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Time-dependent complete-active-space self-consistent-field method for multielectron
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The time-dependent complete-active-space self-consistent-field (TD-CASSCF) method for the description of
multielectron dynamics in intense laser fields is presented, and a comprehensive description of the method
is given. It introduces the concept of frozen-core (to model tightly bound electrons with no response to
the field), dynamical-core (to model electrons tightly bound but responding to the field), and active (fully
correlated to describe ionizing electrons) orbital subspaces, allowing compact yet accurate representation of
ionization dynamics in many-electron systems. The classification into the subspaces can be done flexibly,
according to simulated physical situations and desired accuracy, and the multiconfiguration time-dependent
Hartree-Fock (MCTDHF) approach is included as a special case. To assess its performance, we apply the
TD-CASSCF method to the ionization dynamics of one-dimensional lithium hydride (LiH) and LiH dimer
models, and confirm that the present method closely reproduces rigorous MCTDHF results if active orbital
space is chosen large enough to include appreciably ionizing electrons. The TD-CASSCF method will open a
way to the first-principles theoretical study of intense-field-induced ultrafast phenomena in realistic atoms and

molecules.
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I. INTRODUCTION

The advent of the chirped pulse amplification (CPA)
technique [1] has enabled the production of femtosecond laser
pulses whose focused intensity easily exceeds 10'* W /cm?
and even reaches ~10%2 W/cm? [2-4]. Exposed to visible-
to-midinfrared pulses with an intensity typically higher than
10'* W/cm?, atoms and molecules exhibit nonperturbative
nonlinear response such as above-threshold ionization (ATI),
tunneling ionization, high-order harmonic generation (HHG),
and nonsequential double ionization (NSDI) [5,6]. HHG, for
example, represents a highly successful avenue toward an
ultrashort coherent light source in the extreme-ultraviolet
(XUV) and soft x-ray regions [7,8]. The development of
these novel light sources has opened new research possibil-
ities including ultrafast molecular probing [9-11], attosecond
science [12—14], and XUV nonlinear optics [15,16].

In parallel with the progress in experimental techniques,
various numerical methods have been developed to explore
atomic and molecular dynamics in intense laser fields. While
direct solution of the time-dependent Schrodinger equation
(TDSE) provides an exact description, this method is virtually
unfeasible for multielectron systems beyond He [17-29] and
H, [30-32]. As a result, the single-active electron (SAE)
approximation is widely used, in which only the outermost
electron is explicitly treated, and the effect of the others,
assumed to be frozen, is embedded in a model potential. This
approximation, however, fails to account for multielectron
and multichannel effects [10,33-37] in high-field phenomena.
Thus, alternative many-electron methods are required to catch
up with new experimental possibilities. For example, Caillat
et al. [38] have introduced the multiconfiguration time-
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dependent Hartree-Fock (MCTDHF) approach (see below)
to study correlated multielectron systems in strong laser
fields. Although they have presented the results for up to six-
electron model molecules, its computational time prohibitively
increases with the number of electrons. Another interesting
route is the time-dependent configuration-interaction singles
(TD-CIS) method, implemented by Santra and co-workers
[39,40], in which the many-electron wave function is expanded
in terms of the Hartree-Fock (HF) ground state and singly
excited configuration state functions (CSF). The TD-CIS
method has an advantage to give a clear one-electron picture
for multichannel ionizations. However, its applications are
limited to the dynamics dominated by single ionizations,
with an initial state described correctly by the HF method.
Time-dependent density functional theory (TDDFT) [41-43],
though attractive for its low computational cost, delivers only
the electron density, not the wave function, rendering the
definition of observables difficult. More seriously, it is difficult
to estimate and systematically improve the accuracy of the
exchange-correlation potential.

Among the more recent developments, the orbital-adapted
time-dependent coupled-cluster (OATDCC) method proposed
by Kvaal [44] is of particular interest, which pioneered the
time-dependent coupled-cluster (CC) approach with bivaria-
tionally adapted orbital functions and excitation amplitudes.
The fixed-orbital CC method was also implemented by Huber
and Klamroth [45]. The time-dependent CC approach should
be a promising avenue to the time-dependent many-electron
problems in view of the spectacular success of the stationary
CC theory. However, it seems to require further theoretical
sophistications to make a rigorous numerical method of it.
Hochstuhl and Bonitz proposed the time-dependent restricted-
active-space configuration-interaction (RASCI) method [46],
in which the total wave function is expanded with fixed
Slater determinants compatible to the restricted-active-space
constraints known in quantum chemistry [47]. The TD-RASCI
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method, with cleverly devised spatial partitioning, has been
successfully applied to helium and beryllium atoms [46]. A
disadvantage of the method is the lack of the size extensivity
[48,49] discussed in Sec. III, which is a common problem
of truncated configuration-interaction (CI) approaches, except
the simplest TD-CIS [39].

In this work, we propose a flexible ab initio time-dependent
many-electron method based on the concept of the complete
active-space self-consistent field (CASSCF) [50-53]. Our ap-
proach is derived from the first principles, and simultaneously,
fills the huge gap between the MCTDHF method and SAE
approximation.

Most of the ground-state closed-shell systems are described
qualitatively well by the HF method [48]. However, the
time-dependent Hartree-Fock (TDHF) method cannot describe
ionization processes [54], since it is enforced to keep the initial
closed-shell structure. Instead, at least two orbital functions
are required to describe the field ionization of a singlet
two-electron system. The spatial part of the total wave function
in such approximations reads

W(1,2) o< YD) (2) + (D (2) (1a)
= C191(DP1(2) + C22(1)2(2). (1b)

The first form is known as the extended Hartree-Fock (EHF)
[55-57] wave function and has been successfully applied
to the intense-field phenomena for two-electron systems
[55,57,58]. The second form is obtained by the canonical
orthogonalization of nonorthogonal orbitals v;—; » [48], and
is an example of the CI wave function [48,49]. It is clear that
not only the CI coefficients {C;(¢)} but also the orbitals {¢;(7)}
have to be varied in time in order to properly describe the
ionization. Thus we need the multiconfiguration Hartree-Fock
(MCHF) or the multiconfiguration self-consistent-field (MC-
SCF) wave function [48,49,53], where both the CI coefficients
and the shape of the orbitals are the variational degrees of
freedom.

This idea has been realized for many-electron systems
by the MCTDHF method [38,59], in which the total wave
function is expanded in terms of Slater determinant (or CSF)
bases,

W) =Y Ci(HP (), )
1

where both CI coefficients {C;(¢)} and bases {®;(t)} are
allowed to vary in time. The Slater determinants are con-
structed (in the spin-restricted treatment, see Sec. Il A) from
2n spin orbitals {¢,; p = 1,2, ...n} ® {«,B}, where {¢,(?)}
are time-dependent spatial orbital functions and « (f) is the
up- (down-) spin eigenfunction. See also Refs. [60—66] for the
MCTDHF method, and Beck et al. [67] and references therein
for the precedent multiconfiguration time-dependent Hartree
method for Bosons.

Despite its naming, which in principle refers to the general
multiconfiguration wave function of the form Eq. (2) with
flexible choice of expansion bases (range of summation 1),
previous implementations of the MCTDHF method (except
the fixed-CI formulation of Ref. [66]) were limited to the
full-CI expansion; the summation / of Eq. (2) is over all the
possible ways of distributing N electrons among the 2n spin
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orbitals. More intuitively, we write such an MCTDHF wave
function symbolically as

Wnierpnr : {12 (t) . . . g}, 3)

which is understood to represent the N-electron full-CI wave
function using n time-dependent orbitals. Though powerful,
the MCTDHF method suffers from severe limitation in the
applicability to large systems, since the full-CI dimension
grows factorially with increasing N.

It is reasonable to expect that in a large molecule inter-
acting with high-intensity, long-wavelength lasers, the deeply
bound electrons remain nonionized, while only the higher-
lying valence electrons ionize appreciably. For the bound
electrons, a closed-shell description of the HF type would
be acceptable as a first approximation [68]. On the other
hand, correlated treatment is required for ionizing electrons
to describe the seamless transition from the closed-shell-
dominant initial state into the symmetry-breaking continuum
(discussed in Sec. III B).

The CASSCF method [50-53] provides an ideal ansatz for
such a problem. It introduces the concept of core and active
orbital subspaces, and spatial orbitals participating in Eq. (3)
are classified into these subspaces. The core orbitals are forced
to be doubly occupied all the time, while the active orbitals are
allowed general (0, 1, or 2) occupancies. Thus, the CASSCF
wave function is written symbolically as

Weasscr(t) = pids - - - ¢ (4a)
X {¢nc+1¢nc+2 e ¢nc+nA}NA s (4b)

where factors (4a) and (4b) represent core and active sub-
spaces, respectively, and the total wave function is properly
antisymmetrized. See Sec. IT A for the rigorous definition. The
nc core orbitals describe Nc = nc /2 core electrons within the
closed-shell constraint, while the Ny active electrons are fully
correlated using na active orbitals. Whereas, in general, all
the orbitals are varied in time, it is also possible to further split
the core space into frozen-core (fixed) and dynamical-core
(allowed to vary in time in response to the field) subspaces.
See Fig. 1, which illustrates the concept of the orbital
subspacing.

The equation of motion (EOM) of our method, called
TD-CASSCE, is derived based on the time-dependent vari-
ational principle (TDVP) [69-71], as detailed in Sec. II. It
guarantees the best possible solution using the total wave
function expressed as Eq. (4). The fully correlated active
space enables a correct description of ionization processes
which involve the strong correlation caused by the breaking
closed-shell symmetry (discussed in Sec. III B). It can also
include multichannel and multielectron effects (discussed
in Sec. Il C). The dynamical core orbitals account for the
effect of field-induced core polarizations. In whole, the TD-
CASSCF method enables compact yet accurate representation
of multielectron dynamics, if the active space is chosen
correctly according to the physical processes of interest.

This paper proceeds as follows. In Sec. II, the details of
the TD-CASSCF method are described. Then in Sec. III, the
TD-CASSCF method is numerically assessed for ionization
dynamics of one-dimensional multielectron models. Finally,
Sec. IV concludes this work and discusses future prospects.
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FIG. 1. (Color online) Pictorial explanation of the TD-CASSCF
concept, illustrating a 12-electron system with two frozen-core
(orbitals 1 and 2), two dynamical-core (3 and 4), and four active
orbitals (5 to 8). Solving the orbital-EOM guarantees the variational
splitting, in a time-dependent sense, of core-active, core-virtual, and
active-virtual orbital subspaces.

Appendix provides the definition and computational details for
real-space domain-based ionization probabilities. The Hartree
atomic units are used throughout unless otherwise noted.

II. THEORY

In this section, we derive the EOMs for the TD-CASSCF
method. To this end, first we give the rigorous definitions of the
MCTDHEF, MCSCF, CASSCEF, and general multiconfiguration
ansatz for the total wave function in Sec. I A. Nextin Sec. II B,
the EOMs of orbitals and CI coefficients for the general
multiconfiguration wave functions are discussed by reviewing
the work of Miranda et al. [66]. Then we specialize the general
formulation to the TD-CASSCF method in Sec. II C to derive
the explicit EOMs, and discuss its computational aspects
in Sec. IID.

A. Multiconfiguration wave functions

Our formulation is determinant-based [47,65,72] within the
spin-restricted treatment, i.e., using the same spatial orbitals
for up- and down-spin electrons. We define n occupied spa-
tial orbitals {¢,; p = 1,2,...,n} and N} — n virtual orbitals
{ps;a=n+1,n+2,...,N,}, where N, is the dimension of
the spinless one-particle Hilbert space, determined by, e.g., the
number of grid points to discretize the orbitals or the number of
intrinsic single-particle basis functions to expand the orbitals.
The indices {p,q,r,s}, {a,b}, and {i,v,A,y,8} are used to label
occupied, virtual, and general (occupied + virtual) orbitals,
respectively, and {o,7} € {«,B} label spin eigenfunctions. In
the following, Einstein’s summation convention is applied for
repeated orbital indices within a term, with summation ranges
implicit as above. The orbitals are assumed to be orthonormal
all the time,

(Du(Dpu(1)) = /dr¢fj(t)¢u(t) =4, (&)
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where 8 denotes the Kronecker delta. The Slater determinants
®;(¢) in Eq. (2) are constructed from the occupied orbitals
{¢p}, and given in the occupation number representation
[49,65] as
1) = 1755 - 1 - 1)
n
at O At P
= [@)" @'y vac), 6)

p=1

where &jw (and a,, appearing below) is the fermion creation
(destruction) operator for 2N}, spin orbitals {¢,} ® {«,B}. The
integer array {/; = 0,1} specifies the occupancy of each spin
orbital, where Z'pl:] I7 = N°, with N being the number of
o-spin electrons, and N = N + N#. The time dependence of
the occupation number vector |/(¢)) is implicit in the spatial
orbitals.

We focus on the dynamics induced by spin-independent
external fields, and the initial wave function is assumed to
be the spin eigenfunction. Therefore the total and projected
spin operators ($2,5.) are the constants of motion. Each
Slater determinant is the eigenfunction of S, with eigenvalue
(N® — N#)/2, while not generally of $2. However, the varia-
tional optimization of an initial state normally gives proper spin
combinations, especially for the singlet ground state. See, e.g.,
Ref. [72], for a working protocol to obtain the spin-adapted
solutions, within the determinant-based approach, for more
complex electronic structures.

Throughout this paper, the term MCTDHF is used for
the method based on the full-CI expansion using n occupied
orbitals:

Mgct

[Wnctorr()) = Y Cr(OIT()), (7)
1

with [ varying freely in the full-CI space Ilgcy, spanned by
all the determinants generated from the 2n occupied spin
orbitals. This is the current standard of the MCTDHF method
as mentioned in Sec. I. Note that Miranda er al. [66] used
the term MCTDHEF in a broader sense to denote approaches
based on the general multiconfiguration wave functions. To be
definite, we call the general ansatz as MCSCF:

I
[Wncscr() = Y CrOI (1)), ®)
1

with the general CI space IT defined as any arbitrary subspace
of Igcyr, IT = {|I) € Tgcr; Cy(¢) £ 0}. A trivial example of
this class is the single-determinant HF wave function for
closed-shell singlet or open-shell high-spin states. The only
nontrivial applications of Eq. (8) to the time-dependent
problems made thus far is the general open-shell TDHF
approaches formulated in Ref. [66], in which the CI coef-
ficients are determined by the spin symmetry and are time
independent.

One of the most important MCSCF methods in quantum
chemistry is the CASSCF (also known as fully optimized
reaction space) method introduced in Sec. I [Eq. (4)], in which
the CI expansion is limited to the space spanned by Slater
determinants that include nc doubly occupied core orbitals,
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called the CASCI space I1cas:
Mcas

[Weasscr(?)) = Z Cr()I1@)), &)
;

nc
N = [alal,
i=1

with )", I7 = N being the number of o-spin active electrons
satisfying N{ = N° — Nc/2 and Ny = Ny + Nﬁ. Here-
after, we use orbital indices {i,j,k,/} for core orbitals and
{t,u,v,w,x} for active orbitals, while keeping {p,q,r,s} for
general occupied (core + active) orbitals. Following the con-
vention in the electronic structure theory [48,49], we use the
acronym CASSCF(N4,n) to denote the CASSCF wave func-
tion with N, active electrons and n, active orbitals. The
MCTDHF wave function with n occupied orbitals is identical
to CASSCF(N,n) and denoted as MCTDHF(n). See Fig. 1,
Egs. (3) and (4) in Sec. I, and Egs. (50) and (51) in Sec. III,
for intuitive understanding of these notations.

[T @@y wae), 10

t=nc+1

B. Equations of motion for MCSCF wave functions

Recently, Miranda et al. discussed EOMs for MCSCF
wave functions [66]. Although their main motivation was
the fixed-CI formulations, they also presented important
equations applicable to the general MCSCF wave functions
(see Sec. IV of Ref. [66]). Here we follow the essentials of
their development to obtain Egs. (20) and (21) below.

The spin-free second-quantized Hamiltonian is given by

H =hi'El + Jglt EM2, (11)

where A/ and gfj)} are the one- and two-electron Hamiltonian
matrix elements,

p = / drg(nh (r.V,) g, (r), (12)

gl = f/ dridrag; (ri)g;(r2)Ve(ri,ra)
X @u(r1)g, (ra), (13)

with A consisting of kinetic, nucleus-electron, and external
laser terms, and V. being the electron-electron interaction, and

Bl =Y"al,av, (14)

EA:}L)} = Zalaairayr&w = ErEY — EA“S]);. (15)
oT

Following the TDVP [69-71], the action integral S,
n R 8
S[¥] =f dt{¥| <H — i—) W), (16)
f dt
is made stationary,

3S=/1dt{(8W|(I:I|\P)—i|‘p>)

to

+ (WA +i(¥])|sW)} =0, a7

with respect to allowed variations §W of the total wave
function, where W = oW /dt. The time derivative of W is
integrated out by part, assuming §W(#) = W (#;) = 0. See
Ref. [71] for the formal discussion on the validity of this
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procedure. By taking the orbital orthonormality into account,
the variations and the time derivatives of an orbital ¢, can be
written as ¢, = ¢, A}, and iéﬂ = ¢y R, respectively, with
Rt =i(¢, |¢,). The matrix A is anti-Hermitian, while R
is Hermitian [66]. Then the allowed variation and the time
derivative of the total wave function are compactly given by

I
W) =) " 11)8C; + A|W), (18)
1

I
i) =i) |1)C;+ R|W), (19)
1

where §C; and C ; are the variation and the time derivative of
the CI coefficient C;, and A = A*E!, R = R*E™. Inserting
Egs. (18) and (19) and their Hermitian conjugates (5P|
and —i(®| into Eq. (17), and requiring the equality for
individual variations §C;(t) and A (¢), after some algebraic
manipulations [66] we have

iC; = (1|H|¥), (20)
(WA — THE* W) — (W|E*(1 — THH|Y) =0, (21)

where H = H — R,and [1 = > sen 1) (I]is the configuration
projector onto the general CI space II. The system of
equations, Eqgs. (20) and (21), is to be solved for iC; and R,
which determine the time dependence of CI coefficients and
orbitals, respectively. In Ref. [66], these equations appeared as
an intermediate to derive the MCTDHF equation, rather than
as the final result. Here we emphasize that Egs. (20) and (21)
are valid for general MCSCF wave function fit into the form of
Eq. (8). Equation (21) is also extensively discussed by Miyagi
and Madsen in their recent development of the MCTDHF
method with restricted CI expansions [73].

C. TD-CASSCF equations of motion
1. Orbital equations of motion

Now we apply the CASSCEF constraint defined in Sec. IT A
to the general orbital-EOM derived in Sec. I B. Equation (21),
with T1 replaced by fICAS, reduces to a trivial identity for an
orbital pair {{£,v} belonging to a same orbital subspace (core,
active, or virtual), since the singly replaced determinants,
E'|I) = 260|1), EL|I), or Eg|I) =0, either fall within Tcas
or vanish, and the configuration projector 1 — I[Tcag eliminates
such contributions. We refer to these intrasubspace orbital
rotations Eff = {E ;,E;,E"Z} as redundant, since the total
wave function is invariant under such orbital transformations,
if accompanied by the corresponding transformation of CI
coefficients [38,49]. For the redundant orbital pairs, one can
freely choose R/ to be the matrix element

R = ($,10()|y) (22)

of an arbitrary one-electron Hermitian operator 6(¢) [38].
Next, for orbital pairs {u,v} belonging to different sub-
spaces (core-active, core-virtual, or active-virtual), the pro-
jector fICAs can be dropped in Eq. (21), since E(ﬂ\ll) is not
included in ITcas, and we have a simpler expression,

(WI[A - RE]IW) =0, (23)
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with EF = {EZ,Eap ,E!,E!} constituting the nonredundant
orbital rotations. The general orbital-EOM of Eq. (21) is
thus reduced to Eq. (23), which is to be solved only for the
nonredundant orbital pairs.

It is fascinating to see an analogy in Eq. (23) with the
time-independent MCSCEF theory; it is formally identical to the
generalized Brillouin condition of the stationary wave function
[74,75], if we replace H — R with H. Thus the remaining
derivations are parallel to the time-independent theory. We
can explicitly write down the matrix elements of Eq. (23) to
obtain

R{D} — D{'R; = Fl' — F", (24)
$
F'' = D} + gy PX, 25)

where D! = (W|E}|W) and P! = (W|E}}|W¥) are one-
and two-electron reduced density matrix (RDM) elements,
respectively. The matrix F is called the generalized Fock
matrix, whose Hermiticity, leading to the vanishing right-hand
side of Eq. (24), is the stationary condition with respect to the
orbital variations [49,51-53].

The nonzero density matrix elements of the CASSCF
wave function are D = 28}, D}, P,] = 48,8] —268/8, P} =
2D!, P!l = —D! and P!“ . Then the required generalized Fock
matrix elements read [51]

FE=2(f 4 6Y). 26)
FtM = fuMDtu + (Ft)zl‘L s 27)

where the matrices f, G, and I', represent, respectively,
operators f, G, and I'; given by

d.c.
f=hC+> @l - k). (28)
J
G = <f; - %K’) DY, (29)
L/lg) = Wild) PY". (30)
f.c.
W) = h(t) + Z (2J;(0) — K;(0)), (31)
J

where summation j in Eqs. (28) and (31) are restricted
within dynamical-core (d.c.) and frozen-core (f.c.) subspaces,
respectively. The operators f and G are universal and
Hermitian, while f, is defined with an active orbital ¢, to
be applied from the left and is non-Hermitian. We define
Coulomb J, exchange K, and general W mean-field operators
as J, = J) K, =K}, Jl = W R}|¢,) = WP|p,), where
W,f is local [63] and given in the coordinate space as

Wy (r) = / dFg,(F)Vee(r,F)dg (F). (32)

In Eq. (31), time argument ¢ is explicitly attached to emphasize
that the time dependence of the frozen-core dressed one-
electron Hamiltonian 27€(¢) comes entirely from the external
laser field contribution in fl(t): Now Eq. (24) for the time
derivative matrix RY =1i(¢,|¢,) can be worked out for
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intersubspace (nonredundant) elements:

RI'=Ri* =0 (i e f.c.), (33)

R =R* = f*+G¢ (i edc), (34)

RY = R = f* 4+ (T,)4(D™ ", (35)

Rl = R* = f/ + (D7), {GY — (T)!} 36)
(i €dc),

with D! = 28! — D!.

One could, in principle, directly work with Egs. (33)—-(36) in
the matrix formulation [59], which determines the time depen-
dence of occupied {¢,(?)}, as well as virtual {¢,(¢)} orbitals.
However, it is beneficial to introduce the orbital projector

0 => Iga)(dal =1 I} (6l (37)
a 4

onto the virtual orbital space to avoid (using the assumed
completeness) explicitly dealing with numerous virtual
orbitals [38,67]. Thus we arrive at the final expression of
EOMs for dynamical-core and active orbitals as follows:

ilg:) = O(f + G)li) + |pp) R, (38)
ilg) = O F1¢r) + Luldu) (DD} + 16,)R,  (39)

with R determined by Egs. (36) for nonredundant pairs, and
taken from Eq. (22) for redundant elements. The dynamics of
the total wave function is independent of  in Eq. (22), but the
choice of § affects the numerical stability and efficiency of the
propagation scheme [38]. Solving Egs. (36)—(39) guarantees
the optimal separation, in the TDVP sense, of frozen-core,
dynamical-core, active, and virtual orbital subspaces, as illus-
trated in Fig. 1. This ensures the gauge invariance of the TD-
CASSCF method, since the orbital subspaces are stable against
single excitations [Eq. (23)] arising with the transformation,
e.g., from the length gauge to the velocity gauge.

2. CI equations of motion

The general CI-EOM of Eq. (20) is specialized to the TD-
CASSCF method as

Mcas
iC; = Z (Hy, — 81,E™ — Ry;) Cy, (40)
J
where R;; = (I|R|J) = (I14]J), E* and H}, are active
orbital contributions to the total energy and determinant basis
Hamiltonian matrix elements, respectively,

E=(V|H|V) = EC + E*, (41)
(I\H|J) = 8;,EC + H}Y, (42)
where
d.c.
E€ =Y " + £}, (43)
EA = fiD! + gl PA”, (44)
Hp, = fUDi)" + Lgiv (P, (45)
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where (D))l = (I|E’|J) and (Pt = (I|ELZ)|J). In
Eq. (40), we make a particular phase choice, i(V|¥) = 0, by
extracting the dynamical phase exp[—i [ "dt'E(1")] from the
total wave function. This stabilizes the CI-EOM, especially
when we have a large active space.

D. Computational remarks

The TD-CASSCF method includes as special cases both
TDHF and MCTDHF methods, thus bridging the gap between
the uncorrelated and fully correlated descriptions in a flexible
way. A practical advantage of this generality is that a
computational code written for the TD-CASSCF method can
be used also for TDHF and MCTDHF calculations, by setting
{nc =n, np =0} and {nc =0, np = n}, respectively. It
can also execute open-shell TDHF calculation with fixed CI
coefficients [66]. One indeed finds close similarity between
TD-CASSCFEOMs Egs. (38)—(40) and those of the MCTDHF
method (see, e.g., Ref. [65]). Naively, ingredients of the
TD-CASSCF EOMs are the compilation of those for the
TDHF (core orbitals) and MCTDHF (active orbitals and
CI coefficients) methods. This means that an existing code
for the MCTDHF method can be easily generalized to the
TD-CASSCF method.

The computationally most demanding procedures required
to integrate the TD-CASSCF EOMs are grouped into two
categories:

(A) Calculations of 2RDM elements P}, and the two-
electron contributions of Eq. (40),
Mcas
i€ «— Z g (P C. (46)

The amount of work in these procedures roughly scales as
O[Ni(nA — Np)?*Nye] if N¢ = Nﬁ (see Ref. [47] for more
details), where Ny is the number of determinants in I[Tcas,
which in turn scales factorially with the number of active
electrons Na.

(B) Calculations of the mean fields W/ (r), two-electron
integrals g’¥ , and the 2RDM contributions in Eq. (39):

i) «— Wy lge) P (DY (47)

The computational cost of these steps depend explicitly on the
number of grid points (or basis functions) N, as O(nZNZ) for
the mean fields and 0(n4ANb) for the others.

Important cost reductions are achieved for both procedures
(A) and (B) by the TD-CASSCF method adopting core orbitals,
compared to the MCTDHF method with the same number of
occupied orbitals. The speedup and resource savings for pro-
cedure (A) are substantial due to the decreased CI dimension.
This is especially the case if No < N, which is expected
for an electronic structure with a few weakly bound valence
and large numbers of physically inactive core electrons. The
cost reduction for procedure (B) is not as drastic as for
(A), since the amount of arithmetics O(n?N?) of computing
mean fields qu (r) is independent of the CAS structure (only
related to n). The computations of two electron integrals and
Eq. (47) become much faster through restricting the orbital
indices within the active instead of all occupied orbitals. The
relative importance of these bottlenecks largely depends on
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the problem at hand, and on the spatial representation of the
orbitals and electron-electron interactions. This point will be
discussed in Sec. III C.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section we apply the TD-CASSCF method to the
ionization dynamics of one-dimensional (1D) multielectron
model molecules. The effective 1D Hamiltonian for N elec-
trons in the potential of M fixed nuclei interacting with an
external laser electric field E(¢) is taken as

M

Zm

1 82

H= Z 28x

E(t)x;

(48)

where x; i = 1,...,N) is the position of the ith electron,
X ={X,}andZ ={Z,} (a = 1, ...,M) are the positions and
charges of nuclei, and ¢ and d adjust the soft Coulomb op-
erators of electron-nuclear and electron-electron interactions,
respectively. The electron-laser interaction is included within
the dipole approximation and in the length gauge. Note that
the TD-CASSCF method is gauge-invariant, as mentioned
in Sec. IIC1. We have performed some of the calculations
described below also in the velocity gauge and confirmed that
the results are virtually identical to those in the length gauge.

In this work, we make the simplest choice of A(t) = 0[38]in
Eq. (22), and therefore R;; = 0in Eq. (40). The orbital-EOMs
are discretized on an equidistant grid of spacing Ax = 0.4
(finer grid with Ax = 0.1 is used for drawing Figs. 2—4) within
a simulation box |x| < L = 600. An absorbing boundary
is implemented by the mask function of cos'/* shape at

relative energy (mhartree)

0 1 L i 1
3.0 3.2 3.4 3.6 3.8 4.0

R (a.u.)

FIG. 2. (Color online) Several cuts of the adiabatic energy surface
E(r, R) of the 1D-(LiH), model obtained by the MCTDHF(8) method.
The energy of Eq. (49) is plotted [relative to the lowest energy
of E(r=23,R=35)=—-14.182 a.u.] against intermolecular
LiH-LiH distance R for several bond lengths r of Li-H, constrained
to be the same for two LiH molecules.
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FIG. 3. (Color online) The ground-state electron density and
occupied HF orbitals of the 1D-LiH model. (a) The total electron
density by HF (black dashed) and MCTDHE(8) (black thick solid)
methods are compared. The two lines closely overlap each other. Also
shown are the core (orbital 1) and valence (orbital 2) contributions
to the total HF density. (b) The occupied HF orbitals are drawn in an
arbitrary scale vertically shifted by orbital energies —1.82 (orbital 1)
and —0.67 (orbital 2). The solid curve and dashed vertical lines show
the nuclear potential and positions of nuclei, respectively.

15% side edges of the box. The ground-state electronic
structure is obtained by the imaginary time propagation with
the fourth-order Runge-Kutta (RK4) algorithm with Schmidt
orthonormalization of orbitals after each propagation [59].
The real-time propagations use a variable step-size embedded
fourth- and fifth-order Runge-Kutta (VRKS5) method. The
kinetic energy operator — % 93—;2 is evaluated by the eighth-order
finite difference, and spatial integrations are replaced by grid
summations using the trapezoidal rule. Further details of the

computations are given separately below.

A. 1D-LiH and LiH dimer models: Ground state

We consider 1D lithium hydride (LiH) and LiH dimer mod-
els. The reason for choosing these models is that they represent
the simplest examples of such electronic structures with (i)
deeply bound orbitals and (ii) several weakly bound orbitals,
as shown below. These characteristics should be the key in
the three-dimensional (3D) multielectron dynamics, where the
existence of energetically closely-lying valence electrons is
quite common, which requires to take both multichannel and
multielectron effects into account. As discussed previously
[62], cares have to be made for the physical soundness of 1D
models. Nevertheless, we expect that the features (i) and (ii)
are transferable, and 1D applications can elucidate advantages
and limitations of theoretical methods, before being applied to
real 3D systems.
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FIG. 4. (Color online) Same as Fig. 3 for the 1D-(LiH), model.
(a) The core and valence densities correspond to the contributions
from orbitals 1 and 2, and from orbitals 3 and 4, respectively. (b) The
orbital energies are —1.85, —1.77, —0.73, and —0.60, for orbitals 1-4,
respectively.

For LiH, we set the molecular parameters as Z = {3,1}
and X = {-1.15,1.15}. For (LiH),, Z ={3,1,3,1} and
X ={—4.05,—1.75,41.75,44.05}. The soft Coulomb
parameters ¢ = 0.5 and d = 1 are used, since an often-made
choice of ¢ = d = 1 [76,77] was found to overemphasize the
electron-electron repulsion. The above molecular parameters
correspond to the equilibrium bond length r = 2.3 of Li-H
and intermolecular distance R = 3.5 of LiH-LiH, as shown
in Fig. 2, which plots several cuts of the adiabatic energy
surface of (LiH),,

Za Zb

M
E(r,R) = (W|H|W)+Zm.

a>b

(49)

The energy surface with parameters ¢ = d = 1 predicted no
stable LiH dimer in this nuclear configuration, relative to the
separated LiH molecules.

To make a sensible comparison among methods with
different active spaces, we consider the following wave
functions for LiH:

Whr : $163, (50a)
Weasscrom & OF (203 - - - Put1) s (50b)
UMCTDHF(+1) © (B162683 - . Pus1)*, (50c)

and for (LiH),:
Wi © ¢1303¢5, (51a)
WeasscFaa—1) © 910393 Bads ... dus2)*,  (51b)
WCASSCF@) © P13 (B3ds . .. Pug2)? (51¢)
UMCTDHF(+2) © (B162603 .. Puy2)®, (514d)
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following the notations of Egs. (3) and (4). The CASSCF and
MCTDHF wave functions are designed to consist of the same
number of occupied orbitals with increasing active orbitals.

Figures 3 and 4 show the shapes of the ground-state
occupied HF orbitals and the one-electron probability density
for LiH and (LiH),, respectively. As seen in Fig. 3(b), the
nodeless first HF orbital of LiH localizes at the Li “atom,”
while the second orbital is responsible for the formation of
a “chemical bond,” made from constructive superposition of
the ground-state wave function of H and the second atomic
orbital of Li, the node of the latter shifted to the bonding
region. Figure 3(a) shows that the total electron density is well
reproduced by the HF method compared to the MCTDHF(8)
density. In Fig. 4(b), one sees that the HF orbitals of (LiH);
can be clearly separated to the deeply bound core (orbitals 1
and 2) and weakly bound valence (orbitals 3 and 4) orbitals,
the former keeping the atomic-orbital characters of Li, with
the latter two orbitals delocalizing across the dimer. Again,
as seen in Fig. 4(a), the total density is well reproduced by
HEF. Finally, it is observed that the tails of the total electron
density are determined by the valence electrons both in LiH
and (LiH),.

Table I summarizes the ground-state calculations. As seen
in the table, there are significant gaps in total energies between
methods with different numbers of active electrons. However,
the MCTDHEF values for the other properties are reproduced
rather well by the CASSCF(2,n) and CASSCF(4,n) methods
for LiH and (LiH),, respectively. For instance, the difference
in Ey of CASSCF4,8) and MCTDHF(10) for (LiH), is
approximately 12 mhartree, but those in IP and A, are 0.05 eV
(2 mhartree) and 0.003 eV (0.2 mhartree), respectively. This
says that the correlations responsible for these properties are
those among the valence electrons.

The CASSCF(2,n) active spaces of Eq. (51b), with only
two of four nearly degenerate electrons being correlated, are
not physically sensible ones for (LiH),. Accordingly, the
resulting dipole moment values are not much improved from
the HF value. More seriously, the proper dissociation limit
of such a wave function to the equivalent LiH molecules
cannot be defined well, i.e., the formation energy A, cannot
be obtained. This problem is related to the lack of the
“size extensivity,” [48,49,53] which fails to guarantee the
equal quality of the approximation for different electronic
configurations. The size-inextensive treatment covers less and
less electron correlation as systems grow larger.

B. 1D LiH model: Ionization dynamics

Now we apply the TD-CASSCF method to the laser-driven
electron dynamics of the 1D-LiH model. We use the three-
cycle laser electric field of the following form:

t
E(t) = E, sin(wr) sin? <7T—> , 0<r<r, (52)
T

with @ = 0.06075 (wavelength 750 nm), t = 67 /w, and
three different amplitudes Ey = 0.0534, 0.107, and 0.151,
corresponding to peak intensities Iy = 1.0x 10", 4.0x 10",
and 8.0x 10" W/cm?, respectively. The Keldysh parameters
are 1.30, 0.65, and 0.46, respectively, for the three intensities.
In view of the ground-state electronic structure of Fig. 3 and the
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TABLE I. Total energy E\, in atomic unit (a.u.), dipole moment
(x) ina.u., firstionization potential IP in eV, LiH formation energy A,
ineV, and (LiH), formation energy A, ineV. Results of HF, CASSCFE,
and MCTDHF methods with varying active spaces are compared.
The ionization potential (IP) is computed as the difference of the
total energies of the neutral and cationic ground states. The A is the
difference of the energy of LiH and the sum of energies of Li and H,
and A, is the difference of the energy of (LiH), and twice that of LiH.
For computing A; and A, with CASSCF and MCTDHF methods,
the active spaces for the fragments are the proper dissociation limit
of the parent description of the complex. For HF calculations, the
open-shell restricted HF method is used for doublet species. The
A, of CASSCF(2,n4) methods are not available, since their proper
dissociation limits are not well defined.

Eo (x) P A Ay
1D-LiH
NA = O
HF —7.0664 —133 17.82 5.07
Nya=2
CASSCF(2,2) —7.0819 —1.41 1824 549
CASSCF(2,4) —7.0847 —1.41 1832 5.57
CASSCF(2,8) —7.0847 —1.41 1832 5.57
NA == 4
MCTDHE(3) —-7.0824 —1.41 1815 551
MCTDHE(5) —7.0908 —1.42 1832 5.46
MCTDHEF(9) —7.0920 —1.42 1835 548
1D-(LiH),
Npo=0
HF —14.1378 =231 1557 0.135
Ny =2
CASSCF(2,3) —14.1532  -2.36 15.99 N/A
CASSCF(2,5) —14.1534 =236 16.00 N/A
CASSCF(2,7) —14.1534 =236 16.00 N/A
Ny=4
CASSCF(4,4) —14.1664 —2.45 15.80 0.071
CASSCF@4,6) —14.1726 —-246 15.90 0.100
CASSCF4,8) —14.1735 -246 15.92 0.114
NA = 8
MCTDHF(6)  —14.1682 —2.45 15.70 0.094
MCTDHE(8) —14.1822 248 15.85 0.110
MCTDHF(10) —14.1859 —2.49 15.87 0.117

above laser profile, one reasonably expects that the dominant
physical process involved is the tunneling ionization from
the highest occupied orbital in the static HF picture. Hence,
we can speculate that the two-active-electron description
TD-CASSCF(2,n,4) is necessary and sufficient for the accurate
description of the dynamics, as will be confirmed below.
Figure 5 shows the time evolution of the dipole moment.
First we observe the large difference in the results of TDHF and
other methods. For the lowest intensity of 1.0x10'* W/cm?,
the difference remains quantitative, largely due to the differ-
ence of the ground-state permanent dipole moment. For higher
intensities, TDHF clearly underestimates the laser-driven
large-amplitude electron motions. This is due to the fundamen-
tal inadequacy of the closed-shell description [Eq. (50a)] of the
tunneling ionization process, which involves spatially different
motions of the ionizing and nonionizing electrons. The TD-
CASSCEF(2,2) brings substantial improvement over the TDHF,
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FIG. 5. (Color online) Dipole moment of the 1D-LiH model as a
function of time, with peak intensities (a) 1x 10, (b) 4x 10", and
(c) 8x 10" W/cm?.

giving results with much better agreement with the MCTDHF
ones. The convergent description in the TD-CASSCF(2,n,4)
series is obtained at ny = 4. The TD-CASSCF(2,n,) with
na > 4 closely reproduce the results of MCTDHF method.
Figure 6 plots the n-electron ionization probability P,,
defined for convenience as a probability to find n electrons
located outside a given distance R;,, = 20 (see Appendix), of
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FIG. 6. (Color online) Ionization probabilities P, of the 1D-LiH
model as a function of time, with peak intensities (a) 4x10'* and (b)
8x 10" W/cm?. TDHF (black dotted), TD-CASSCF(2,4) (colored),
and MCTDHEF(5) (block solid) results are compared.

LiH as a function of time for the peak intensities (a) 4x10'
and (b) 8x10'* W/cm?. No appreciable ionization is found
with the lowest intensity. The probability of finding more than
two ionized electrons is negligibly small for all intensities.
As seen in Fig. 6, TD-CASSCF(2,4) gives virtually the same
results as MCTDHEF(5). The TDHF method, on the other hand,
underestimates single ionization P and, at the higher intensity,
unphysically overestimates double ionization P,. This is the
consequence of forcing two valence electrons to travel with a
single spatial orbital.

These results demonstrate that the TD-CASSCF(2,2) con-
stitutes the simplest method to describe the present dynamics
in a physically correct way. Its total wave function can be
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written as

U = A[¢161{C1d262 + Cagp33}] (53)

in the natural orbital representation [78,79], where ¢; (¢;) is
an orbital occupied by up (down) spin electrons. The two-
configuration CI part of Eq. (53) can be transformed back to
the nonorthogonal expression [Eq. (1a)],

R - 1
VoA [¢1¢1 {(%1//2 + Yoy)—=(af — ,305)” . (54
V2
giving a clearer picture of different spatial motions of the two
valence electrons, with [48]

G =G
ICi| + |Ca|

The flexibility inherent in Eqs. (53) or (54) enables a seam-
less transition from the closed-shell-dominant ground state
(|C1] > |Cy| <= (¥1|¥n) = 1) to the single ionization limit
(|C1| = |Cy| <= (Y¥1|¥2) = 0). The ionization dynamics,
therefore, is characterized by the strong or static correlation
[48,49,52,53] in the sense that it involves drastic changes of
the configuration weights (the magnitudes of CI coefficients)
with more than one determinant contributing significantly. The
failure of single-determinant TDHF to describe the ionization
process is attributed to the lack of this type of correlation.

For a quantitatively accurate description of the dynamics,
the above minimum CI wave function has to be improved
by incorporating more-than-two active orbitals, as seen in the
convergence of the dipole moments in Fig. 5 with respect
to the number of active orbitals. The agreement of TD-
CASSCF(2,n) and MCTDHEF results indicates that the core
electron correlation is not relevant, at the first approximation,
for the ionization dynamics induced by the present laser field.
The TD-CASSCEF allows the compact representation of such
physical situations.

[(Wil¥2)| (55)

C. 1D-LiH dimer model: Ionization dynamics

In this section, we proceed to the multielectron dynamics
of the 1D-(LiH), model. We assess TDHF, TD-CASSCF(2,7),
TD-CASSCF(4,8), and MCTDHF(10) methods. These active
spaces are shown in Eq. (51) with n = 8. The latter two are
twice the size of those in TD-CASSCF(2,4) and MCTDHE(5)
for LiH, respectively, which have been confirmed to provide
the convergent description in Sec. III B.

Figure 7 shows the temporal evolution of the dipole moment
simulated with various methods. One clearly sees that TDHF
and TD-CASSCF(2,7) results show large deviations from the
MCTDHEF(10) results, while TD-CASSCF(4,8) reproduces
the results of MCTDHF(10) fairly well. This indicates that
all the four valence electrons sketched in Fig. 4 actively
participate in the field-induced ionization dynamics (this does
not necessarily mean that the four electrons are ionized),
while tightly bound core electrons remain nonionized. For the
ionizing electrons, the closed-shell description is inadequate,
as discussed in Sec. III B.

In Figs. 8 and 9, we compare the temporal evolution of the
ionization probability P, with R;,, = 20 of (LiH), computed
by approximate methods and MCTDHF(10). As can be seen
from Fig. 8, both TDHF and TD-CASSCF(2,7) methods
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FIG. 7. (Color online) Dipole moment of the 1D-(LiH), model
as a function of time, with peak intensities (a) 1x10', (b) 4x10',
and (c) 8x 10 W/cm?. Results of TDHF, TD-CASSCF(2,7), TD-
CASSCEF(4,8), and MCTDHF(10) methods are compared.

tend to underestimate single ionization for all the examined
intensities. The probability of finding more than two ionized
electrons is found to be erroneous in an inconsistent way, and
is thus not shown. In a striking contrast, TD-CASSCF(4,8)
well reproduces the ionization probability P, of MCTDHF(10)
[Figs. 9(a)-9(c)]. Slight deviation is seen only at the later stage
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FIG. 8. (Color online) Ionization probabilities Py and P; of the 1D-(LiH), model as a function of time, with peak intensities 1x 10'* (left),
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of the pulse for the higher intensities. The inclusion of more
active orbitals would further improve the agreement.

So far, all the core orbitals have been treated as dynamical
core orbitals. In Figs. 9(d)-9(f), the ionization probabilities
computed with TD-CASSCF(4,8), with all the core orbitals
treated as frozen, denoted TD-CASSCF(4,8)-FC, are shown.
It reproduces the results of MCTDHF(10) almost as nicely
as TD-CASSCF(4,8) with dynamical-core orbitals, which
indicates that the core polarization plays minor roles in the
present dynamics.

It is worth noting that even at the lowest intensity
1.0 x 10" W/cm? dominated by single ionization, the TD-
CASSCF(2,7) fails to give an accurate value of P; but
underestimates it roughly by half [Fig. 8(d)]. This implies
the importance of the multichannel ionization, which can be
described correctly only when all the relevant orbitals are
included in the active space. On the other hand, at higher
intensities, the total wave function consists of the widespread
superposition of the ground, excited, and continuum states.
For a balanced description, each of these components has to be
treated with an equal quality, which requires a size-extensive
theory. The MCTDHEF, as the exact theory within a given
number of time-dependent bases, fulfills the size-extensivity
condition. The TD-CASSCF with a proper active space
preserves this important property of the MCTDHE. It is demon-

strated by the accurate multiple ionization probabilities of the
TD-CASSCF(4,8) method, up to P, for the highest intensity
in Fig. 9(c). The importance of selecting an appropriate active
space is illustrated by the fact that the TD-CASSCF(4,n,) is
required for (LiH),, while the TD-CASSCF(2,n4) is adequate
for LiH.

D. Analyses of computational cost

Table II summarizes computational times for simulations
of the 1D-(LiH), model with a peak intensity 4 x 10'* W /cm?.
To highlight the different computational bottlenecks discussed
in Sec. IID, several box sizes (N, = 1000, 2000, and
3000) are considered. The CPU times in Table Il(a), II(b),
and II(c) are recorded on a single Xeon processor of clock
frequency 3.33 GHz for propagating 1000 time steps during
2T <t < 2.1T with the fixed step-size RK4 algorithm,
where T = 2n /w. Entry (d) compares wall clock times spent
for completing the simulation up to four optical cycles
(0 <t < 4T), with the VRKS algorithm, measured for multi-
threaded computations using 12 processors.

First, as seen in Table II(a), CPU times for procedure
(A) grow rapidly with increasing CI dimension, reproducing
the theoretical linear dependence on Ngg. These timings
marginally depend on N,. Next, CPU times for procedure
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FIG. 9. (Color online) Ionization probabilities P, with n < 4 of the 1D-(LiH), model as a function of time, with peak intensities 1x 10"
(left), 4x 10'* (center), and 8 x 10'* W/cm? (right). Results of TD-CASSCF(4,8) (top) and TD-CASSCF(4,8)-FC (bottom) are compared with

those of MCTDHEF (black solid).

(B) in Table II(b) scale as O(N{) with d = 1.95, 1.67, 1.66,
and 1.47 for TDHF, TD-CASSCF(2,7), TD-CASSCF(4,8),
and MCTDHF(10) methods, respectively. This is the conse-
quence of competing O(n>N?) and O(n’ N,) contributions as
discussed in Sec. II D, with growing importance of the latter
for larger active spaces. The TD-CASSCF(4,8)-FC demands
less CPU time than the TD-CASSCF(4,8), due to the strict
locality of frozen-core orbitals, limiting the range of exchange
operators K;|¢,) around the core region.

Net CPU times are listed in Table II(c). In TDHF and TD-
CASSCEF calculations with core subspaces, the grid-intensive
procedure (B) is definitely rate limiting. In contrast, MCTDHF
calculations involve severe bottlenecks both in procedures
(A) and (B). The Ny -dependent works dominate 85%, 67%,
and 55% of the net CPU times, with N, = 1000, 2000, and
3000, respectively. The cost reduction achieved by the TD-
CASSCF method largely depends on the relative importance
of procedures (A) and (B). Ratios of net CPU times for TD-
CASSCF4,8) and MCTDHF(10) calculations are 0.12, 0.29,
and 0.45 with N, = 1000, 2000, 3000, respectively. Similar
trends are observed for wall clock times with the VRKS algo-
rithm, as seen in Table II(d). The stability of EOMs is found
to be similar for the tested methods, requiring about 70 000
evaluations of EOMs. The cost gain by the TD-CASSCF
method relative to the MCTDHF method will be more drastic if

Na < N. However, an efficient implementation of the mean-
field potential [Eq. (32)] is essential to achieve further speedup
for large N), especially in three-dimensional applications.

IV. CONCLUSIONS

We have developed a new ab initio time-dependent many-
electron method called TD-CASSCE. It applies the concept
of CASSCF, which has been developed for the electronic
structure calculation in quantum chemistry, to the multielec-
tron dynamics in intense laser fields, introducing frozen-core,
dynamical-core, and active orbital subspaces. The classifica-
tion into the subspaces can be done by flexibly conforming to
simulated physical situations and desired accuracy, and both
TDHF and MCTDHF methods are included as special cases.
This feature enables compact yet accurate representation of
ionization dynamics in many-electron systems, and bridges
the huge gap between TDHF and MCTDHF methods.

We have applied the TD-CASSCF method to the ionization
dynamics of 1D-LiH and 1D-(LiH), to assess its capability of
describing multichannel and multielectron ionization. It has
been confirmed that the present method closely reproduces
rigorous MCTDHF results if the active orbital space is properly
chosen to include appreciably ionizing electrons. We have
also confirmed that the TD-CASSCF provides substantial
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TABLE II. Computational times for simulations of the 1D-
(LiH), model. First row: Numbers of determinant Ny, within the
symmetry of zero spin projection. Entries (a), (b), and (c): CPU
times in minutes for (A), (B), and overall procedures defined in
Sec. IID, respectively. Entry (d): Wall clock times in minutes
spent to complete the propagation of four optical cycles. Different
simulation boxes are employed: L = 200 (N, = 1000), L = 400
(N, = 2000), and L = 600 (N, = 3000). See text for more details.

TDHF TD-CASSCF MCTDHF
Active space  (0,0) 2,7) 4,8) (4,8)-FC (8,10)
Nget 1 49 784 784 44100
(a) RK4/1000 steps, CPU-A
N, = 1000 0.0 0.1 1.2 1.2 212.4
N, = 2000 0.0 0.2 1.3 1.3 215.1
N, = 3000 0.0 0.3 14 1.4 215.3
(b) RK4/1000 steps, CPU-B
N, = 1000 4.3 26.8 28.4 22.0 35.7
N, = 2000 16.3 87.6 90.9 73.8 103.5
N, = 3000 36.8 168.0 1754 132.9 177.2
(c) RK4/1000 steps, CPU net
N, = 1000 4.4 27.0 29.8 23.4 248.9
N, = 2000 16.4 88.1 92.5 75.4 3194
N, = 3000 36.9 168.7 177.3 134.7 393.5
(d) VRK5/4 cycles, Wall
N, = 1000 8.2 43.7 51.3 39.1 451.5
N, = 2000 31.0 174.8  192.6 141.4 628.8
N, = 3000 65.2 378.5 394.0 282.9 823.1

computational cost reduction in the CI-length-dependent
procedures, which scale by far the steepest with the system
size in the MCTDHF method. Therefore the TD-CASSCF
method is most advantageous for problems in which only a
few weakly bound electrons out of a large number of total
electrons ionize.

While it is sometimes stated that the MCTDHF method is a
time-dependent version of the CASSCF method [60,61], this
statement is even more suitable for the TD-CASSCF method
introduced in the present study. With reduced computational
cost, the TD-CASSCF method with a properly chosen active
space preserves most of the theoretically important properties
of the MCTDHF: (i) flexibility to account for the strong
correlation involved in the ionization dynamics, (ii) size
extensivity, essential for a balanced description of different
electronic configurations, (iii) gauge invariance by virtue of
the time-dependent variational optimization of orbitals, and
(iv) invariance against orbital transformation within an orbital
subspace, allowing e.g., the faithful natural orbital analyses of
the time-dependent wave function [80].

It should be noted that the computational cost of the
TD-CASSCF method still scales factorially with the number
of active (not total) electrons; thus its applications are limited
to, say, 16 half-filled active orbitals in view of the present
state of the art in quantum chemistry. An example requiring
such a large active space is the ionization from densely lying
multiple valence orbitals in weakly interacting molecular
clusters. To approach to such a problem, more restricted
(instead of complete) constructions of the active space will

PHYSICAL REVIEW A 88, 023402 (2013)

be necessary [73]. Moreover, a breakthrough is needed to
represent one-particle wave functions in the general molecular
potential without particular symmetries. In spite of these
challenges, we foresee that the TD-CASSCF method will find
fruitful applications in multielectron dynamics of, e.g., rare gas
atoms heavier than helium, or molecules composed of atoms
in the first few rows of the periodic table, exposed to visible-
to-midinfrared high-intensity pulses, which are inaccessible
with the all-electron-active MCTDHF method.
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APPENDIX: CALCULATION OF IONIZATION
PROBABILITIES

To conveniently evaluate the multiple ionization yields
in many electron systems, we introduce a domain-based
ionization probability P,, defined as a probability to find n
electrons in the outer region |r| > Rj,, and the remaining
N — n electrons in the inner region |r| < Rjo,, With a given
distance Rj,, from the origin,

Pnz(i;/)/dxl---/dx,l'/dx,1+1~--/de

X WH(x1, ..,xn) % WXy, . ..,xn), (A1)

where [_ and [  symbolize integrations over a spatial-spin
variable x = {r,£} with the spatial part restricted to the
domains |r| < Rjo, and |r| > Rjo,, respectively.

It is convenient to introduce an auxiliary quantity 7,
obtained by replacing the outer-region integrals in Eq. (Al)
with the full-region ones (/_ — [). It relates to P, as

\(N—n+k
Py = Z( k )(—D"Tnk.

k=0

(A2)

By adopting the CI expansion of Eq. (8), and making use of the
orthonormality of spin orbitals in the full-space integration, we
have

I
T,=>» C;C,;D), (A3)
1J
where
N
DY) =" det(S;)).
ij
N
DY) = "€l det(Syli ¢ jD), (A4)
ij

N N
DY) =" "ell el deus;ylij : ki),

i>j k>l
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etc., and S, is an N x N matrix with its {ij} element being
the inner-region overlap integral,

(Srpij = / dxdy; n()dg. (X)) = (Dyldg) <, (AS)

where ¢, 1) is the ith (in a predefined order) spin orbital in
the determinant /. S;,[ij --- : kI - - -] is the submatrix of S}
obtained after removing rows i,j,... and columns k,/, ...
from the latter, and
i = 8=,
The matrix S;; and its submatrices are block diagonal
due to the spin orthonormality, so that, e.g., det(S;;) =
det(S7i jo) det(Sy; ,5), where [7 is the o-spin part of the
determinant /.
The procedure given above remains a manageable task in
the present applications, up to eight (all) electron ionization
probabilities in the 1D-(LiH), model. While this scheme

(A6)

PHYSICAL REVIEW A 88, 023402 (2013)

becomes impractical for systems with more electrons, it may
still be useful for problems where only a few electrons are
ejected appreciably, since the dimension of Eqs. (A4) can be
reduced to the number of the ionizing electrons.

This approach allows the evaluation of multiple ioniza-
tion yields by using the information of the inner region
orbitals (¢,|¢,)< and the formal orthonormality relation
8 = (@DplPg) < + (Ppldy)~. It works with a reasonable size
of the simulation box L, provided that R;,, < L, and a good
absorber is implemented to prevent the reflection of the wave
function. In fact, we performed calculations for the 1D-(LiH),
model in Sec. III using smaller boxes with L = 200 and
400 a.u., where a sizable portion of the norm is lost at the
boundary, and confirmed that the obtained ionization yields
are virtually the same with those of Figs. 8 and 9. Such small-
scale calculations could serve as preliminary validations for
the choice of the active space before stepping into large-scale
computations.
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