in the minimum. This region is bounded
by the different interference conditions obtained for the long
and short orbits, indicated by the solid and dotted lines in
Figs. 10(a) and 10(c). This can be seen most clearly in Fig.
10(a), in which only the dominant orbits starting in the first
half cycle have been included. This picture, however, persists
if the longer pairs of orbits are included, as shown in Fig. 10(c).
If the orbits starting in the second half cycle are also added
coherently, this region will be bounded by the largest shifts
Re[(z,t)], which, in this case, correspond to the long orbits
1 and la [dotted lines in Fig. 10(d)].

Similar results, shown in Fig. 11, have been encountered
for ¢ = 0. However, because of the residual shifts that exist
for this phase, the splitting in the interference condition for
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FIG. 10. (Color online) Spectra computed for argon using the
elliptically polarized field of Fig. 1 (§ = 0.3, ¢ = 0.2) and different
coherent superpositions of orbits. In panels (a) and (b), we included
only the dominant orbits, while in panels (c) and (d) the six shortest
pairs of orbits have been taken. In panels (a) and (c), we considered
only ionization events starting in the first half cycle, while in panels
(b) and (d) both first and second half cycles have been taken into
consideration. The dotted and solid black lines in panels (a), (c),
and (d) give the interference conditions for the long and short orbits,
respectively. The dashed gray lines in panel (b) give the interference
condition for linear polarization. In the figure, only the interference
minima corresponding to n = 2 and n = 3 in Eq. (32) are visible.
The yield is displayed in a logarithmic scale.

the minimum » = 2 is far more visible. This is especially
true if the start times are restricted to a single half cycle, as
shown in Figs. 11(a) and 11(c). In this latter case, there is also
much larger asymmetry in the yield near the cutoff region for
n = 2. This is very visible if one compares the harmonic yield
observed in the region 60 < /@ < 70 and alignment angle

0 0
-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4

Alignment Angle 6, (units of rr) Alignment Angle 6, (units of rr)

FIG. 11. (Color online) Spectra computed for argon using the
same parameters and coherent superpositions of orbits as in Fig. 10,
but with a time delay of ¢ = 0. Panels (a) and (b): Dominant orbits
(1to2and 1 to 2a, respectively). Panels (c) and (d): six shortest pairs
of orbits (1 to 6 and 1 to 6a, respectively). The dashed lines in panel
(b) give the interference condition for linear polarization, and lines in
the remaining panels give the interference condition (32). The dotted
and the solid lines refer to the long and short orbits, respectively. The
yield is displayed in a logarithmic scale.
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0, ~ m /3 with its counterpart for §;, >~ —m /3. For the former
angle, this yield is much more suppressed in this harmonic
range. If however, one includes starting times in both half
cycles [see Figs. 11(b) and 11(d)], this asymmetry is lost.

IV. CONCLUSIONS

In this paper, we have studied high-order-harmonic gener-
ation in diatomic molecules in two-color elliptically polarized
laser fields. We have shown that, even within a very sim-
ple model, namely, the strong-field approximation and the
single-active electron, single-active orbital approximation, a
nonvanishing driving-field ellipticity introduces a dynamic
shift in a two-center interference condition which, for linear
polarization, is purely structural. This shift depends very
strongly on the orbit along which the active electron returns
to its parent molecule, and on its kinetic energy upon return.
What happens is that the angle with which the electron returns
is effectively incorporated in the two-center interference
condition. Furthermore, depending on whether the electron
returned with a nonvanishing transverse velocity at a field
crossing, there may be a residual dynamic shift at and beyond
the cutoff region for a given pair of orbits. A concrete example
has been provided for the situation in which both low- and
high-frequency driving waves were in phase.

For HHG transition probabilities related to individual
orbits, we have found that, in general, our numerical results
match very nicely the predictions from our generalized
interference condition. If coherent superpositions of orbits
are taken into account, the different shifts cause a blurring,
and, in some cases, a splitting in the two-center minima. For
elliptical polarization, these minima are no longer sharp, but,
rather, there will be a region in the spectra for which the
harmonic signal is suppressed. This region is bounded by the
different interference conditions encountered for individual
orbits. A similar splitting is also visible, though not discussed,
in Ref. [26].

The above-stated results show that, in principle, the angle
with which the electron returns to its parent molecule can
be extracted from the shifts in the two-center interference
patterns. In Ref. [6], this angle has been inferred from the
ratio between even and odd harmonics. One should note,
however, that, because the shifts are orbit dependent, they may
be difficult to extract from the interference patterns unless a
particular return event can be singled out. This would avoid
the blurring and splitting related to coherent superpositions of
orbits.

Both the blurring and the splitting happen in most harmonic
ranges, except in the cutoff region or when the modified
interference conditions coincide. Hence, in a realistic situation,
these dynamical shifts would mainly blur the two-center
minima unless they converged to a single residual shift at
the cutoff, or one of the orbits in a dominant pair could be
suppressed. If the ionization events are restricted to a single
half cycle of the driving field, clear shifts may be observed
under two conditions. First, if the relative phase ¢ is chosen
such that the residual shift at the cutoff is large, it may be
identified for harmonics in that energy range. Second, if such
a phase choice is not possible, then one of the orbits in the
dominant pair must be suppressed by adequate macroscopic
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propagation conditions [38]. Indeed, it is a well-known fact
that the long and the short orbits phase match differently [45].
This allows a high degree of control on which orbit is dominant
in which spatial region [46,47].

In addition to that, however, if the contributions to the
spectra from other half cycles are comparable, blurring may
still occur, as discussed in Sec. III B. Hence, it is necessary
to suppress such events by an adequate field choice, such as
for instance, few-cycle pulses [48]. Moreover, one should note
that, in this work, we have used the single-active electron,
single-active orbital approximation. However, it may happen
that multielectron effects and the core dynamics modify the
structural interference condition obtained using the HOMO.
Hence, for the interference condition computed in this work to

PHYSICAL REVIEW A 88, 023404 (2013)

be valid, it is necessary that the core can still be assumed
to be static and that the contributions from the HOMO
are dominant. Finally, for fields of non-vanishing ellipticity,
the residual Coulomb potential is expected to modify the
electron propagation in the continuum to a large extent
[49]. This will modify the dynamic shifts studied in this
work.
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