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The concept of dynamical adiabatic states, originally proposed to describe one-electron atom(ion)-ion collision
systems is developed and the properties of the corresponding dynamical adiabatic potential energy curves are
studied for a complete range of internuclear separations R. The advantages of a dynamical adiabatic basis are
threefold. First, it is compatible with the boundary conditions, whereas in standard adiabatic two-Coulomb
center basis we have nonvanishing inelastic transitions when internuclear distance R → ∞. Second, rotational
transitions are transformed into radial transitions via a type of hidden crossings in contrast with the standard
adiabatic basis, where these transitions could only be included by numerical close-coupling calculations. And
third, the ionization process can be described using a basis of the complete discrete orthogonal wave packets,
which is much more satisfactory for the process compared with the standard adiabatic approach where the
continuum states which have no direct physical meaning are employed. Results of the calculation for the
(HeH)2+ quasimolecular system are presented and discussed. Comparison is made with previous results derived
by perturbation theory in the united-atom and separated atoms limits.
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I. INTRODUCTION

The adiabatic approximation for slow atomic collisions
is valid for impact energies up to about 10 KeV/nucleon.
This interval covers many processes occurring in the natural
world, including ionized stellar atmospheres and TOKAMAK
fusion plasmas. It has been extensively developed during the
past 50 years. Initially, the description of inelastic processes
was restricted by the transitions via narrow avoided crossings
between molecular potential energy curves (PEC) correspond-
ing to states located on different nuclei. The splitting of the
energies at the point of avoided crossing is determined by the
under-barrier penetration of an electron from Coulomb well of
one nucleus to the other and is exponentially small with respect
to the inverse of Planck constant h̄. However, such avoided
crossings are absent, for example, in the quasimolecular
system H2

+. In 1981 a new mechanism of nonadiabatic tran-
sitions was discovered and attributed to the so-called “hidden
crossings” [1], which are not visible on the plot of the PEC for
real internuclear separations R. They can be verified by direct
numerical calculation in the complex R-plain as branch points
of the PEC E(R) and appear when the real energy level En(R)
touches the top of an effective electron potential, that is the
electron trajectory collapses into unstable periodic orbit. Their
splitting is determined by the Lyapunov index and is propor-
tional to h̄. Only “hidden-crossings” together with the “avoided
crossings” and rotational transitions describe a complete set
of inelastic transitions in the standard adiabatic approach.

It is a well-known fact in the theory of ion-atom collisions
that when using an expansion of the wavefunction in terms
of adiabatic eigenstates of the quasimolecule formed during
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the collision, the problem of obeying the proper boundary
conditions occurs. Thus, in the impact-parameter formulation
of the theory (that is, when the motion of the nuclei is described
classically), in order to obtain a Galilean invariant theory, it is
necessary to attach to each of the basis functions the so-called
“electron translation factors” (for a review see Ref. [2]). An
elegant solution to this problem is the method of nonstationary
scaling of the length (NSSL), proposed originally by one of the
authors [3,4]. In this approach, the problem is reduced to the
one in which the nuclei are at rest, but additional dynamical
interactions appear in the electronic Hamiltonian [5]. More
recently, the NSSL has been successfully used to treat the
problems of electron-atom(molecule) collisions [6] and the
interaction of atoms and molecules with radiation fields [7,8].

In the case of ion-atom collisions, the NSSL naturally
leads to the notion of dynamical adiabatic states (DAS) and
corresponding dynamical adiabatic potential energy curves
(DAPEC) [5,9]. In the dynamical adiabatic approximation,
the three principal conceptual problems are resolved:

(i) Boundary conditions. In the standard adiabatic basis,
there are some matrix elements of nonadiabatic coupling
Wij (R) = 〈i|∂/∂R|j 〉 between two quasimolecular states |i〉
and |j 〉 that have a constant component, that is, in principle,
we cannot determine the probability of inelastic transition
because of nonvanishing transitions at internuclear distances
as R → ∞.

(ii) Rotational transitions are transformed into radial tran-
sitions through the component of the angular momentum
operator L3 perpendicular to the scattering plane. In standard
adiabatic approach, these transitions were beyond the adiabatic
scheme and could only be included by numerical close-
coupling calculations.

(iii) Here, the ionization process is described using a basis
of the complete discrete orthogonal wave packets, which is
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a much more satisfactory approach. In standard adiabatic
approach, the continuum states, which have no direct physical
meaning, are employed.

In the quantum description of the motion of the nuclei,
all of the above-mentioned problems are resolved within the
hyperspherical adiabatic approach proposed by Macek [10]
for solving the three-body Coulomb problem. Subsequently,
the method has been widely applied to a variety of collision
problems, in particular to the He2++H system [11], which we
shall treat as an example in the present work. The relationship
between the NSSL and hyperspherical adiabatic approach is
discussed in Ref. [12].

The DAS and DAPEC have been studied up till now in
some detail only for the one-electron model problem, where
the interactions of the electron with the target and the projectile
centers are described by the zero-range potentials [13]. In
the case of one-electron ion-atom systems with Coulomb
interactions, only the limits of united atoms and separated
atoms have been considered using the perturbation theory [14].
In the present work, we extend the study of DAPEC to
all internuclear separations, discuss some of their general
properties, and compare our numerical results with existing
asymptotic expressions.

We use atomic units throughout the work except unless
explicitly stated.

II. FORMULATION OF THE PROBLEM

We consider a collision system consisting of a single elec-
tron and two bare nuclei of charges ZA and ZB traveling along
the straight-line trajectories. The dynamics of the electron is
described by the time-dependent Schrödinger equation(

− 1

2
�r − ZA

|r + αR| − ZB

|r − βR|
)

�(r,t) = i
∂�(r,t)

∂t
,

(1)

where R = RB − RA = (vt,ρ,0) is the vector connecting the
nuclei A and B, v is the impact velocity, ρ is the impact
parameter, and the origin of the reference frame is located on
the internuclear axis and defined by parameters α and β (RA =
−αR, RB = βR, α + β = 1). This equation is obtained
straightforwardly from the three-body Schrödinger equation
as accurate semiclassical asymptote with respect to nuclear
motion at impact energy much greater than the ionization
potential [15]. If electron binding energy is comparable with
impact energy, Eq. (1) is not valid. In this case, the total wave
function is superposition of nuclear states in the different
adiabatic potentials, and a “time” variable, common to all
adiabatic channels, cannot be introduced.

The initial condition for t → −∞ requires that � takes
the form of the initial atomic wavefuntion �a

γ (rj ) localized at
one of the two centers (j = A,B) with the Galilean translation
factor, which takes into account the motion of the nuclei

lim
t→−∞ �(r,t) = �a

γ (rj ) exp
[
i
(
vj · rj + 1

2v2
j t − Ea

γ t
)]

, (2)

where rj = r − Rj , vj is the velocity of the j th nucleus and
Ea

γ is the atomic energy level.
We introduce the NSSL by dividing the electronic co-

ordinates (x,y,z) by the internuclear separation R(t) and,

subsequently, make the transformation to the rotating (molec-
ular) coordinate system (q1,q2,q3) with the q1 axis directed
along the internuclear axis:

q1 = 1

R(t)
[x cos ϕ(t) + y sin ϕ(t)], (3)

q2 = 1

R(t)
[−x sin ϕ(t) + y cos ϕ(t)], (4)

q3 = z

R(t)
, (5)

where ϕ(t) = arctan(ρ/vt) is the polar angle of R(t) in the
scattering (x,y) plane. We also represent the wavefunction in
the form

�(r,t) = R−3/2 exp

[
i

r2

2R

dR

dt

]
f (q,τ ), (6)

where a new time-like variable has been introduced (ω = ρv):

τ (t) =
∫ t

0

dt ′

R2(t ′)
= ω arctan(vt/ρ), (7)

and the variation of t in the interval (−∞,+∞) corresponds
to the variation of τ in the interval (τi,τf ) ≡ (−π/(2ω), +
π/(2ω)). The factor R−3/2 in Eq. (6) ensures normalization,
and the exponent is a generalized translation factor, because it
satisfies the relation

exp

[
i

r2

2R

dR

dt

]
= exp

[
i
|rj + Rj |2

2R

dR

dt

]

= exp

[
i

(
vj · rj + 1

2
v2

j t

)]∣∣∣∣
Rr−1

j →∞
. (8)

Substituting the wavefunction Eq. (6) into Eq. (1), we obtain
the modified Schrödinger equation

H (τ )f (q,τ ) = i
∂f (q,τ )

∂τ
, (9)

with

H (τ ) = −1

2
�q − R(τ )

(
ZA

|q + αq̂1| + ZB

|q − βq̂1|
)

+ωL3 + 1

2
ω2q2, (10)

where, R(τ ) = ρ/ cos ωτ , q̂1 is the unit vector along q1 axis,
and

L3 = −i

(
q1

∂

∂q2
− q2

∂

∂q1

)
(11)

is the operator of the projection of the electronic angular
momentum onto the direction perpendicular to the scattering
plane. In the new (q,τ ) “representation,” the two Coulomb
centers are at “rest” and separated by the unit distance, but
their strengths are R(τ )-dependent.

In the general case of arbitrary trajectories, the last two
terms in Hamiltonian Eq. (10) take the form: R2 ˙ϕ(t)L3 +
R3R̈q2/2 (where the dot represents the derivative with respect
to t). Factor R2 ˙ϕ(t) coincides (up to the reduced mass of
nuclei M) with nuclear angular momentum and is equal ω.
For Coulomb trajectory, the strength of oscillator is R3R̈ =
ω2 + ZAZBM−1R. Since M−1 ∼ 10−3, contribution from the
second term is negligible at finite distances R, where inelastic
transitions occur.
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The Hamiltonian H (τ ) is an even function of τ and the
parity �3(q3 → −q3) is the only conserved symmetry. We
note that the position of the coordinate origin, defined by fixing
parameters α and β = 1 − α, can be taken at will, because the
two solutions differing by the shift of the origin along the
internuclear axis are related to each other by an unessential
coordinate-dependent phase factor [13].

For slow collisions, when an adiabatic approach is appro-
priate, we look for the solutions of Eq. (9) in the form of an
expansion:

f (q,τ ) =
∑

γ

gγ (τ )�γ (q,τ ) exp

[
−i

∫ τ

0
Eγ (τ ′)dτ ′

]
, (12)

in terms of the eigenfunctions �γ (q,τ ) of the instantaneous
Hamiltonian Eq. (10):

H (τ )�γ (q,τ ) = Eγ (τ )�γ (q,τ ). (13)

We call the complete set of eigenfunctions �γ (q,τ ) DAS
and the eigenvalues Eγ (τ ) DAPEC, because in addition to
internuclear separation R(τ ) they also depend on ω = ρv.
For ω 	= 0, due to the presence of the harmonic oscillator
potential in Eq. (10), the spectrum of the Hamiltonian H (τ ) is
discrete. One can distinguish two types of DAS that differ
by their behavior when R(τ ) → ∞ [13]. The first type is
characterized in this limit by negative eigenvalues and states
strongly localized in the vicinity of either of the Coulomb
centers ZA or ZB . These eigenstates �γ asymptotically
correlate with bound (atomic) states �a

γ from Eq. (2). The
second type of DAS is characterized in this limit by positive
eigenvalues and delocalized eigenfunctions that eventually
decay in the classically forbidden region of the harmonic
oscillator potential from Eq. (10). They provide a much
more adequate description of the ionization channel in terms
of a discrete complete set, which transforms back in the
original r-space into a set of orthogonal wave packets of free
electrons [13]. In the present work, we shall consider only
DAPEC of the first type.

After the substitution of Eq. (12) into Eq. (9), the usual set
of coupled equations for the expansion coefficients is obtained:

dgγ (τ )

dτ
= −

∑
γ ′ 	=γ

Wγ ′γ (τ )gγ ′(τ ) exp

[
i

∫ τ

0
�Eγ ′γ (τ ′)dτ ′

]
,

(14)

where

�Eγ ′γ (τ ) = Eγ (τ ) − Eγ ′(τ ), (15)

Wγ ′γ (τ ) = 〈�γ | ∂

∂τ
|�γ 〉. (16)

If initially the electron is bound in the atomic state �a
γi

, then the
set of coupled Eqs. (14) has to be solved with initial conditions

gγ (τi) = δγ,γi
, (17)

and the transition probability to final state γf is given by

P (ρ,v) = |gγf
(τf )|2. (18)

The label γf can correspond to a bound state on the same center
as γi , in which case we deal with the excitation process, or to
a bound state on the other center when we deal with charge

exchange, or it can correspond to delocalized (“continuum”)
state when we deal with ionization. Note also that, because
the parity �3 is conserved, the symmetric and antisymmetric
components of the initial state evolve independently.

In the case of the homonuclear system, ZA = ZB , there is
additional (gerade-ungerade) symmetry related to the parity
�(q → −q), and the definitions of initial conditions and
transition probabilities have to be modified accordingly [13].

III. METHOD OF CALCULATION

The Hamiltonian Eq. (10) is formally similar to the Hamil-
tonian describing the one-electron diatomic ion in an external
magnetic field. The calculation of the spectrum of the latter
(in the case of H2

+ ion) has recently been performed [16,17]
by using the Lagrange-mesh method [18]. In order to solve
the eigenvalue Eq. (13), we shall therefore closely follow
the method of Refs. [16,17]. Choosing for convenience the
coordinate origin at the midpoint of the internuclear separation,
α = β = 1/2, we introduce the prolate spheroidal coordinates:

ξ = ∣∣q + 1
2 q̂1

∣∣ + ∣∣q − 1
2 q̂1

∣∣ − 1, (19)

η = ∣∣q + 1
2 q̂1

∣∣ − ∣∣q − 1
2 q̂1

∣∣, (20)

φ = arctan(q3/q2). (21)

The coordinate ξ is shifted with respect to traditional definition
in order to make its definition interval [0,∞). The range of η

is [−1,1] and that of φ is [0,2π ). The volume element is

dV = 1
8J (ξ,η)dξdηdφ, (22)

J (ξ,η) = (ξ + 1)2 − η2. (23)

In these coordinates, the Hamiltonian Eq. (10) reads

H = T + V + ωL3, (24)

where the kinetic energy operator is

T = 2

J (ξ,η)
(Tξ + Tη) − 2

ξ (ξ + 2)(1 − η2)

∂2

∂φ2
, (25)

Tξ = − ∂

∂ξ
ξ (ξ + 2)

∂

∂ξ
, (26)

Tη = − ∂

∂η
(1 − η2)

∂

∂η
, (27)

the potential is the sum of Coulomb interactions and the
oscillator term

V = − 2R

J (ξ,η)
[(ZA + ZB)(ξ + 1) + (ZB − ZA)η]

+ 1

8
ω2[(ξ + 1)2 + η2 − 1], (28)

and the angular momentum operator is given by

L3 = − i

J (ξ,η)

[
η
√

1 − η2L3ξ−(ξ+1)
√

ξ (ξ+2)L3η

]
cos φ

+ i
(ξ + 1)η√

ξ (ξ + 2)(1 − η2)
sin φ

∂

∂φ
, (29)

L3ξ =
√

ξ (ξ + 2)
∂

∂ξ
, (30)

L3η =
√

1 − η2
∂

∂η
. (31)
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Next, we define a set of NξNη mash points (ξi =
hxi,ηj )(i = 1, . . . ,Nξ ,j = 1, . . . ,Nη), related to zeros of the
Laguerre and Legendre polynomials [19]: LNξ

(xi) = 0 and
PNη

(ηj ) = 0. The dimensionless parameter h allows for the
scaling of the mash along the ξ coordinate. With each of these
one-dimensional mashes, we can associate the corresponding
approximate Gaussian quadrature formulas [19]. With the
help of these mashes, we define the three-dimensional basis
functions:

F
π3
ijm(ξ,η,φ) =

(
8

Jij

)1/2

f ν
i (ξ )gν

j (η)hπ3
m (φ), (32)

where

Jij = (hxi + 1)2 − η2
j . (33)

The azimuthal-angle-dependent basis functions hπ3
m (φ), which

are eigenfunctions both of �3(q3 → −q3) ≡ �3(φ → 2π −
φ) and of L2

1 = −∂2/∂φ2 corresponding to eigenvalues π3 =
±1 and m2, with m = |m1| = 0,1, . . . ,M , are defined as

hπ3
m (φ) =

{
[(1 + δm,0)π ]−1/2 cos mφ for π3 = 1

(π )−1/2 sin mφ for π3 = −1.
(34)

The regularized Lagrange-Laguerre functions [16,17] are
defined as

f ν
i (ξ ) = (−1)i(hxi)

1/2

(
ξ (ξ + 2)

hxi(hxi + 2)

)ν/2 LNξ
(ξ/h)

ξ − hxi

e−ξ/2h,

(35)

and the regularized Lagrange-Legendre functions as

gν
j (η) = (−1)Nη−j

√
1 − η2

j

2

(
1 − η2

1 − η2
j

)ν/2 PNη
(η)

η − ηj

, (36)

where the “regularization parameter” ν corrects the behavior
of the Lagrange functions at ξ = 0, η = ±1 and handles the
singularity in the second term of Eq. (25). Thus, we take ν = 0
for m even and ν = 1 for m odd [16,17].

The matrix elements of the Hamiltonian Eq. (24) in the
basis Eq. (32) are calculated by using Gaussian quadratures
for integrals over ξ and η and analytical integration over φ.
The basis Eq. (32) is orthonormal when overlaps are calculated
in this way. The technical details of calculation can be found
in Refs. [16,17], so that we only give in the Appendix the final
explicit expressions for all matrix elements.

IV. RESULTS AND DISCUSSION

Once we have the matrix representation of the Hamiltonian,
the eigenvalue problem Eq. (13) can be solved by numerical
diagonalization. We shall present here the results for ZA = 1
and ZB = 2, that is for (HeH)2+ quasimolecular system. The
matrix representation given in the Appendix separates blocks
with different π3 = ±1 symmetries.

The solid (black) curves in Fig. 1 show the R-dependence
of the 90 lowest symmetric (π3 = 1) eigenvalues E(R,ω)
for ω = 1. These results and others shown in this section
(except when it is explicitly indicated) have been obtained
using the basis with (Nξ,Nη,M) = (20,10,9) and h = 0.2.
As a dominant structure, one can notice the four overlapping

FIG. 1. (Color online) The 90 lowest eigenvalues (DAPEC and
“ghosts”) for symmetric (π3 = 1) states of the (HeH)2+ collision
system (ZA = 1,ZB = 2) as functions of the internuclear separation
R for ω = 1 a.u. [solid (black) curves] and the lowest 20 DAPEC for
ω = 0 [dashed (blue) curves].

manifolds of DAPEC, which start at R = 0 from the points of
high degeneracy corresponding to oscillator-like energies:

E(0,ω) = (N + 3/2)ω, N = 0,2,4,6, . . . (37)

and then spreading toward larger distances where they all tend
toward large negative values. Actually, the eigenvalues at R =
0 given by Eq. (37) are infinite-fold degenerate. This can be
proved by application of the perturbation theory, as will be
shown in the next subsection. At any finite value of R, the
degeneracy is excluded by the Neumann-Wigner theorem [20],
which forbids the exact crossing of two DAPEC of the same
symmetry.

The dashed (blue) curves in Fig. 1 are the 20 lowest
symmetric DAPEC for ω = 0. As can be seen from Eq. (10)
in the case ω = 0, DAPEC are related to the usual PEC ε(R)
of the (HeH)2+ molecular ion by relation

E(R,0) = ε(R)R2. (38)

One can notice that the dashed (blue) and solid (black) curves
merge as R → ∞.

Besides this dominant DAPEC structure, there are some
additional eigenvalues that deviate from the described behav-
ior, as is clearly seen at small internuclear separations. We call
these the “ghost eigenvalues,” and their origin and behavior is
discussed in more details in the next subsection.

Similar dominant structure of DAPEC and existence of
ghost eigenvalues is also found for antisymmetric (π3 = −1)
states. The only difference is that degenerate manifolds at
R = 0, which are again given by Eq. (37), now correspond to
N = 1,3,5,7, . . . .

A. Small internuclear separations

The region of small internuclear separations is shown with
larger resolution in Fig. 2 for symmetric states. The appearance
of ghost eigenvalues are clearly seen here.
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FIG. 2. Magnification of the region of small internuclear separa-
tions from Fig. 1. Spurious eigenvalues are labeled as “ghosts.”

1. Perturbation theory

The dominant structure of DAPEC manifolds emerging
from the oscillator levels in the united-atom limit R → 0 has
been predicted and explained by the first-order perturbation
theory [14]. In this approach, the Coulomb interaction (propor-
tional to R) has been treated as a perturbation of the zero-order
Hamiltonian given by the sum of the oscillator and angular
momentum terms in Eq. (10). With additional assumption of
small ω 
 1 particularly simple expression holds:

Eklm3 (R,ω) ≈ (2k + l + m3 + 3/2)ω − Ikl(ZA + ZB)Rω1/2,

(39)

where, k = 0,1, . . . is the radial quantum number, l = 0,1, . . .

and m3 = −l, . . . ,l are angular momentum quantum num-
bers of the three-dimensional spherical harmonic oscillator
and Ikl are coefficients expressed in terms of some simple
integrals [14]. Comparing with Eq. (37), we have N = 2k +
l + m3 and π3 = (−1)l+m3 = (−1)N .

For the first few symmetric and antisymmetric manifolds,
the coefficients Ikl are given by simple analytic expres-
sions [14]. For example, in the case of the first symmetric
manifold, we have: N = 0,k = 0,m3 = −l,l = 0,1, . . ., and

E0l−l(R,ω) ≈ 3

2
ω − �(l + 1)

�(l + 3/2)
(ZA + ZB)Rω1/2, (40)

where �(z) is the � function. These perturbational estimates
are compared in Fig. 3 [dashed (red) lines] with the numerical
results [solid (black) lines]. One can see that agreement is
satisfactory even though we consider the case ω = 1 and the
estimate Eq. (40) has been derived assuming that ω is small.
Also shown in Fig. 3 is the limiting line corresponding to the
case l → ∞ in Eq. (40), indicating that there is an infinite
number of DAPEC in the manifold. The higher manifolds
(N � 2) can contain more than one series of DAPEC of the
form of Eq. (39). For example, in the N = 2 case we have
two series: {k = 1,l,m = −l}, l = 0,1, . . . and {k = 0,l,m =
−l + 2}, l = 1,2, . . . [14].

FIG. 3. (Color online) The lowest (N = 0) manifold from Fig. 2
at very small internuclear separations [solid (black) lines] together
with the predictions of the perturbation theory Eq. (40) [dashed (red)
lines].

2. Ghost eigenvalues

“Ghost eigenvalues” have been reported before, when using
the Lagrange-mash-related methods such as discrete variable
representation (DVR) [21] or Fourier grids [22]. In Ref. [21],
the origin of these spurious eigenvalues has been attributed
to the fact that matrix elements are calculated using the
quadrature approximations. This procedure generates first-
order perturbation theory corrections to the variational eigen-
values (obtained with numerically exact matrix elements), as
opposed to second-order corrections due to the truncation
of the variational bases. The appearance of the nonphysical
eigenvalues has been also reported when using Lagrange-mash
method in the problem of the H2

+ in the external magnetic
field [16,17]. There, it has also been attributed to the use of the
Gaussian quadratures but no explanations were given.

In our opinion, the appearance of ghost eigenvalues in our
case is not due to the use of Gaussian quadrature but rather
to the special structure of the spectrum at R → 0, namely the
infinite order of degeneracy of all eigenvalues in this limit.
As can be seen from Eq. (39), the small values of N can be
achieved by highly excited (large 2k + l) oscillator states and
extremal (large negative m3) angular momentum states, which
correspond to the edge of the employed basis. In any finite
basis (including ours) these states may have bad (incorrect)
representation and, therefore, lead to the appearance of ghost
eigenvalues in our calculation.

Table I shows the eigenvalues E(R,ω) at R = 0.01 and
mean values 〈L3〉 for the first 12 symmetric eigenstates in the
cases of ω = 1 and ω = 0.2. The basis used in the calculation
is defined by (Nξ,Nη,M) = (20,10,9) with scaling parameter
h = 0.2 (in the case ω = 1) and h = 1 (in the case ω = 0.2).
The first 10 DAS correspond to DAPEC shown in Fig. 3 and
are labeled by the quantum number m3 = −l (l = 0,1, . . . 9).
One can see that 〈L3〉 ≈ m3 for the first 10 DAS and this
relation is better fulfilled in the ω = 0.2 case, in accord with
the above-mentioned perturbation theory. The last two states
labeled as “ghosts” in Table I correspond to the first almost
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TABLE I. Calculated eigenvalues E(R,ω) and mean values 〈L3〉
for the first 12 symmetric eigenstates at R = 0.01, in the cases of
ω = 1 and ω = 0.2. The label m3 is defined in Eq. (39) and in Fig. 3.
The basis used is defined by (Nξ ,Nη,M) = (20,10,9) with scaling
parameter h = 0.2 (for ω = 1) and h = 1 (for ω = 0.2). All quantities
are in atomic units.

R = 0.01,ω = 1 R = 0.01,ω = 0.2

m3 E(R,ω) 〈L3〉 E(R,ω) 〈L3〉
0 1.4683 −0.055 0.28495 −0.006
−1 1.4771 −1.017 0.28983 −1.005
−2 1.4817 −2.029 0.29189 −2.006
−3 1.4843 −3.028 0.29305 −3.006
−4 1.4861 −4.028 0.29383 −4.006
−5 1.4874 −5.027 0.29439 −5.005
−6 1.4884 −6.015 0.29483 −6.005
−7 1.4892 −6.963 0.29517 −7.005
−8 1.4899 −7.995 0.29546 −8.003
−9 1.4906 −8.846 0.29571 −8.953
Ghost 2.8112 −11.161 0.55938 −11.102
Ghost 2.8126 −12.163 0.55965 −12.089

degenerate pair of ghost levels shown in Fig. 2. It is apparent
that the values of 〈L3〉 for the ghost states are out of the range
(|〈L3〉| � 9), where the correct representation can be expected
within the employed basis (Nη = 10,M = 9).

Using spherical coordinates {q,θ3 = arccos(q3/q),φ3 =
arctan(q2/q1)}, we show in Fig. 4(a) (the case ω = 1) and
in Fig. 4(b) (the case ω = 0.2) moduli |�γ (q,θ3,φ3; R)| of
the first 12 eigenfunctions as functions of φ3 at the fixed
values of q = 2,θ3 = π/4 and for R = 0.01. One can see
that in both cases the first 10 DAS show smooth dependence
on φ3, while the ghost states exhibit irregular oscillatory
behavior. In addition, again in accord with the perturbation
theory, it is obvious that the 10 DAS are in the case ω = 0.2
closer to unperturbed eigenfunctions of L3 (which would be
represented as constants). Only the interval (0,π ) for the
argument φ3 is shown in Fig. 4, because the eigenfunctions

FIG. 4. Moduli |�γ (q,θ3,φ3; R)| of the first 12 eigenfunctions
as functions of φ3 at the fixed values of q = 2,θ3 = π/4, R = 0.01
for (a) ω = 1 and (b) ω = 0.2. Spurious eigenstates are labeled as
“ghosts.”

have the property �γ (q,θ3,φ3; R) = �∗
γ (q,θ3,2π − φ3; R).

This property follows from the fact that the transformation
φ3 → 2π − φ3 in the Hamiltonian Eq. (10) only changes the
sign of the operator L3.

The ghost eigenvalues are sensitive to the basis size. When
the basis size is increased, the number of converged DAPEC in
physical manifolds increases, while the positions and number
of ghost eigenvalues in a given energy range are changed.

It is important to establish if ghost eigenvalues affect the
physical DAPEC through the series of avoided crossings,
which on the scale of Fig. 2 appear as exact crossings. We
have indeed verified that the widths of these avoided crossings
are practically negligible (<10−10 a.u.), so that they should not
affect physical processes. In addition, the slope of the ghost
eigenvalues is smaller than that of the shown physical DAPEC,
and at larger internuclear separations R, the former are
eventually shifted toward the highly excited (and probably not
converged) levels. Therefore, the existence of the ghost eigen-
values at intermediate and large separations can be ignored.

B. Intermediate and large internuclear separations

Due to the relationship Eq. (38) between the DAPEC
and the ordinary PEC, it is more convenient to consider
the case of intermediate and especially large internuclear
separations by studying the R-dependence of the scaled
DAPEC: E(R,ω)/R2. Figure 5 shows the DAPEC from Fig. 1
in this new representation. In the case of ω = 1, the four
overlapping manifolds are still visible at small internuclear
separations, but the scaled DAPEC diverge in this region. In
addition, here it is clearly seen how DAPEC and PEC merge
together at large internuclear separations. In all calculations
with ω = 0, in order to obtain the correct behavior of PEC
in the united-atom (R → 0) and separated-atoms (R → ∞)
limits, the scaling factor h for the ξ coordinate in Eq. (35) has
been taken in the form

h = 2

(ZA + ZB)R
. (41)

In Figs. 6 and 7, the fragment of low-lying, respectively,
symmetric and antisymmetric DAPEC are shown [solid (black)

FIG. 5. (Color online) Scaled (divided by R2) DAPEC from Fig. 1.
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FIG. 6. (Color online) Segment of low-lying scaled DAPEC from
Fig. 5 represented in terms of “effective united atom principal
quantum number” Eq. (42) [solid (black) curves]. Also shown [dashed
(blue) curves] are the standard PEC of the (HeH)2+ molecular ion
labeled by united-atom quantum numbers. The inset shows enlarged
region of the avoided crossing between two DAPEC located around
(R = 1.493, NUA = 3.088).

curves] together with the ordinary PEC [dashed (blue) curves].
Instead of the eigenvalues, however, for better representation of
the excited states, we show the “effective united atom principal
quantum number” as a function of R:

NUA(R,ω) = (ZA + ZB)R[−2E(R,ω)]−1/2. (42)

Both sets of curves, corresponding to DAPEC and PEC,
asymptotically (as R → ∞) approach unperturbed atomic
levels, although there are some differences in asymptotic
behavior, which are not visible in these figures but will be
discussed in the next subsection. In any case, this representa-
tion is useful in predicting which DAPEC are important to be
included when describing various inelastic processes. DAPEC
are characterized by a large number of avoided crossings,

FIG. 7. (Color online) Same as described in the legend of Fig. 6
but for antisymmetric (π3 = −1) states.

which indicate the regions of strong couplings and localized
transitions. The effect of rotation of the internuclear axis is
already incorporated in DAPEC, and all couplings are of
“radial” type. Thus, for example, the exact crossing in Fig. 6
between the 3dσ and 2pπ PEC, which in standard adiabatic
representation indicates a region of strong rotational coupling,
appears as an avoided crossing between two DAPEC.

At first sight, it looks like there are many exact crossings of
DAPEC in Fig. 6. However, this is a wrong impression due to
the given scale. On a more finer scale these crossings appear as
a very narrow avoided crossings (see the insert in Fig. 6). The
exact crossings are forbidden since we are dealing with a 3D
nonseparable problem [20]. On the other hand, the existence
of narrow avoided crossings indicates that our system is close
to some separable system.

The hidden-crossings are not visible in Figs. 6 and 7.
They should appear at the internuclear distances when the
eigenenergy En(R) touches the top of effective potential
determining electron motion. Such a mechanism was demon-
strated in hyperspherical adiabatic representation at zeroth
total angular momentum for positronium (see Figs. 1 and 3
in Ref. [23]) and helium atom (see Fig. 13 in Ref. [24]). But in
the dynamical adiabatic representation, the effective potential
cannot be presented in standard form due to the differential
operator ωL3. This operator, together with parabolic potential
ωq2/2, has a meaning similar to a uniform magnetic field and is
translational covariant (like a constant); i.e., the Schrödinger
equation obeys gauge invariance with respect to a shift of
the reference frame along the internuclear axis and the wave
function acquires a phase factor.

1. Asymptotic behavior

The limit of separated atoms (R → ∞) has been studied in
Ref. [14] by applying perturbation theory. The result obtained
for the asymptotic behavior of a DAPEC Ensr (R,ω), which
tends asymptotically toward a bound state on center ZA can
conveniently be represented in the form

�Ensr (R,ω) ≡ Ensr (R,ω) + Z2
A

2n2
R2 + ZBR

= C0(ω) + C1(ω)

R
+ O

(
1

R2

)
, (43)

C0(ω) = s

[
ω2 +

(
3nZB

2ZA

)2
]1/2

, (44)

C1(ω) = − ZBn2

4Z2
AR

[
− 2n2 + 2 + 12s2 + 3ω2

ω2 + ( 3nZb

2ZA

)2

× (
n2 − 1 − 4s2 − 2λns

r

)]
, (45)

where n is the atomic principal quantum number, s = 0, ±
1, . . . , ± (n − 1) is the Stark quantum number, λns

r (r =
0,1, . . . ,n − |s| − 1) with the convention λns

0 < λns
1 < · · · <

λns
n−|s|−1 are the eigenvalues of a simple tridiagonal matrix [14]

and parity π3 = (−1)r .
For heteronuclear systems, another series of levels for

states localized on center ZB are obtained from Eq. (43)
by the interchange ZA ↔ ZB and (n,s,r) → (n′,s ′,r ′). Note
that by letting ω = 0, Eq. (43) gives the first four terms
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FIG. 8. (Color online) Numerically calculated expression
�E(R,ω) = E(R,ω) + (1/2)R2 + 1/R for the DAPEC correspond-
ing to ω = 1 [solid (black) curves], which approaches the asymptote
[dashed-dotted (black) curve] given by Eq. (46). Dashed (blue) curve
corresponds to the ω = 0 case and doted (blue) curve to the asymptote
given by Eq. (47).

of the asymptotic expansion of the ordinary PEC, ε(R) =
E(R,0)/R2 of the two-Coulomb-center problem.

We illustrate the correct asymptotic behavior of numerically
calculated DAMPEC in our case of ZA = 1, ZB = 2 and
ω = 1 by considering the particular level from n′ = 2 manifold
labeled by quantum numbers [n′,s ′,r ′] = [2,−1,0], which
according to Eq. (43) and λ2−1

0 = 0 [14] approaches the
asymptote:

�E2−10(R; ω = 1) ≈ −
√

13

2
− 33

26R
. (46)

In Fig. 8 we show results of numerical calculations [solid
(black) line] and demonstrate that, at large separations, they
approach the asymptotic result Eq. (46) [dashed-dotted (black)
line]. In order to treat these large separations correctly, it was
necessary to increase the number of η-grid points to Nη = 25
and to use the scaling of the ξ coordinate from Eq. (41), while
keeping Nξ = 20. Sufficient accuracy (for the scale of Fig. 8)
was obtained with M = 5. The analogous dashed (blue) curve
in Fig. 8 corresponds to ω = 0, in which case the asymptote,

�E2−10(R; ω = 0) ≈ −3

2
− 3

2R
, (47)

is represented by dashed-double-dotted (blue) line. From
Fig. 8, we can see the difference in asymptotic behavior of
DAPEC and PEC, which is difficult to detect in Figs. 5, 6,
and 7.

If one is interested in estimates of internuclear distances at
which DAPEC corresponding to ω 	= 0 merge with those with
ω = 0 (as in Fig. 1 and Figs. 5–7), these can be determined by
considering the relative deviations

δnsr (R; ω) =
∣∣∣∣Ensr (R,ω) − Ensr (R,0)

Ensr (R,ω)

∣∣∣∣ (48)

and determining R from the above equation by requiring
that, for example, δnsr (R; ω) = 1%. By using asymptotic
expansions (43)–(45), Eq. (48) is converted to algebraic
equation of third degree for determining R:

δnsr (R; ω) =
∣∣∣∣ [C0(ω) − C0(0)]R + C1(ω) − C1(0)

− Z2
A

2n2 R3 − ZBR2 + C0(ω)R + C1(ω)

∣∣∣∣. (49)

Thus, in the case of the above considered example of the
state asymptotically localized on center ZB = 2 with quantum
numbers [n′,s ′,r ′] = [2,−1,0], we find that δ2−10 = 1% for
R = 6.06 while δ2−10 = 0.5% for R = 9.42.

V. CONCLUDING REMARKS

We have studied the global structure of DAPEC for
one-electron atomic collision systems by using the example
of (HeH)2+ collision system for the case of straight-line
trajectories of the nuclei and collisions in which the impact
parameter and relative collision velocity are related by ρv = 1.
The previous analytic predictions concerning the behavior
of DAPEC in the united-atom and separated-atom limits,
obtained by application of perturbation theory [14], have been
quantitatively confirmed by numerically calculated DAPEC.
The numerical method, based on the Lagrange meshes, allows
for the efficient calculation of DAPEC over a wide range
or internuclear separations. At small separations, however, it
leads to the appearance of “ghost eigenvalues,” which could, in
principle, cause problems in further applications of DAPEC.
These eigenvalues, however, seem not to interact with the
physical DAPEC and are shifted upwards at larger separations,
so that they shouldn’t affect the description of the dynamics
involving only low-lying states, which is the next step in the
application of the methods and results presented in this work.

It should be noted that all DAPEC that have been considered
in the present work correspond to the type which asymptoti-
cally (as R → ∞) correspond to bound states of the electron
on either of the nuclei. They are appropriate for describing
excitation and charge-exchange processes. The second type
of the DAPEC which describe delocalized states relate to the
description of the physical continuum states and ionization
processes [13], which are out of the scope of the present paper.
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APPENDIX: EXPRESSIONS FOR MATRIX ELEMENTS

All matrix elements can be derived in closed form.
Although Gaussian quadratures are used when calculating
matrix elements, they depend only on the grid points and not
on quadrature weights. It turns out that some operators (e.g., Tξ

and L3) are not represented by Hermitian matrices in the bases

022707-8



DYNAMICAL ADIABATIC THEORY OF ATOMIC . . . PHYSICAL REVIEW A 88, 022707 (2013)

Eq. (32). In these cases, the symmetrization procedure [16,17]
is applied, i.e., in order to represent an operator O we
take the mean of the matrix element and its Hermitian
conjugate:

〈a|Õ|b〉 = 1
2 (〈a|O|b〉 + 〈b|O|a〉∗). (A1)

We have actually verified numerically that the non-Hermitian
matrix representation of the Hamiltonian Eq. (24) has the same
spectrum as the symmetrized form, the latter is simply more
convenient for numerical diagonalization.

The matrix elements of the kinetic energy operator Eq. (25)
are given by〈

F
π3
ijm

∣∣T̃ ∣∣Fπ3
i ′j ′m′

〉 = 2(JijJi ′j ′ )−1/2
(〈
f ν

i

∣∣T̃ξ

∣∣f ν
i ′
〉
δjj ′

+ 〈
gν

j

∣∣Tη

∣∣gν
j ′
〉
δii ′

)
δmm′

+ 2m2δii ′δjj ′δmm′

hxi(hxi + 2)
(
1 − η2

j

) , (A2)

where for i 	= i ′〈
f 0

i

∣∣Tξ

∣∣f 0
i ′
〉 = (−1)i+i ′ (xixi ′ )1/2

(xi + xi ′ )2

(
xi + xi ′ + 4

h

)
, (A3)

〈
f 1

i

∣∣T̃ξ

∣∣f 1
i ′
〉 = 1

2

〈
f 0

i

∣∣Tξ

∣∣f 0
i ′
〉xi(hxi + 2) + xi ′ (hxi ′ + 2)√

xi(hxi + 2)xi ′(hxi ′ + 2)

− (−1)i+i ′

h(xi − xi ′ )

[√
xi(hxi + 2)

xi ′ (hxi ′ + 2)
(hxi + 1)

−
√

xi ′ (hxi ′ + 2)

xi(hxi + 2)
(hxi ′ + 1)

]
, (A4)

for i = i ′〈
f 0

i

∣∣Tξ

∣∣f 0
i

〉 = −x2
i

12
+ xi

6

(
2Nξ + 1 − 1

h

)

+ 1

3hxi
[(h + 2Nξ + 1)xi − 1], (A5)

〈
f 1

i

∣∣T̃ξ

∣∣f 1
i

〉 = 〈
f 0

i

∣∣Tξ

∣∣f 0
i

〉 − 1

hxi(hxi + 2)
+ 1

hxi

− 1, (A6)

for j 	= j ′

〈
g0

j

∣∣Tη

∣∣g0
j ′
〉 = 2(−1)j+j ′

(
1 − η2

j

)1/2(
1 − η2

j ′
)1/2

(ηj − ηj ′)2
, (A7)

〈
g1

j

∣∣Tη

∣∣g1
j ′
〉 = 2(−1)j+j ′ (1 − ηjηj ′ )

(ηj − ηj ′)2
, (A8)

and for j = j ′

〈
g0

j

∣∣Tη

∣∣g0
j

〉 = Nη(Nη + 1)

3
− 2

3
(
1 − η2

j

) , (A9)

〈
g1

j

∣∣Tη

∣∣g1
j

〉 = 〈
g0

j

∣∣Tη

∣∣g0
j

〉 + 1

1 − η2
j

. (A10)

The potential term Eq. (28) is represented simply by
diagonal matrix〈

F
π3
ijm

∣∣V ∣∣Fπ3
i ′j ′m′

〉 = − 2R

J (hxi,ηj )
[(ZA+ZB)(hxi+1)

+ (ZB − ZA)ηj ]δii ′δjj ′δmm′

+ 1

8
ω2

[
(hxi+1)2 + η2

j − 1
]
δii ′δjj ′δmm′ .

(A11)

The matrix elements of the L3 operator Eq. (29) are given by

〈
F

π3
ijm

∣∣L̃3

∣∣Fπ3
i ′j ′m′

〉 = − i

2
(JijJi ′j )−1/2ηj

√
1 − η2

j δj,j ′
〈
f ν

i

∣∣L̃3ξ

∣∣f ν ′
i ′

〉
(δmm′+1 + δm′m+1)

+ i

2
(JijJij ′ )−1/2(hxi + 1)

√
hxi(hxi + 2)δi,i ′

〈
gν

j

∣∣L̃3η

∣∣gν ′
j ′
〉
(δmm′+1 + δm′m+1)

+ i

4

(hxi + 1)ηj√
hxi(hxi + 2)

(
1 − η2

j

)δii ′δjj ′ (m + m′)(δmm′+1 − δm′m+1), (A12)

where for i 	= i ′

〈
f 0

i

∣∣L̃3ξ

∣∣f 1
i ′
〉 = (−1)i+i ′ hxi + hxi ′ + 4

2h(xi − xi ′ )

√
hxi

hxi ′ + 2
, (A13)

〈
f 1

i

∣∣L̃3ξ

∣∣f 0
i ′
〉 = −〈

f 0
i ′
∣∣L̃3ξ

∣∣f 1
i

〉
, (A14)

for i = i ′ 〈
f 0

i

∣∣L̃3ξ

∣∣f 1
i

〉 = hxi + 1√
hxi(hxi + 2)

, (A15)

〈
f 1

i

∣∣L̃3ξ

∣∣f 0
i

〉 = −〈
f 0

i

∣∣L̃3ξ

∣∣f 1
i

〉
, (A16)

for j 	= j ′

〈
g0

j

∣∣L̃3η

∣∣g1
j ′
〉 = (−1)i+i ′

√
1 − η2

j

ηj − ηj ′
, (A17)

〈
g1

j

∣∣L̃3η

∣∣g0
j ′
〉 = −〈g0

j ′ |L̃3η|g1
j 〉, (A18)

and for j = j ′

〈
g0

j

∣∣L̃3η

∣∣g1
j

〉 = − ηj√
1 − η2

j

, (A19)

〈
g1

j

∣∣L̃3η

∣∣g0
j

〉 = −〈
g0

j

∣∣L̃3η

∣∣g1
j

〉
. (A20)

The above matrix representation applies to both (decoupled)
π3 = ±1 symmetry blocks, when m(m′) = 1,2, . . . M . In the
case of π3 = 1, the m(m′) = 0 states are also involved and the
only correction is that all matrix elements connecting states
with m = 0(1) and m′ = 1(0) should be multiplied by a factor
of

√
2.
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