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Positron attachment to the He(ns2 1Se) states

J. Mitroy* and J. Grineviciute
Centre for Antimatter-Matter Studies and School of Engineering, Charles Darwin University, Darwin NT 0909, Australia

(Received 15 July 2013; published 29 August 2013)

Calculations based on the projection method and using explicitly correlated Gaussians are used to confirm the
existence of positron attachment to two doubly excited states of helium. The e+He(2s2 1Se) and e+He(3s2 1Se)
states have binding energies of 0.449 and 0.286 eV. These estimates of the resonance energies are nearer to
the variational limit than previous calculations. These states will exist as resonances in the e+-He scattering
continuum, and complex rotation calculations have been used to estimate their widths.
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I. INTRODUCTION

The ability of a positron to attach itself to the doubly excited
states of helium has recently been demonstrated by explicit
calculations [1]. These calculations were performed using the
same projection operator approach that was originally applied
in some of the earliest calculations of the helium doubly excited
spectrum [2,3]. The results identified a possible pathway for
experimental confirmation that positrons can be attached to
electrically neutral atoms to form bound states.

There exists a substantial amount of calculational evidence
that positrons can form bound states with a variety of atoms
[4–6]. Binding energies range from 0.0129 eV in the case of
e+Na [7] to about 0.50 eV for the e+Ca ground state [8].
However, there is no experimental evidence that could be
construed as unambiguously demonstrating the existence of
positron-atom bound states despite the numerous experiments
providing evidence of positron binding to molecules [9].

One possible signature for positron-atom binding would
be the existence of resonant structures associated with atomic
excited states in the positron scattering spectrum. Many years
of experiment, however, have provided no hard evidence
regarding the existence of resonant states in positron-atom
scattering spectra [5,10,11]. A number of schemes have been
put forward to demonstrate the existence of positron-atom
bound states [12–16]. None of these schemes have resulted in
experiments.

The present article uses the stochastic variational method
(SVM) [4,17,18] to provide improved information about the
positron attachment resonances associated with the He(2s2

1Se) and He(3s2 1Se) doubly excited states. The structures
of these resonances are initially analyzed using bound-state
methods by using projection operators that prevent decay
into an autoionizing continuum [2,3]. The complex rotation
(CR) method is then used to estimate the widths of both
resonances. [19].

The e+He(2s2 1Se) and e+He(3s2 1Se) structures may
manifest themselves as resonances in the e+ + He continuum.
An initial search for the e+He(2s2 1Se) resonance in a positron-
helium scattering experiment was not successful [20]. The
present improved estimates of the positions and widths of
these resonances might aid any future experimental effort.
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II. METHODOLOGY

A. Stochastic variational method using the QHQ ansatz

The SVM [4,17,18], in conjunction with the projection
operator formalism was used to determine the wave functions
of the resonance states. The SVM diagonalizes the Hamilto-
nian in a basis of explicitly correlated Gaussians (ECGs). The
nonlinear parameters of the ECG basis are optimized by a trial
and error process. Such a process is possible since the matrix
elements of the Hamiltonian in an ECG basis are computed
easily and quickly. The dimensions of the SVM expansion for
the e+He(2s2 1Se) and e+He(3s2 1Se) states were 1000 and
1300 ECGs, respectively.

The projection method [2,3] provides an easy to implement
method for the identification of resonances and determination
of their positions. In this method, the target electrons are not
allowed to occupy those low-lying states that could result in
the autoionization of the system. Such a calculation is often
referred to as a QHQ calculation, with the Q symbolizing the
action of a projection operator. One example of the application
of the projection method was an investigation of the He−
resonances associated with the He doubly excited states [24].

The Hamiltonian for the N = 2 electron and one positron
system is

H = −
N+1∑

i=1

∇2
i

2
−

N∑

i=1

2

ri

+ 2

rN+1

+
N∑

i<j

1

|ri − rj | −
N∑

i=1

1

|rN+1 − ri | . (1)

The projection of the unwanted states was accomplished by
adding an orthogonalizing pseudoprojector (OPP) [1,4,18,25,
26] to the Hamiltonian. In the case of a calculation of the
doubly excited states with n = 2 the purpose of the OPP would
be to exclude the He+(1s) state from being occupied. The OPP
operator would be

λP̂ = λ
∑

i

|1s〉〈1s|, (2)

where the sum is over electron coordinates. Choosing λ as a
large positive number results in a ground-state wave function
which has a very small overlap with the He+(1s) state. The
expectation value of P̂ is always positive and is smallest
when the overlap with the He+(1s) state is smallest. The
minimization of the energy that is inherent to any variational
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TABLE I. Comparisons of the energies (in a.u.) of some He doubly excited states. All energies are given with respect to the He2+ thresholds.
Four sets of helium energies are given. One set, ECR, was taken as the real part of the energy from complex rotation calculations. The three
other sets are taken from QHQ Feshbach projection calculations.

EQHQ

State ECR EHylleraas ECI ESVM

He(2s2 1Se) −0.777 818 [21] −0.778 774 [2] −0.778 781 [1] −0.778 786
He(3s2 1Se) −0.353 54 [22] −0.354 48 [23] −0.354 562 [1] −0.354 570

calculation acts to minimize the expectation value of the λP̂

operator.
The 1s state was expanded as a linear combination of 12

Gaussians. The OPP operator was modified for calculations
of the doubly excited He(3s2) state. In this case, Gaussian
expansions of the 2s and 2p states were added to the projector.
The 2p state was expanded as a linear combination of eight
Gaussians. The energies of the 1s, 2s, and 2p projectors
were −1.999 996 1, −0.499 923 7, and −0.499 999 32 a.u.,
respectively. The parameter λ was set to 1 × 105 a.u. for the
present calculations.

III. CALCULATION RESULTS

A. The helium doubly excited states

The energetics of positron binding depend on the ionization
energies of the parent atom. When the ionization energy of the
parent atom is larger than the positronium binding energy, i.e.,
−0.250 hartree, the threshold for binding is simply governed
by the energy of the parent atom; i.e., the lowest-energy
dissociation channel is the e+ + A channel where A represents
the atomic ground state. When the ionization energy of the
parent atom is smaller than the positronium binding energy,
the threshold for binding is simply the positron binding energy
added to the energy of the parent atom with one electron
removed; i.e., the lowest-energy dissociation channel is the
Ps +A+ channel where A+ is the ground state of the positive
ion. More detailed discussions of the energetics of positron
binding are available [4,5].

Table I compares the SVM QHQ energies of some helium
doubly excited states with earlier calculations. Both the config-
uration interaction (CI) [1] and SVM He(2s2 1Se) energies lie
about 10−5 a.u. below the earlier Hylleraas calculation [2].

It is not surprising that the present calculations are more
variationally complete since the Hylleraas calculation was
done more than 40 years ago. The SVM energy of −0.778 786
a.u. was the lowest energy and was obtained with a basis
of dimension 150. Further optimization of the energy was
not possible since linear dependence problems result in the
calculation becoming numerically unstable with respect to
further enlargement of the ECG basis. The projection method
energies, EQHQ, of the He(2s2 1Se) state in Table I differ from
that determined by the more dynamically complete complex
rotation method by less than 0.001 a.u.

The SVM energy of the He(3s2 1Se) state was −0.354 570
a.u. This is less than 10−5 a.u. below the CI energy of
−0.354 562 a.u. Both calculations are compatible with an
earlier QHQ calculation carried out with a Hylleraas basis [23].

B. The e+He(2s2) doubly excited state

The dimension of the largest SVM calculation of the
e+He(2s2) state was 1000 ECGs. Some expectation values,
including the annihilation rate, are given in Table II. The e+
binding energy is determined by reference to the He(2s2)
energy of −0.778 786 a.u. The SVM binding energy of
the positron to the He(2s2) state given in Table II was
0.016 517 a.u. This was computed with an OPP parameter
of λ = 1 × 105 a.u. This represents an improvement in the
binding energy of 0.000 09 a.u. over the previously reported
SVM binding energy of 0.016 424 a.u. [1]. A CI calculation
gave a binding energy of 0.016 272 a.u. [1]. As with most
variational calculations the binding energy is an underestimate
of the exact binding energy. Attempts to further optimize the
basis and improve the energy failed due to linear dependence
problems [18]. The SVM and CI binding energies for this state

TABLE II. Results of QHQ calculations for the e+He states. The three-body energy of the state is given in a.u.. The two thresholds for
binding are −0.778 786 and − 2

9 − 1
4 = −0.472 222 2̄ a.u., and εJ gives the binding energy (in a.u. and eV) against dissociation. The mean

electron-nucleus distance 〈re〉 and the mean positron-nucleus distance 〈rp〉 are given in units of a0. The 〈�〉 column gives the spin-averaged
annihilation rate (in units of 109 s−1).

Calculation E 〈re〉 〈rp〉 〈�〉 εJ (a.u.) εJ (eV)

e+He(2s2 1Se)
CI [1] −0.795 058 0.016 272 0.442 8
SVM [1] −0.795 210 0.016 424 0.446 9
SVM present −0.795 303 3.630 6.904 1.1150 0.016 517 0.449 5

e+He(3s2 1Se)
CI [1] −0.481 643 0.009 421 0.256 4
SVM present −0.482 726 8.074 9.336 2.1893 0.010 504 0.285 8

022710-2



POSITRON ATTACHMENT TO THE He(ns2 1Se) STATES PHYSICAL REVIEW A 88, 022710 (2013)

are in agreement when the respective uncertainties arising from
finite-size basis sets are taken into consideration.

The spin-averaged annihilation rate of 1.115 × 109 s−1

is approximately half that of a free-space spin-averaged
positronium atom (which has 〈�〉 = 2.008 × 109 s−1 [27]).
This implies that the wave function is an almost equal mixture
of two configurations [5]. One configuration consists of a
positron orbiting the polarized He(2s2) atom, while the other
can be described as a polarized positronium atom orbiting the
He+(2s) cation.

C. Similarities between the e+Mg(3s2) and e+He(2s2) states

The structure of the e+He(2s2 1Se) state is very similar to
that of the e+Mg(3s2 1Se) state. The e+He(2s2 1Se) binding
energy of 0.01652 a.u. is only 4% smaller than the binding
energy of the positron to the Mg(3s2) ground state, namely,
0.01704 a.u. [28]. Next, the annihilation rates are similar. The
e+He(2s2) annihilation rate of 1.115×109 s−1 is about 10%
larger than the latest SVM e+Mg(3s2) annihilation rate of
1.014×109 s−1 [8]. This is about half the annihilation rate
of the spin-averaged ground state of a positronium. The mean
positron radius 〈rp〉 of 6.923 a0 for e+Mg(3s2) [8] is within 1%
of the mean positron radius for e+He(2s2), namely, 6.904 a0.

The reason for the similarity lies in the structures of the
He(2s2) and Mg(3s2) parent atoms, which are also very
similar. The binding energy of the Mg+(3s) ground state
is −0.55254 a.u. [29], while the He+(2s) binding energy is
−0.50 a.u. The binding energy of the Mg(3s2) ground state
with respect to the Mg+(3s) threshold is −0.2810 a.u, while
the binding energy of the He(2s2) resonance with respect to
the He+(2s) state is −0.2778 a.u. [21]. The radial expectation
value 〈re〉 is 3.276 a0 for the He(2s2) state and 3.164 a0 for
the Mg(3s2) state. The respective dipole polarizabilities are
76.2 a3

0 for the He(2s2) state [1] and 71.3 a3
0 for the Mg(3s2)

state [27].

D. The e+He(3s2) doubly excited state

The SVM energy of the He(3s2 1Se) state is −0.354 570 a.u.
Since the removal energy of the electron with respect to the
He+(3�) threshold, −0.132 35 a.u., is less than the positronium
ground-state energy of −0.25 a.u., the threshold for attaching
a positron to the He(3s2 1Se) state is at −0.472 222 a.u., the
sum of the He+(3�) and Ps(1s) binding energies.

The best SVM calculation with a basis dimension of 1300
ECGs gave a three-body energy of −0.482 726 a.u and a
binding energy of 0.010 504 a.u. This energy was computed
with an OPP parameter of λ = 1 × 105 a.u. The SVM binding
energy represents a 10% improvement over the earlier CI
calculation [1].

The SVM annihilation rate of 2.188 × 109 s−1 indicates
that this system possesses a well-defined Ps(1s) cluster with
a structure best described as He+(3s) + Ps(1s). It also should
contain a Ps− component as expected from a study of the
(m2+, 2e−, e+) system [30].

Stability of the e+He(3s2 1Se) system provides supporting
evidence for the existence of an infinite number of e+He(ns2)
type resonances. The (m2+, 2e−, e+) system is known to bind
a positron as the mass m2+ → 0 [30]. A decreasing m2+ mass
also leads to the interaction strength between the m2+ and
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FIG. 1. (Color online) Energies of the e+He(2s2 1Se) state
computed with a succession of different ECG basis sets using three
different values for the OPP parameter λ. The horizontal axis gives the
λ〈P 〉 expectation value when the Hamiltonian with the OPP operator
is diagonalized. The quality of the basis (i.e., increased dimension and
more intense optimization) improves as the points for a particular λ

go from right to left.

the two electrons decreasing. It provides an analog of the
He2+-ns(e−) interaction as n increases. It is likely that the
e+He system has a rich resonance structure in the energy region
where the helium doubly excited states are located.

E. Estimation of the variational limit

Figure 1 shows the Hamiltonian expectation value for a
succession of SVM wave functions at different stages of
optimization. These wave functions were computed using
three different values of the λ parameter in the OPP operator.
Three things should happen as the basis used in the variational
calculation approaches completeness. First, the energy should
converge to the exact energy from above. Second, the λ〈P 〉
expectation value should go to zero from above. Finally, the
energies of all three calculations should approach each other.
These three features all seem to be occurring in Fig. 1. A visual
inspection of the λ = 1 × 105, 2 × 105, and 4 × 105 curves
suggests that energy reported in Table II is within 2 × 10−4 a.u.
of its variational limit.

Figure 2 plots the Hamiltonian expectation value of the
e+He(3s2 1Se) state for a succession of SVM wave functions at
different stages of optimization. The Hamiltonian expectation
value for this state is more sensitive to the presence of the OPP
operator. This is expected since there are now three Pauli-
forbidden orbitals. A visual inspection suggests that the varia-
tional limit is about 0.002 a.u. lower than the best SVM energy.

IV. COMPLEX ROTATION CALCULATIONS

Complex rotation (CR) calculations were made to give
estimates of the resonance widths as well as more refined
estimates of the resonance positions [19,31,32]. In the CR
method the Hamiltonian and wave function are transformed
by making the transformation

r → α exp(i�)r. (3)
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FIG. 2. (Color online) Energies of the e+He(3s2 1Se) state
computed with a succession of different ECG basis sets using three
different values for the OPP parameter λ. The horizontal axis gives the
λ〈P 〉 expectation value when the Hamiltonian with the OPP operator
is diagonalized. The quality of the basis (i.e., increased dimension and
more intense optimization) improves as the points for a particular λ

go from right to left.

Rotating the coordinates into the complex plane leads to the
resonant wave function being made square integrable and
accessible to a basis set expansion. When the interactions are
purely Coulombic, the complex scaled Hamiltonian can be
written as

H� = exp(−2i�)T + exp(−i�)VC, (4)

where the complex scaling parameter � is an arbitrary real
parameter satisfying the inequality 0 < � < π/2. The matrix
elements for T and VC are calculated as usual. The parameter
α can be varied, but in the present investigation it was
set to 1. A generalized variational principle [19,32] can be
applied to the complex scaled Hamiltonian. Resonant states
can be identified by adjusting the � parameter. The complex
energies of scattering states rotate in an approximately circular
trajectory in the complex plane as � is adjusted, while resonant
state energies show relatively little change as � changes.

The QHQ optimised basis was augmented by additional
basis functions that are able to better represent the wave
functions of the breakup channels [33,34]. This is best illus-
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FIG. 3. Complex rotation diagram of the e+He(2s2 1Se) reso-
nance. The diagram shows the complex eigenvalue of the Hamiltonian
given by Eq. (4) for values of the complex rotation angle spaced by
0.005 rad.

trated by discussion of a specific example, the e+He(2s2 1Se)
state, which can dissociate into the e+ + He(1s2 1Se) and
Ps(1s) + He+(1s) channels.

The outer basis functions used to describe the positive
energy Ps(1s) + He+(1s) breakup are designed to give a good
representation of this scattering channel:

	
ijk
out = exp (−αiR

2)φj

Ps(r0,r1)φk
He+(r2). (5)

Here r0 is the positron coordinate, R is the relative distance
between the Ps(1s) and He+ centers of mass, and ri (i > 0)
are the electron coordinates. φ

j

He+(r2) can be represented as a
set of Gaussians (which would give an energy of −1.999 978
hartree). A total of six ECGs are used to represent the φi

Ps(r0,r1)
ground state (the energy of this superposition was −0.249 972
hartree). The exponents, i.e., αi , form an even tempered
sequence with a constant ratio between successive terms. There
were 14 terms defined by the relation Ti = 20/1.48i .

The e+ + He(1s2 1Se) dissociation channel basis functions
were represented as

	
ij
out = exp

( − αir
2
0

)
φ

j

He(r1,r2), (6)

where r0 is the positron coordinate and r1 is the electron
coordinate. There were 14 αi Gaussians, and an approximate
representation of the He ground state was constructed by
multiplying together all unique combinations of the Gaussians
used in the eight Gaussian representation of the He+ ground
state.

The set of raw ECGs that would give a reasonable
representation of the exit channels given by Eqs. (5) and
(6) was added to the best QHQ basis representation of the
e+He(2s2 1Se) resonance. ECGs which had an overlap of 0.98
with any other basis function were removed from the basis. The
final basis for the complex rotation calculation had a dimension
of 1658 ECGs. The QHQ basis of the e+He(3s2 1Se) state was
similarly augmented prior to the complex rotation calculation.
In this case the final basis had a dimension of 2085 ECGs.

The complex trajectory for the e+ + He(2s2 1Se) eigenvalue
is shown in Fig. 3. The resonance position is defined by
examining the complex trajectory and determining the point
where [35]

∂|E|
∂�

≈ minimum. (7)
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FIG. 4. Complex rotation diagram of the e+He(3s2 1Se) reso-
nance. The diagram shows the complex eigenvalue of the Hamiltonian
given by Eq. (4) for different values of the complex rotation angle.
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For Fig. 3, this occurs at θ = 0.275 rad. The position Er

and half width �/2 were Er = −0.795 27 and 0.000 66 a.u.,
respectively. An earlier calculation with a basis of 1428
ECGs gave the position and half width as E = −0.794 84
and 0.001 24 a.u., respectively [1].

The complex trajectory for the e+He(3s2 1Se) eigenvalue
is shown in Fig. 4. The dimension of the final basis for
this calculation was 2085 ECGs. The position where the
complex energy changed least rapidly was at � = 0.130 rad.
The resonance parameters were E = −0.484 32 and �/2 =
0.005 39 a.u., respectively.

V. CONCLUSION

SVM calculations have confirmed the existence of two
Feshbach resonances associated with the doubly excited states
of helium. Improved estimates of the position and widths of the
resonances have been made. Table III summarizes the results
on the resonance calculations. The results that are listed in
the table are those of the most complete calculations. Table III
also reports collision energies with respect to the e+ + He(1s2)
ground state since these e+He resonances are potentially
detectable in the e+ + He continuum. The uncertainties in the
collision energies of the resonances due to incompleteness of
the ECG basis are about 6 meV for the e+He(2s2 1Se) resonance
and 60 meV for the e+He(3s2 1Se) resonance.

The resonance widths of 36 and 294 meV are large enough
to permit detection. The main question regarding detection is
whether the resonances are coupled with sufficient strength to
the exit channels that are most convenient for experimental
detection. There has already been one attempt to detect these
states in a positron-helium scattering experiment. Machacek
et al. [20] measured the total cross section and the net
positronium cross section for impact energies between 57.2
and 58.1 eV and did not see any evidence of a resonance. This
experiment used a modern trap based positron beam that can
achieve an energy resolution of 50 meV or better [9,36].

Reference to e− + He scattering experiments [37–41] can
be made to give an indication of the signal to noise require-
ments needed for detection. For example, He+ ions were
detected in the experiment of Quéméner et al. [38]. The
variation in the cross section for the creation of He+ was

TABLE III. Summary of resonance energies Eres (in a.u.), half
widths (in a.u.), and energy relative to the helium ground state Ecoll

(in eV). CR stands for complex rotation.

State Method Eres �/2 Ecoll

e+He(2s2 1Se) SVM-CR −0.795 27 0.000 66 57.37
e+He(3s2 1Se) SVM-CR −0.484 32 0.005 39 65.84

only 1% over the width of the He−(2s22p) resonance, and
the number of counts per channel exceeded 100 000 000. The
statistical uncertainty in the Machacek et al. [20] experiment
seems to be about 2% [20].

Higher signal to background ratios have been achieved in
e−-He experiments that measure differential cross sections.
One example is an experiment which measured the energy of
the ejected electron following autoionization [39]. Another is
the measurement of the optical excitation functions associated
with the formation of a number of He− excited states [40].

There have been many calculations of resonances occurring
for positron scattering from a variety of possible atomic
targets [28,42–50]. However, there has as yet been no un-
equivocal identification of a resonance in the experimental
positron scattering spectrum of any atom [5,9]. The identified
resonances are either too narrow, in the case of hydrogen or
the alkalis [43,44,46,48], or located in the energy region very
close to the threshold [28,42,49,51]. The present resonances
are broad (when compared with others) and occur in a system
that is amenable to experimentation.
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