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Multichannel modeling and two-photon coherent transfer paths in NaK
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We explore possible pathways for the creation of ultracold polar NaK molecules in their absolute electronic and
rovibrational ground state starting from ultracold Feshbach molecules. In particular, we present a multichannel
analysis of the electronic ground and K(4p) + Na(3s) excited-state manifold of NaK, analyze the spin character of
both the Feshbach molecular state and the electronically excited intermediate states and discuss possible coherent
two-photon transfer paths from Feshbach molecules to rovibronic ground-state molecules. The theoretical study
is complemented by the demonstration of stimulated Raman adiabatic passage from the X 1�+(v = 0) state to
the a 3�+ manifold on a molecular beam experiment.
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I. INTRODUCTION

Atomic Bose-Einstein condensates and degenerate Fermi
gases are nowadays established experimental tools for probing
and simulating quantum many-body phenomena which are
difficult to study in their original context. In most of the atomic
systems, the interparticle interaction can be described by a
contact pseudopotential. This restricts the range of possible
systems which can be quantum simulated to those with
short-range interaction. However, intriguing phenomena are
expected to occur in systems with dipolar interaction and this
leads to rapidly growing interest in the preparation and study of
dipolar quantum gases. Pioneering experiments have made use
of magnetic dipolar interactions of atoms with large magnetic
moments such as Cr [1] and more recently Er and Dy [2,3].
Even larger dipolar interactions can be realized making use of
electric dipole-dipole interaction. Therefore, recent activities
have focused on the creation of ultracold polar molecules in
their rovibronic ground state, in which dipole moments on the
order of several debye can be induced by electric fields.

Due to the difficulties in directly cooling molecules,
currently, the only experimental pathway for the preparation
of quantum gases of molecules starts from the preparation of
quantum degenerate gases of atoms followed by an association
of atom pairs in the quantum gas into a rovibronic ground-state
molecule. In these experiments, molecule creation is being
performed in a fully coherent two-step process: First, atoms
in the quantum gas are being associated into weakly bound
Feshbach molecules in the vicinity of a Feshbach resonance.
This association process is followed by a coherent two-
photon transfer of these molecules into rovibronic ground-state
molecules. Due to the fully coherent nature of the process, the
phase-space density of the initial atomic ensembles is being
preserved, resulting in a dense ultracold molecular sample
close to quantum degeneracy.

This experimental approach for ultracold molecule creation
has first been demonstrated in a seminal experiment of the
JILA group [4,5], where an ultracold dense gas of KRb
molecules close to quantum degeneracy has been prepared.
However, the specific alkali-metal dimer choice in the JILA
experiment invokes a severe loss channel due to exothermic
chemical reactions converting two colliding KRb molecules
into the corresponding homonuclear dimers. Binding energy

differences being of the order of a few cm−1 translate into
thermal energies of several Kelvin; this leads to massive
heating, limiting the lifetime of the sample [6,7]. Such a loss
channel can be suppressed by choosing one of the constituent
atoms of the molecules to be cesium or sodium, and chemical
reactions as mentioned above will become endothermic [8].

NaK is a promising candidate, due to the possibility to ex-
plore bosonic as well as fermionic molecules. Furthermore, it
has been extensively studied by molecular spectroscopy in the
past. A large number of experimental data and spectroscopic
constants are available in the literature, leading, e.g., to the
potential energy curves (PECs) of the involved electronic states
[9–13], and are supplemented by sophisticated theoretical
studies of molecular properties like radiative lifetimes, dipole
moments, or static polarizabilities [14,15]. Recently, Feshbach
resonances have been observed [16] and ultracold fermionic
23Na40K Feshbach molecules created subsequently [17]. Yet
the two-photon transfer of Feshbach molecules into rovibronic
ground-state molecules remains to be explored.

Here we present a detailed analysis of possible two-photon
pathways for preparing ultracold NaK in its absolute ground
state. Figure 1 shows for the ground asymptote K(4s) + Na(3s)
and the excited asymptote K(4p) + Na(3s) the molecular
potentials, which are involved in the envisaged two-photon
transfer, and a sketch of a typical two-photon scheme for
mapping Feshbach molecules onto the rovibrational ground
state. The pump light field couples Feshbach molecules to an
appropriate electronically excited intermediate state; the over-
lapping Stokes pulse couples the target X 1�+rovibrational
ground state to the same excited-state level, resulting in a
two-photon Raman transfer. By this type of transfer, we
overcome two problems: First, the direct wave function
overlap between weakly bound Feshbach molecules and
deeply bound ground-state molecules is vanishingly small,
and second, Feshbach molecules and ground-state molecules
of alkali-metal dimers have very different electronic spin
character. Whereas Feshbach molecules are often dominantly
a 3�+in character, rovibronic ground-state molecules are
purely X 1�+molecules. Therefore, an appropriate electron-
ically excited state serves as a bridge for the transfer, both
in terms of wave-function overlap and electron spin triplet-
singlet mixing for triplet-to-singlet conversion. We note two
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FIG. 1. (Color online) Scheme of the coherent transfer sequence
from a Feshbach level to the absolute ground state of the molecule.
In this example, the intermediate level is of the resonant A 1� ∼
b 3� type. The wave-function amplitudes reflect the singlet or triplet
components.

differences between the KRb experiment [4] and the NaK
case. First, by comparing atomic spin-orbit coupling constant
ξRb,(K),[Na] = 79.20(19.24)[5.73] cm−1 of atoms Rb, K, and
Na in their lowest p state, one sees that such a bridge will be
expected to be far weaker for NaK than KRb. As one cannot
endlessly compensate this weakness by increasing laser power
and focusing light beams, the suitability of such a scheme has
to be reevaluated for NaK. The second difference between
NaK and KRb is hidden in the Feshbach molecular state.
For NaK, broad resonances have been reported [16] which
can vastly influence the spin character and it was stated [17]
that the singlet amount in the Feshbach state might allow for
direct singlet coupling to an intermediate state, which would
render unnecessary a triplet-singlet bridge, asking also for
reevaluation for the case NaK. Ultimately, the parameter of
interest is the product of the two dipole matrix elements,
representing the two-photon transition:

d(F→X) = 〈ψF|d̂|ψint.〉〈ψint.|d̂|ψX〉. (1)

Here, |ψF 〉 corresponds to the Feshbach molecule, whereas
|ψint.〉 is the intermediate level selected for an effective two-
photon process. The rovibronic ground state is abbreviated
as |ψX〉 ≡ |X 1�+(v = 0,J = 0)〉. This work focuses on a
detailed analysis of the involved molecular potentials to
identify windows where both the transition amplitude from
the Feshbach state to the intermediate state and the transition
amplitude from the intermediate state to the ground state are
sizable. For the Feshbach state near a resonance, we show the

influence of the hyperfine interaction on the singlet admixing
and discuss the suitability of a pure singlet transition window.
The intermediate state is studied with particular emphasis on
its spin mixing characteristics. Combining the ground- and
excited-state analysis, two-photon transition dipole matrix
elements are calculated and possible two-photon transfer
paths discussed. Furthermore, we demonstrate population
transfer between the X 1�+ vibrational ground state and the
a 3�+manifold via a stimulated Raman adiabatic passage
(STIRAP) sequence in a molecular beam experiment.

II. GROUND-STATE MODELING

We start by investigating the initial level of the two-photon
sequence. This already gives insight into the requirements
concerning the choice of an intermediate level in order to
accomplish an efficient ground-state conversion. The crunch
point of Eq. (1) lies in the radial variation of the vibrational
wave functions, which are obtained from the corresponding
PECs. Hence, detailed knowledge of the PECs is essential
for our task. The singlet and triplet ground states of the NaK
molecule were studied in earlier experiments of our group
[18,19]. In the following we use a slightly updated version of
the PECs compared to [18] for our analysis, where existing data
from Fourier transform spectroscopy have been complemented
by recent results of Feshbach spectroscopy [16]. This allows
us to obtain an accurate description of the least bound states
and serves our purpose in this paper very well for various
reasons. First, we are able to give precise statements regarding
the asymptotic part of the multicomponent wave function,
including Feshbach resonances and molecules. Second, the
joint description of the PECs fixes their relative position and
therefore serves as a common frequency reference connecting
the singlet and triplet manifold, removing additional uncer-
tainties in the two-photon detuning of pump and Stokes lasers.
Last, we employ the ground-state PECs as a benchmark in
order to improve upon ab initio calculations for the excited
states (see Sec. III for details).

A. Feshbach resonances and Feshbach spectrum

For the nature of the Feshbach molecular wave function, we
perform coupled-channel calculations of the ground state lev-
els, taking into account the coupling of X 1�+and a 3�+due
to hyperfine interaction and the Zeeman effect at elevated
magnetic fields applied for the creation of Feshbach molecules.
The calculations in [20] reproduce the s-wave resonances
measured in [16] within an uncertainty of 0.1 G regarding
their position and extend the analysis of the aforementioned
article by an accurate description of the p-wave multiplet
structures. The atom pair states are fully described by the
atomic basis set |(i,s,f,m)Na; (i,s,f,m)K,F,mF 〉 simplified
to |fNa,mNa,fK,mK,F,mF 〉, where sA(iA) is the electron
(nuclear) spin, fA the total angular momentum and mA

its projection onto the space-fixed axis of atom A, and
F,mF the total angular momentum and its projection of
the system excluding rotation. This basis is called Hund’s
case (e). The number of channels is given by the number
of possible projections of the individual angular momenta
onto the space-fixed axis, equating to the same total magnetic
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FIG. 2. (Color online) Binding energies of 23Na40K for the total
quantum number M = −3/2 as function of magnetic field leading to
s-wave resonances for the entrance channel (1,1)Na + (9/2,−5/2)K.
For various magnetic fields the expectation value 〈S〉 of the electronic
spin is given. (Inset) Singlet character as a function of B for the
resonance situated at 136 G. For the sharp resonances at lower fields,
only a subtle change in spin character is observed.

quantum number. The following discussion concentrates on
the fermionic molecule 23Na40K and assumes that the initial
atomic states have been converted to molecules possessing a
total magnetic quantum number of M = −3/2, for which the
total number of channels is 16 for a rotational state l = 0; i.e.,
M = mF .

The calculated binding energies for M = −3/2 are shown
in Fig. 2 below the asymptote of the atom pair (1,1)Na +
(9/2, − 5/2)K and give rise to the three s-wave resonances
situated and observed in [16] between 96 and 138 G.

B. Spin character of the Feshbach state

Having obtained the scattering multichannel wave function,
we are now ready to inspect its spin composition as a function
of the applied magnetic field. The closed-channel state will
be dominantly a bound state of the a 3�+potential; hence,
notable singlet wave-function amplitude can arise only out of
the open channel. As the resonance width can be linked to
the coupling strength between the collision channels, the wide
B = 138 G Feshbach resonance seems a promising candidate
for generating singlet character in the Feshbach state. In [17], it
was shown that the singlet admixing increases as the magnetic
field approaches the resonance. This is confirmed by our
calculations, where we evaluate the expectation value of the
total spin operator as specified in Fig. 2. A comparison of
the three s-wave resonances shows that the spin character
changes significantly only for the broad resonance, saturating
at the open-channel singlet admixture near the resonance. The
latter can be calculated by performing angular momentum
recoupling into a representation in which the total electronic
and nuclear spin quantum numbers S,I are defined. The uni-
tary transformation from such basis |S,I,F,M〉 to the desired
atomic basis of the entrance channels |fNa,mNa,fK,mK,M〉

then reads

|fNa,mNa,fK,mK,M〉
=

∑
F,S,I

〈fNafK|S,I 〉 〈mNa,mK|F,M〉 |S,I,F,M〉 , (2)

with the transformation coefficient applying the Wigner 9j

symbol,

〈fNafK|S,I 〉 =

⎧⎪⎨
⎪⎩

sNa iNa fNa

sK iK fK

S I F

⎫⎪⎬
⎪⎭

×
√

(2fNa + 1)(2fK + 1)(2I + 1)(2S + 1),

(3)

and the Clebsch-Gordan coefficient 〈mNa,mK|F,M〉 projects
onto the magnetic submanifold. Summing over all possible
cases for M = −3/2 gives a singlet (S = 0) fraction of ∼18%
for the open channel M = −3/2 at the lowest asymptote,
roughly matching the saturation behavior by 14% shown in
the inset of Fig. 2; the difference is induced by the competition
between hyperfine and Zeeman coupling at 125 G, when fNa

and fK will no longer be exact quantum numbers. As one shifts
away from the resonance to lower fields, the molecular state
converges towards an almost pure triplet state.

C. Feshbach molecular wave function and its
magnetic field dependence

We now inspect the wave function, as it comprises more
information than the spin character. Near the Feshbach reso-
nance, one has to distinguish between “atomic” open-closed
channel mixing on one side and “molecular” singlet-triplet
mixing on the other side. To provide an intuitive insight into
both perspectives, we utilize two different representations of
the total multichannel wave function. At large internuclear
distances, Hund’s case (e) is a convenient choice of a basis
set, as the coupling to the molecular axis plays a secondary
role only. By projecting the wave function onto the atomic
basis |fNa,mNa,fK,mK,F 〉, one obtains direct access to the
open- and closed-channel character of the scattering wave
function, as seen in Fig. 3. At a magnetic field of 125 G
about 13 G below the very broad resonance, the bound level
is at −250 kHz and strong coupling to the open channel
persists, which is highlighted by the large amplitude of one
single basis vector, labeled by quantum numbers. As the open
channel contains a considerable fraction of singlet character,
this directly translates into an increased singlet-triplet ratio for
the Feshbach state. At first glance, one could interpret a high
singlet admixing as being beneficial for the desired process for
ground-state transfer, because one could directly couple to a
more or less pure singlet intermediate state. Yet components
going over to open channels possess significant wave-function
amplitude only at large distances, which will not contribute to
the transition dipole matrix element in Eq. (1) due to vanishing
vibrational overlap. Hence, the wave-function amplitudes and
their state character localized at smaller internuclear distances
are of great interest.

The Hund’s case (e) representation is not suitable for
directly identifying the singlet and triplet admixture, as the
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FIG. 3. (Color online) Multicomponent wave function for the
bound level at 125 G, projected onto the Hund’s case (e) basis. The
wave function displays a distinct open-channel fraction by the large
amplitude at large internuclear distance R > 40 Å (violet line). This
component has the quantum numbers of the open channel with lowest
energy and these are given in the figure.

total spin is not appearing as a quantum number in the
basis vector. For that reason we transform the Feshbach
wave function into a state basis in which the total spin is
used, namely Hund’s case (b). Here, the angular momentum
coupling, neglecting in our special case the molecular rotation,
gives rise to a set of quantum numbers |S,G,F,M〉, where G

is obtained by coupling the total spin S with the nuclear spin
of sodium (note that the sodium hyperfine splitting is larger by
a factor of 1.4 than for 40K ).

The resulting projections of the wave function onto the
basis (b) are shown in Fig. 4 for a magnetic field of 125 G
(top graph, binding energy 250 kHz × h) and 110 G (bottom
graph, binding energy 11 MHz × h), respectively. For reasons
of clarity and comprehensibility, we removed all but the
strongest triplet and singlet channel contributions. From Fig. 4
it is evident that one benefits from changing the magnetic
field from 125 to 110 G, as it leads to compacting the
Feshbach wave function at internuclear distances r < 20 Å,
where the maximum amplitude becomes 0.035 for 125 G and
0.16 for 110 G already. Both triplet and singlet amplitudes
are enhanced in this range at 110 G. To quantify this, we
calculated the single-channel wave functions for the last
bound levels of the X 1�+and a 3�+potentials, vX = 74
and va = 19, respectively. At internuclear distances drawing
near the chemical region, the amplitude from the continuum
coupling will be damped out and the individual channel wave
functions will change over to the corresponding bound-state
wave functions. We match their amplitude for r � 10 Å
(see Fig. 4), resulting in scaling factors βa(B),βX(B) for
the unperturbed single-channel wave functions. These scaling
factors can be interpreted as the amplitude gain or loss for the
Franck-Condon overlap. For the two magnetic fields shown
in Fig. 4, this gives a ratio βX(110)/βX(125) = 5.48 for the
strongest singlet and βa(110)/βa(125) = 4.33 for the strongest
triplet channel. Evaluating Feshbach transition dipole matrix

FIG. 4. (Color online) Multicomponent wave function of the
bound level at 125 G (top graph) and 110 G (bottom graph), projected
onto the Hund’s case (b) basis. For clarity, all but the strongest triplet
and singlet channels were removed. As dashed lines the vibrational
wave functions of the pure singlet and triplet states are given for the
least bound level, scaled to the amplitude of the appropriate inner
parts of the multichannel wave function.

elements, this gain in βa,X directly translates into a transition
probability gain of one full magnitude.

Concluding, the rise in singlet character close to the
resonance field is accompanied by significant total amplitude
loss in the inner part. This behavior cannot be revealed by
inspecting the spin character, as it cloaks such details due to
the integration procedure. Instead, one has to look directly
in the multichannel wave function, which naturally contains
detailed information. Note that this behaviour is dependent on
the particular considered resonance. For each resonance, there
will be a magnetic field which optimizes the transfer to the
molecular ground state via a selected intermediate state. This
reflects the competition of singlet amplitude admixed by the
open-channel coupling and the increase in amplitude of the
desired component in the inner region of the wave function.
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III. INTERMEDIATE STATES

The intermediate state will be one of the eigenstates of the
Hamiltonian

H = H0 + HInt.. (4)

Here H0 contains the kinetic energy and diabatic potential
operators of a specific molecular-state manifold. The generally
used manifold corresponds to either one of the two lowest
electronic excitations Na(3p) + K(4s) or Na(3s) + K(4p),
and the spin-orbit coupling will be the dominant interaction
in HInt.. Since the atomic spin-orbit coupling constant for
the lowest p state of K is about a factor of 3 larger than
the corresponding coupling for the lowest p state of Na
(ξK,[Na] = 19.24[5.73] cm−1), we choose the states asymptot-
ically converging to K(4p) for our analysis, which is also the
energetically lowest one of both sets mentioned above. Note
that we want to populate |ψX〉 from the intermediate states.
|ψX〉 is symmetric under parity inversion for the rotational state
J = 0 demanding for levels with odd parity for the excited
states. For the asymptote under consideration, this then gives
five molecular state vectors. For state labeling, we use the
2S+1�±

� symmetry [Hund’s case (a)], where � (�) gives the
projection of the electron orbital (total) angular momentum
along the internuclear axis. The manifold under consideration
then comprises two states 1�+

0+ ,3�0+ sharing � = 0+ and
three states 3�+

1 ,1�1,3�1 sharing � = 1.
The interaction Hamiltonian HInt can be divided into

hyperfine and spin-orbit interaction. Despite playing a pivotal
role for the ground states, the hyperfine interaction is neglected
in the following discussion on excited states, because it is a
small perturbation compared to the singlet-triplet coupling by
the spin-orbit interaction. For the same reason we also set
B = 0 and therefore do not discuss magnetic field effects.
This simplification will not have any significant shortage to
the conclusions drawn in the work. The spin-orbit interaction
couples states possessing the same value of � (	� = 0).
However, there is still the Coriolis interaction from H0

coupling states with 	� = ±1. � = 2 plays no role because
such states do not posses J ′ = 1 levels.

A. Modeling excited-state molecular potentials

The reliability of our calculations will be dictated by the
accuracy with which the applied PECs and their interaction
reflect reality. Ab initio curves provided by quantum chemistry
calculations [21] give a complete overall description of the
PEC, which, however, is accompanied by lower total accuracy.
The desired states have also been investigated by means of
molecular spectroscopy [11–13]. Out of these measurements,
spectroscopic constants can be extracted and RKR curves
constructed. The resulting molecular potentials reproduce the
bound molecular states of the chemical region with a quality
which considerably exceeds the ab initio approach. Yet the
RKR treatment is applicable only for the region in which
the molecular states have been explored experimentally. If
RKR potentials are extrapolated beyond the spectroscopically
investigated range, the potential slope errors become large. It is
therefore advised to use these RKR potentials only to describe
the potential minimum part. The short-range part of the PECs

can be modeled by a repulsive wall involving a high inverse
power in internuclear distance R. At internuclear distances
larger than the LeRoy radius [22],

R � 2
{√〈

r2
Na

〉 +
√〈

r2
K

〉}
, (5)

with 〈r2
i 〉 being the expectation value of the squared radius

of the outermost electron on the ith atom, the atoms of
the dimer can be considered detached and the long-range
description takes over. This is given as an inverse power series
involving the individual dispersion coefficients, where high-
quality theoretical values are tabulated in the literature [23,24].
The LeRoy radius for NaK is reported as 10.8 Å [12], yet the
only RKR curve fully covering the region until that value is
the B 1� [12] one; thus, it implies that one has to borrow
an ab initio shape in order to bridge the part between RKR
and long-range description. To avoid mixing theoretical and
semiempirical descriptions, we decided to follow a different
path described below, taking the ab initio curves of [25], and
refine them by using our fully explored ground-state potentials.
The RKR potentials [11–13] are then employed together with
spectroscopic data as a crosscheck for the spectroscopically
known regions.

Ab initio calculations rely on approximations which in
the end will over- or underestimate certain facets of the
potentials as for example the well depth of the potentials.
It is noted that these errors are systematic, e.g., R-dependent
errors in the theoretical curves are mostly generated out of
basis-set superposition errors, so they will, in general, affect
all calculated curves in similar fashion. Possessing reliable
experimental data on the ground states, we can compare those
to the ab initio ground-state PECs. Out of this we obtain
information regarding systematic deviations in the ab initio
calculations, which we then apply to correct the excited-
state potentials [26,27]. We further refine the potentials by
performing our calculations for rotational progressions, which
we have studied experimentally. With this help, we extract
common energetic offsets as well as 	Bi = Bi,calc. − Bi,Exp.,
where Bi is the rotational constant of the ith molecular
state. Assuming B ∼ 1/(R2

eq.), we balance this difference 	

by slightly shifting the equilibrium distance. This whole
procedure considerably improves the quality of the curves,
as shown exemplary in the inset of Fig. 5 for the B 1�

potential. It is reliable for the singlet states, as the region
where the ground-state refinements are applied is well covered
by our spectroscopic studies. For the triplet states, one has to
employ refinements through the corresponding a 3�+ state,
which gives good results for R > 4.55 Å up to and beyond
the LeRoy radius. For smaller internuclear distances, the
short-range description could be used from the ground state,
but already small differences in the short-range parameters
could lead to massive discrepancies due to the high inverse
powers involved, and the refinement procedure would actually
worsen the initial potential. To circumvent artifacts arising of
such modifications, we smoothly connect the refined part at
R = 4.65 Å with the respective RKR parts. The final PECs
used in our calculation are shown in Fig. 5 (dashed lines)
together with the RKR curves obtained from [11–13] (solid
lines), showing satisfactory agreement.
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FIG. 5. (Color online) Diabatic PECs of the Na(3s) + K(4p)
manifold used in the study. The energy zero is chosen at the atomic
ground-state asymptote. Shown are the diabatic PECs applied in
this section (dashed lines) as well as RKR curves (solid lines) for
comparison. (Inset) Potential difference between the B 1� RKR
potential, the raw ab initio curve (dashed line), and the refined curve
(solid line), respectively.

B. Spin character of excited molecular states

Similar to our ground-state discussion, we begin by in-
specting the spin character of the individual eigenstates. For
finding the eigenstates the molecular state vectors in Hund’s
case (a) are unitarily transformed into the Hund’s case (e)
basis, as the spin-orbit operator, mainly Hint , is diagonal
in this representation and H0 is also transformed to case
(e). A diagonalization procedure then gives rise to a set of
eigenstates and -energies for each total angular momentum J ,
spanning 7000 cm−1 for the full depth of b 3�. Projecting
the eigenstates onto the Hund’s case (a) state vectors and
integrating their squared amplitudes yields the fractions of
the individual channels. This is shown in Fig. 6 for � = 1
and a frequency window of 3000 cm−1 below the dissociation

FIG. 6. (Color online) Integrated square of the individual � = 1
channel wave functions at each eigenenergy, together with a J = 1
perturbative model for the 1�(3�+) case (open stars). A label of the
form 3�+(3�) marks the 3�+ fraction within a dominant 3� state.
The vertical line at E0 is positioned at the first state with dominant
1� character.

limit 3 2S1/2(Na) + 4 2P3/2(K). The symbol 3�+(3�) marks
the channel fraction of 3�+ within a dominant 3� state
and correspondingly all other symbols. Being interested in
the singlet-triplet admixture, we focus on the 1�-3� and
1�-3�+ coupling because this promises to have a strong
Stokes transition from B 1� to X 1�+. The resulting structure
can be briefly divided into two regions, which are naturally split
at the energy E0 of the lowest level of B 1�, being indicated
in Fig. 6 by a black vertical line.

The region lying energetically below E0 can be classified as
a perturbative region. The eigenstates display >99% character
of either the 3�+ (red squares) or 3�1 (green triangles) channel
in the upper line of Fig. 6. Note that this corresponds to a
distinct molecular structure, where the assignment of measured
energies to vibrationally bound levels is straightforward. In this
area, 1� (blue dots) fraction is generated in almost pure 3�+
states via spin-orbit coupling and in almost pure 3�1 states
via higher order effects, as the direct coupling matrix element
between 1� and 3�1 is strictly zero. The spin-orbit-induced
singlet admixture in 3�+ states becomes 0.02%–0.04%

This result can be understood by a simple perturbative
approach. Let us denote the kth eigenstate of 1� as |ψ 1�

k 〉 and
its eigenenergy as Ek and similarly the nth bound 3�+ level
by |ψ 3�

n 〉 and En. Approximating the spin-orbit operator by its
atomic coupling constant ξK , the first-order state correction of
the almost pure triplet manifold becomes

∑
k

〈
ψ

1�
k

∣∣ξ̂ ∣∣ψ 3�
n

〉
Ek − En

∣∣ψ 1�
k

〉 ≈ ξK

∑
k

FCF(k,n)

	Ek,n

∣∣ψ 1�
k

〉
, (6)

where the problem reduces to a calculation of the vibrational
overlap FCF between the states of interest and their respective
energy difference 	Ek,n. Summing the squared coefficients of
Eq. (6) results in the singlet fraction of the nth triplet state,
which is also displayed in Fig. 6 (open stars), and the good
agreement with the simulation emphasizes the perturbative
character of the admixing. Note that the absolute amount
is slightly overestimated by the perturbative approach. We
mention that the dominant contribution in Eq. (6) to the
interaction comes from the kth vibrational 1� level sharing
considerable (42% mean) wave function overlap with the n =
k + 2nd vibrational 3�+ level, which originates accidentally
from the relative forms of the potentials and their relative
positions in R.

For completeness, let us also discuss the 3�+-3� interac-
tion. Far below E0, the eigenstates have either dominantly
3�+ or 3� character. However, the interaction features a
frequency window of around 400 cm−1 below E0, in which the
assignment to an experimental observation becomes difficult
because the admixtures of either 3�+ (3�) character to 3�

(3�+) exceed 1%. As the eigenenergies approach around
E ≈ −1200 cm−1, the mixed amount rapidly increases to 30%
and decreases subsequently, displaying a resonant behavior. In
this energy interval the two potentials 3�+ and 3� cross each
other. The vibrationally averaged interaction parameter then
largely exceeds the vanishing frequency difference, and the
crossing resonance occurs. The appearance of this structure
near E0 is accidental.

At and above E0, the structure in Fig. 6 becomes compli-
cated, and work in this area will be accompanied by increased
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spectroscopic effort. We classify this as the resonant region,
because the presence of vibrationally bound 1� states is
accompanied by levels of other electronic states. These reso-
nances are qualitatively different from the crossing resonances
discussed before. They appear due to energetically nearly
degenerate singlet and triplet rovibrational levels (	En,k �
5 cm−1), when the interaction parameter will be larger than
the energy difference and any perturbative treatment will break
down. The resonantly interacting states share no similarities
concerning relative vibrational quantum numbers, and no
simple pattern can be identified in the spectrum.

We note that such accidentally resonant structures also
appear below the first 1� state and belong to 1�+-3�0

states coupling with � = 0+, which have been removed
from Fig. 6 for clarity. Also a perturbative region admixing
1�+ character to dominantly 3�0 states exists just below
the potential minimum of the 1�+ state about 6000 cm−1

below the asymptote and is almost overlayed by the 1�+-3�0

crossing resonance. As the wave functions involved in this low
energy region spread over only a small internuclear distance
range, the overlap with the Feshbach molecular wave function
will be small and two-photon Raman transfer (STIRAP) not
efficient. The general two-photon process will be quantified in
Sec. V of this article.

C. Discussion

We briefly discuss the suitability of the found structures
(second-order admixing, crossing resonances and degenerate
resonances) for the two-photon process and comment on their
robustness to changes in the PECs. Shifting the potential curves
in terms of total energy or equilibrium distance will shift the
crossing resonances accordingly to the new crossing position,
but will not alter their fundamental structure. On the other
hand, the direct resonances occurring in near-degenerate states
will react highly sensitively to any potential change due to their
accidental nature. Despite the good agreement of our PECs
with experimental data, it puts large uncertainties in the actual
mixing value of such a resonance. In fact, by changing the PEC
parameters slightly, some resonances will vanish completely
and others appear. Our model is therefore not reliable for giving
quantitatively exact predictions of the positions and values
of the resonant mixtures. To fill this gap in our model, we
are presently complementing our description by spectroscopic
work applying molecular beams for sufficient resolution. A
first example of such cases is given below in Sec. IV.

The second-order admixed states in the perturbative region
will present the most robust situation. They will be largely
unaffected by energetic offsets, as it only varies the energy
denominator in Eq. (6), and a mismatch by 1 cm−1 will change
	En,k by less than 0.1%. Also slight radial mismatches in the
turning points will introduce only minor corrections due to
the integral nature of the 3�+ state perturbation by the 1�

manifold. Together with the relative spectroscopic ease which
awaits one at such a perturbative level, this highlights the
perturbative region as being a good candidate for the desired
STIRAP transfer. Yet the absolute value of the singlet spin
character might cast doubt on the suitability of these states
for the two-photon process. For the KRb analog, the used
level was reported to possess a singlet character of 0.2% [28].

By just comparing the SO coupling strengths, one would
expect the NaK case to have a factor (ξRb/ξK )2 ≈ 17 lower
admixture. This is partially compensated for due to the earlier
discussed potential shapes, which favor the NaK case. The
NaK admixture of around 0.04%, a typical value from Fig. 6,
is still a factor of 5 lower than the KRb one. For a definite
statement, one has again to inspect closely the wave functions
and calculate transition matrix elements, which are quantified
below.

IV. TWO-PHOTON PROCESS

In the previous sections, we provided a full understanding
of ground- and excited-state molecular potentials and the
resulting molecular levels involved in the envisaged two-
photon process from Feshbach molecules to rovibrational
ground-state molecules in the X 1�+ potential. We are now
ready to quantify the two-photon transition matrix element
d(F→X) given by equation (1). For the Feshbach state we
use the broad F = 9/2 resonance appearing for M = −3/2.
Decomposing the Feshbach molecular state vector yields the
individual channel contributions. In our calculations, we take
only the two strongest channels into account. The Feshbach
molecular state can then be approximated by

|ψF (B)〉 ≈ βX(B)|X 1�+(v = 74,J = 0)〉
+βa(B)|a 3�+(v = 19,N = 0)〉
+ amplitude of other hyperfine channels, (7)

where βi (i = a,X) are the scaling factors obtained in the
matching procedure of Sec. II. Note that by cutting off the
other channels, interference effects of those contributions are
ignored, and only interference of the strongest channels with
each other is considered. The neglected amplitude would gain
importance when evaluating the hyperfine structure for the
excited states.

We calculate the transition dipole matrix elements from the
Feshbach molecular state and the X 1�+(v = 0,J = 0) state
to all j = 1, . . . ,683 electronically excited bound eigenstates
obtained up to 10 cm−1 below the atomic asymptote P3/2

of potassium. They formally read |ψint.,j 〉 = ∑
i ci,j |i〉, with

i = {1�+,3�+
1 ,1�,3�0,

3�1}, where the sums of the squared
coefficients give the channel fractions shown in Fig. 6 of
Sec. III. The singlet and triplet electronic transition dipole
moments are taken from [25].

The resulting absolute values |dX| of the dipole matrix
elements from the ground state X 1�+(v = 0,J = 0) to the
intermediate states and |da| from the Feshbach state to the
intermediate states are shown in Fig. 7 as a function of
the intermediate state eigenenergy for a magnetic field of
B = 110 G for all states with � = 0+ and � = 1. In the top
graph, locally strongest transitions to singlet (triplet) dominant
eigenstates have been connected by a red (blue) line, serving
as a guide to the eye. In the bottom graph, the locally strongest
triplet (singlet) transitions are connected by blue (red) lines,
representing transitions to triplet (singlet)-dominated states.

We first discuss the one-photon process corresponding to
the Stokes pulse, which is shown in the top graph of Fig. 7.
The rovibronic ground state is localized at the bottom of the
X 1�+ potential, which has its minimum at Req,X = 3.499 Å.
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FIG. 7. (Color online) Absolute values of the Stokes (|i〉 → |X〉
top graph) and pump [|F 〉 → |i〉 bottom graph, decomposed into the
singlet (red squares) and triplet (blue circles) parts] laser transition
dipole matrix elements for all intermediate states. The energy is given
with respect to the P3/2 dissociation limit.

In the region in which this singlet wave function has significant
amplitude, the singlet transition dipole moments do not vary
by more than 10%, being 9.7 D (A 1�+) and 7.5 D (B 1�)
at the equilibrium distances [25]. The ground-state wave
function then acts as a Gaussian filter between 3 and 4 Å
for the singlet part of the intermediate states. The first eight
eigenstates around −7000 cm−1 in Fig. 7 have dominant triplet
character, resulting in modest matrix elements. As soon as the
bottom of the A 1�+ PEC is reached, the matrix element rises
steadily due to the increasing Franck-Condon factors. When
the inner turning point of the A 1�+ state approaches Req,X , the
matrix element maximizes at 2.92 D for the eigenstates around
E ≈ −5260 cm−1 and decreases rapidly thereafter. Due to
the large electronic dipole moment of the X 1�+ to A 1�+
molecular transition, its peak value gives the global maximum
moment achievable for the Stokes pulse. A similar behavior
is observed around E0, when B 1� contributions enter into
the intermediate states and the matrix element peaks with an
absolute value of 2.52 D at E ≈ −900 cm−1. In addition to the
two singlet dominant structures, one recognizes the window
(blue color in Fig. 7) between the potential minima of the c 3�+
and the B 1� states. In this region, a significant admixture
of B 1� character to the dominantly c 3�+ molecular states
leads to significant transition dipole moment from the purely
singlet X 1�+(v = 0,J = 0) state to the c 3�+-dominated
intermediate states. Note that transition matrix elements to
these triplet dominant states largely exceed matrix elements to
close-lying singlet-dominant states.

The bottom graph of Fig. 7 shows the matrix elements
needed for the pump pulse for the singlet and triplet domains,
respectively. Due to the large extension of the loosely bound
Feshbach molecules over considerable internuclear distances,
the wave-function overlap will, in general, tend to be the larger
the closer the intermediate level gets to the dissociation limit.
This is strongly noticeable for the singlet fraction, which shows
a sharp rise in dipole matrix element around E ≈ −4500 cm−1

due to largely increasing Franck-Condon factors. At lower
energies, the singlet dipole matrix elements are below 10−6 D
and the singlet component can be considered negligible. At
E ≈ −2530 cm−1, the triplet matrix element rises by one order
magnitude, marking the beginning of the c 3�+-dominated
intermediate states. Matrix elements corresponding to these
transitions are about one order of magnitude larger than the
ones which can be assigned to 3� transitions, owing to the fact
that the 3�+ electronic transition dipole moment is consider-
ably larger in the region of interest, which is further enhanced
by a higher Franck-Condon overlap at the outer turning points.
The largest values appear for levels at and beyond the P1/2

asymptote (E = −57.72 cm−1). However, the density of states
is very large in this area. In addition, phenomena like predis-
sociation have to be taken into account, opening unfavorable
decay channels. We will discard because of the complex
unfavorable structure the 1�-3�+ crossing resonances, which
appear roughly 10 cm−1 below the P1/2 asymptote.

In Fig. 8, we show for all intermediate states the two-
photon transition dipole matrix element d(F→X) obtained from
the matrix elements shown in Fig. 7 adding singlet and
triplet contributions. Degeneracy-induced resonances can be
recognized due to the appearance of double dots (examples
are encircled in Fig. 8). The largest transition dipole matrix
elements are obtained at one of these resonances situated
in the 3�+-1� regime, where two-photon matrix elements
of 0.052D2 can be reached at E ≈ −560 cm−1, making
these resonances highly interesting for two-photon transfer
schemes. However, the exact positions and properties of
degeneracy-induced resonances critically depend on small

FIG. 8. (Color online) Absolute value of the two-photon dipole
matrix element. The circles mark double dots, indicating degeneracy-
induced resonances.
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FIG. 9. (Color online) Part of the hyperfine spectrum of the v =
5,N = 6 level of the a 3�+ state by STIRAP transfer (X 1�+,v =
0 → intermediate state → a 3�+) on a molecular beam of NaK.

corrections of excited-state molecular potentials and can
therefore not be predicted theoretically. Making use of these
resonances demands accurate spectroscopic knowledge of the
resonance positions as can only be obtained by experiments.
We have spectroscopically identified one such resonance in
our molecular beam experiment and subsequently used the
resonance for a coherent STIRAP transfer from the X 1�+
ground state to high-lying vibrational states of the a 3�+
molecular potential. The realized scheme is the reversed
process compared to that drawn in Fig. 1. The pump laser
was fixed to the transition from X 1�+(v = 0,J = 6) to a
selected resonantly mixed B 1� ∼ c 3�+ level. While the
Stokes laser was tuned across the c 3�+-a 3�+ transition the
STIRAP transfer was observed as a reduction of fluorescence
out of the upper level. As an example we show in Fig. 9 part
of the observed dip structure due to the hyperfine structure
of the v = 5, J = 6 level of the a 3�+ state. The vertical
bars below indicate the expected hyperfine pattern employing
atomic hyperfine parameters, where the lengths of the bars
indicate only the sum of unresolved levels. Details on this
experiment will be given in a forthcoming paper. Extending
this experiment towards the Feshbach molecular states and
reversing the process and states, as originally given in
Fig. 1, will result in one of the resonance enhanced pathways
for the creation of ultracold ground-state NaK molecules from
Feshbach molecules.

Further possible pathways can be identified by our the-
oretical analysis, which provides a robust description of
two-photon dipole matrix elements away from the resonances.
Intermediate c 3�+ levels perturbed by a small admixture of
singlet character from the B 1� molecular potential lead to

two-photon coupling matrix elements from the Feshbach state
to the X 1�+(v = 0,J = 0) state of 10−5–10−2D2, coming
close to the values obtained for degenerate resonances. The
favorable cases are found in the energy region given by blue
dots in the middle of Fig. 7. It is further noted that in this
area, the one-photon dipole moments for the two involved
transitions can be of similar magnitude. In general, a STIRAP
sequence benefits from similar peak Rabi frequencies of pump
and Stokes pulses in terms of robustness. We find such states,
e.g., at E ≈ −1542 cm−1, when the singlet (triplet) dipole
matrix elements read 0.057 (0.069) D. For the ground-state
case, this exceeds the 0.046 D reported in a similar analysis
for the KRb case [28]. We therefore conclude that such states
will be highly promising candidates for the two-photon Raman
process.

V. CONCLUSION

In summary, we have presented a multichannel analysis of
electronic ground- and excited-state manifold converging to
the K(4p) + Na(3s) dissociation limit of NaK. Our analysis
includes a detailed study of the spin character and the molec-
ular wave functions of both the Feshbach molecular state and
the electronically excited intermediate states. For the Feshbach
molecular wave function, we do observe a strong magnetic
field dependence which can be used to enhance the amplitude
of the Feshbach wave function in the FCF relevant region and
therefore enhance the transition strength from the Feshbach
to the intermediate state. For the intermediate electronically
excited state, however, we do not expect a strong magnetic
field dependence, as the expected Zeeman energy is far weaker
than the spin-orbit interaction and the vibrational spacing.

Our study makes it possible to identify possible coherent
two-photon transfer pathways from Feshbach molecules to
rovibronic ground-state molecules in a fairly wide energy
range accessible by conventional laser sources. The study is
complemented by a first demonstration of STIRAP transfer
from the vibrational ground state of the X 1�+molecular
potential to the a 3�+manifold, demonstrating singlet-triplet
transfer in the NaK system via a resonantly mixed excited
state. Our analysis therefore fills a critical gap towards the
creation of chemically stable ultracold NaK molecules.
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[19] A. Gerdes, O. Dulieu, H. Knöckel, and E. Tiemann, Eur. Phys.
J. D 65, 105 (2011).

[20] E. Tiemann (unpublished).
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