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Shape resonances in the elastic scattering of slow electrons by pyridine
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We present cross sections for elastic scattering of low-energy electrons with the N-heterocyclic molecule
pyridine. We employed the Schwinger multichannel method implemented with pseudopotentials in the static-
exchange and static-exchange-polarization approximations, for energies ranging from 0.1 to 12 eV. The calculated
integral cross section presents two low-lying shape resonances of π∗ nature belonging to the B1 and A2 symmetries
and a higher lying resonance, belonging to the B1 symmetry, which is a mixture of shape and core-excited
resonances. The computed resonance positions are in reasonable agreement with the vertical attachment energy
data of Nenner and Schulz [J. Chem. Phys. 62, 1747 (1975)] and Modelli and Burrow [J. Electron Spectrosc. Relat.
Phenom. 32, 263 (1983)]. We compare the present calculated differential cross sections with the experimental
data for benzene, pyrimidine, and pyridazine.
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I. INTRODUCTION

Nenner and Schulz [1], in the middle 1970′s, employed
the electron transmission spectroscopy (ETS) technique to
investigate the formation of temporary negative ions (TNIs)
(shape resonances) in the electron interactions with benzene,
pyridine, diazines (pyrazine, pyrimidine, and pyridazine),
and s-triazine. For pyridine and diazines, they observed two
low-lying π∗ shape resonances and a third higher lying π∗
resonance. They suspected that the third resonance was a shape
resonance mixed with a core-excited resonance associated with
low-lying excited states of the molecule. This suspicion has
been confirmed recently by Winstead and McKoy [2,3] through
calculations of electron collisions with pyrazine. Modelli and
Burrow [4] also employed ETS to investigate TNI formation
in electron interactions with pyridine and several substituted
pyridines. In particular, they reported for pyridine three π∗
resonances located at 0.72, 1.18, and 5.58 eV. By performing
electronic structure calculations the authors assigned the
resonances to the B1, A2, and B1 symmetries, respectively.
Recently, several theoretical and experimental studies have
been performed on electron collisions with the diazines, in
particular pyrimidine [5–12], most of them focusing on the
shape resonances.

In this work we consider collisions of low-energy electrons
with pyridine. This is an interesting molecule since it is
obtained from benzene, which belongs to the D6h group,
by replacing a CH group by a nitrogen atom, resulting in a
molecule with C2v symmetry. Nenner and Schulz [1] reported
three π∗ resonances for pyridine located at 0.62, 1.20, and
4.58 eV which were assigned to the B1, A2, and B1 symmetries,
respectively. For the benzene molecule, the lowest resonance
belongs to the E2u symmetry and is located at 1.14 eV, being
two-fold degenerate. As discussed by Nenner and Schulz [1],
this resonance splits into two π∗ resonances belonging to the
B1 and A2 symmetries in pyridine, where the first (B1) is at
a lower energy than the E2u resonance in benzene, and the
second (A2) is close to the first resonance in benzene.
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Our purpose in the present study is to compute the cross
sections for elastic scattering of electrons with pyridine and
to identify the resonance spectrum. However, since the third
resonance is a mixture of a shape resonance and a core-excited
resonance, the inclusion of polarization effects demands extra
care. In their study of collisions of low-energy electrons with
pyrazine, Winstead and McKoy [2,3] have shown through a
single-configuration interaction calculation of the negative ion
that the third resonance of pyrazine, belonging to the B2g

symmetry, is associated with two main configurations, one
from a shape resonance [the ground-state configuration of
the target with the incoming electron occupying a π∗(b2g)
empty orbital] and the other from a core-excited resonance
(associated to the low-lying triplet excited states of the
target). Winstead and McKoy [2,3] have also shown that
to obtain a correct location of the third (mixed) resonance,
the (N + 1)-particle basis set employed in the description
of the polarization effects should be built from singlet- and
triplet-coupled single excitations of the target.

Here we present elastic integral, momentum transfer and
differential cross sections for electron collisions with pyridine.
We employed the Schwinger multichannel method (SMC) [13]
with pseudopotentials [14] in the static-exchange (SE) and in
the static-exchange-polarization (SEP) approximations for en-
ergies ranging from 0.1 to 12 eV. We discuss different schemes
to compute the polarization effects avoiding overcorrelation of
the resonances. This is important since the lower and the higher
resonances in pyridine belong to the same symmetry (B1).
In pyrazine each resonance belongs to different symmetries,
and in pyrimidine the lower resonance belongs to the A2

symmetry and the second and third resonances belong to the
B1 symmetry.

The remainder of this paper is organized as follows. In
Sec. II we present the theoretical method and the computational
procedures used in our calculations. In Sec. III we present and
discuss our results. We close the paper with a brief summary
of the present calculations and results in Sec. IV.

II. THEORY

To compute the elastic cross sections we employed the
Schwinger multichannel method (SMC) [13] implemented

022705-11050-2947/2013/88(2)/022705(6) ©2013 American Physical Society

http://dx.doi.org/10.1063/1.430700
http://dx.doi.org/10.1016/0368-2048(83)85007-5
http://dx.doi.org/10.1016/0368-2048(83)85007-5
http://dx.doi.org/10.1103/PhysRevA.88.022705


BARBOSA, PASTEGA, AND BETTEGA PHYSICAL REVIEW A 88, 022705 (2013)

with pseudopotentials [14] within the minimal orbital basis for
single-configuration interaction (MOB-SCI) approximation
[15]. This method has been described in detail in several
publications and here we will only discuss the points that
are relevant to the present study.

The SMC method is a variational approximation of the
scattering amplitude. The resulting expression in the body
frame of the target is given by

fSMC(�kf ,�ki) = − 1

2π

∑

m,n

〈
S�kf

∣∣V |χm〉(d−1)mn〈χn|V
∣∣S�ki

〉
, (1)

where {|χm〉} represents a basis set of (N + 1)-electron
symmetry-adapted Slater determinants, also referred to as
configuration state functions (CSFs). The CSFs are built from
products of target states with single-particle functions. The
dmn matrix elements are given by

dmn = 〈χm|A(+)|χn〉, (2)

and the A(+) operator is given by

A(+) = 1

2
(PV + V P ) − V G

(+)
P V + Ĥ

N + 1

− 1

2
(ĤP + PĤ ). (3)

In the above equations S�ki(f )
is a product of a target state and

a plane wave with momentum �ki(f ), which is an eigenstate of
the unperturbed Hamiltonian H0; V is the interaction potential
between the incident electron and the target; Ĥ = E − H is
the total collision energy minus the full Hamiltonian of the
system, where H = H0 + V ; P is a projection operator onto
the open-channel space; and G

(+)
P is the free-particle Green’s

function projected on the P space. In this work P = |�1〉〈�1|,
since we are considering only the elastic channel as open.

For the calculations performed in the SE approximation,
the (N + 1)-electron basis set (direct space) is given by

|χm〉 = A(|�1〉 ⊗ |ϕm〉), (4)

where |�1〉 represents the target ground state, |ϕm〉 is a
single-particle function, and A is the antisymmetrizer. For the
calculations performed in the SEP approximation, the direct
space is augmented by CSFs constructed as

|χm〉 = A(|�r〉 ⊗ |ϕs〉), (5)

where |�r〉 are N -electron states obtained by performing
single excitations of the target from the occupied (hole) orbitals
to a set of unoccupied (particle) orbitals. Here |ϕs〉 is also a
single-particle function and A is the antisymmetrizer.

To obtain the equilibrium geometry for the ground state of
pyridine, we carried out a geometry optimization calculation at
the second-order Møller-Plesset (MP2) level of approximation,
with the TZV+ + (2d,1p) basis set using the package GAMESS

[16]. In Fig. 1 we present the geometrical structure of pyridine.
In the scattering calculations we used the pseudopotentials of
Bachelet, Hamann, and Schlüter [18] to replace the 1s core
electrons of the carbon and nitrogen atoms. The Cartesian
Gaussian functions used in our calculations are shown in
Table I and were generated according to [19]. We used
the Dunning 4s/3s basis set [20] for the hydrogen atom
augmented by a p-type function with exponent 0.75. All d-type

FIG. 1. (Color online) Geometrical structure of the pyridine
molecule. Generated using MACMOLPLT [17].

orbitals were considered as five component to avoid numerical
instabilities.

To represent the particle and the scattering orbitals in the
SEP calculations we employed the improved virtual orbitals
(IVOs) [21]. To construct the CSFs used in these calculations
we employed a criteria [22] to select the hole, the particle, and
the scattering orbitals given by

εpar − εhole + εscat < �, (6)

where εpar, εhole, and εscat are the energies of the particle,
hole, and scattering orbitals, respectively, and � is the energy
cutoff. These criteria differ from the usual ones, which select
the particle and the scattering orbitals up to a given energy εcutt,
by selecting these orbitals for each CSF individually. We used
� = 1.895 hartrees for all symmetries. For the nonresonant
symmetries, namely, A1 and B2, we considered all singlet-
and triplet-coupled excitations, and obtained 10 596 CSFs
(doublets) for the A1 symmetry and 10 470 CSFs for the B2

symmetry.
In most cases, to take the polarization effects in the resonant

symmetries into account, we consider only singlet-coupled ex-
citations. This procedure helps to avoid overcorrelation, which
brings the resonance to an energy below the experimental data
(or even becoming a bound state) and was used for the A2

and the B1 symmetries. In this case we obtained 4697 CSFs

TABLE I. Uncontracted Cartesian Gaussian functions used for
carbon and nitrogen in the calculation of pyridine.

Type C N

s 12.49408 17.569870
s 2.470291 3.423613
s 0.614027 0.884301
s 0.184029 0.259045
s 0.036799 0.053066
s 0.013682 0.022991
p 5.228869 7.050692
p 1.592058 1.910543
p 0.568612 0.579261
p 0.210326 0.165395
p 0.072250 0.037192
d 0.126278 0.208920
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TABLE II. Excitation energies (in eV) for the five lowest excited
states of pyridine.

State E

3A1 3.482
3B2 4.672
3A1 5.004
1B2 6.116
1B1 6.123

for the B1 symmetry and 4604 CSFs for the A2 symmetry.
However, as discussed by Nenner and Schluz [1] the third π∗
resonance of pyridine is a mixture of shape and core-excited
resonances, the latter being associated with the low-lying
triplet excited states of the target. We present in Table II the
excitation energies for the lowest five excited states of pyridine
obtained in a single CI calculation using GAMESS [16] with
a 6-311 + (d,p) basis set, with the geometry optimized at the
MP2 level with the 6-31G(d) basis. Winstead and McKoy [2,3]
showed that due to this mixed character, it is also necessary
to include triplet-coupled excitations for a correct description
of the position of the third resonance. Therefore we carried
out two different calculations for the B1 symmetry. In the first
calculation we considered only singlet-coupled excitations,
as described before, and in the second calculation we also
included triplet-coupled excitations, totalizing 9272 CSFs for
this symmetry.

The calculated dipole moment for pyridine is 2.470 D,
which agrees relatively well with the experimental value
of 2.215 D [23]. The SMC method employs only square
integrable functions, more precisely Cartesian Gaussian (CG)
functions, to represent the scattering wave function. In dealing
with molecules that possess a permanent electric dipole
moment, the long-range character of the dipole potential is
truncated by the range of the CG functions, and therefore the
higher partial waves are not properly described. To solve this
problem, we included the dipole potential through a closure
procedure [24]. We computed the scattering amplitude in the
body frame of the molecular target and also computed the
scattering amplitude for a point-dipole potential in the first
Born approximation (FBA). We considered a dipole with the
same orientation and magnitude as the molecular dipole used
in the present SMC calculation. The final expression for the
scattering amplitude is given by

f (�kf ,�ki) = f FBA(�kf ,�ki) +
�SMC∑

�=0

+�∑

m=−�

[
f SMC

�m (kf ,�ki)

− f FBA
�m (kf ,�ki)

]
Y ∗

�m(k̂f ), (7)

where f SMC
�m and f FBA

�m are obtained by expanding the angular
dependence of the outgoing wave vector �kf of the SMC and
the dipole FBA scattering amplitudes in partial waves. As
a result, the lower partial waves of the scattering amplitude
(up to � = �SMC) are considered from the SMC method, and
the higher partial waves (� > �SMC) are considered from the
first Born approximation for the dipole moment potential of
the molecule. The divergence of the scattering amplitude at
θ = 0◦ is avoided according to the rotational spectrum of the

target molecule by making k2
f = k2

i + �Erot, where �Erot =
1.225 × 10−5 eV obtained at the optimized geometry. The
value of �SMC depends on the energy and is chosen in order to
provide the DCSs obtained with and without the Born closure
correction in agreement at high scattering angles. We chose
�SMC = 1 from 0.1 to 0.8 eV, �SMC = 3 from 0.9 to 2.9 eV,
�SMC = 4 from 3 to 4.9 eV, �SMC = 5 from 5 to 6.9 eV, and
�SMC = 6 from 7 to 12 eV.

III. RESULTS AND DISCUSSION

In Fig. 2 we present our calculated integral and momentum
transfer cross sections for pyridine in the SE and SEP
approximations for energies from 0.1 to 12 eV, where for
the SEP approximation we present results with and without
the Born closure. These SEP cross sections were obtained
including singlet- and triplet-coupled excitations for A1 and
B2 symmetries and singlet-coupled excitations for the B1

and A2 symmetries. There are two pronounced structures in
these cross sections that represent the low-lying π∗

1 and π∗
2

resonances and another broader structure located at higher
energies that corresponds to the π∗

3 resonance. In the SEP
cross sections, the structure corresponding to π∗

3 overlaps with
pseudoresonances. These pseudoresonances are associated
with channels that are energetically accessible at these energies
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FIG. 2. (Color online) Integral (upper panel) and momentum
transfer (lower panel) cross sections for elastic scattering of electrons
by pyridine. The SEP cross sections were obtained by including
singlet- and triplet-coupled excitations for A1 and B2 symmetries
and singlet-coupled excitations for the B1 and A2 symmetries. The
Born closure is employed only for the SEP calculations. See text for
discussion.
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FIG. 3. (Color online) Symmetry decomposition of the integral
cross section for elastic scattering of electrons by pyridine. See text
for discussion.

but are treated as closed channels in the calculations. Opening
those channels would soften the pseudoresonances [25]. The
long-range character of the dipole interaction is responsible
for the increase seen in the integral cross sections, while the
position of the resonances are unaffected. This long-range
interaction has little effect in the momentum transfer cross
section.

Figure 3 shows the symmetry decomposition for the integral
cross section of pyridine. This procedure allows one to assign
the resonances seen in Fig. 2 to the symmetries of the C2v

group. This figure shows that π∗
1 and π∗

3 belong to the B1

symmetry and π∗
2 is assigned to the A2 symmetry. In the

SE cross sections, π∗
1 , π∗

2 , and π∗
3 are located at 2.45, 2.8,

and 8.9 eV, respectively. The inclusion of polarization effects
moves π∗

2 down in energy to 1.33 eV, in reasonable agreement
with the ETS data of 1.20 eV reported by Nenner and Schulz [1]
and of 1.18 eV reported by Modelli and Burrow [4].

As discussed before, π∗
3 is a mixture of shape and core-

excited resonances. As shown by Winstead and McKoy [2,3],
to obtain the correct location of this resonance it is necessary
to consider singlet- and triplet-coupled excitations in the
description of the polarization effects. In Fig. 3 we present
two sets of results for the B1 symmetry corresponding to two
different polarization calculations. In the first calculation we
considered only singlet-coupled excitations, with π∗

3 located
at 5.80 eV, about 1.2–1.3 eV above the ETS values of 4.58 and
4.48 eV obtained by Nenner and Schulz [1] and by Modelli
and Burrow [4], respectively. This calculation locates π∗

1 at
0.90 eV, in reasonable agreement with the values of 0.62 eV
obtained by Nenner and Schulz [1] and 0.72 eV obtained
by Modelli and Burrow [4]. In the second calculation, we
considered both singlet- and triplet-coupled excitations. In this
case, π∗

3 is located at 5.10 eV, in better agreement with the ETS

TABLE III. Resonance positions (in eV) for pyridine. We present
the SEP results obtained considering only singlet-coupled excitations
(S) and singlet- and triplet-coupled excitations (S + T). We also
present the scaled VOEs. See text for discussion.

π∗
1 (B1) π∗

2 (A2) π∗
3 (B1)

Present results (SE) 2.45 2.8 8.9
Present results (SEP - S) 0.90 1.33 5.80
Present results (SEP - S + T) 0.41 5.10
VOEMP2 0.70 1.01 4.76
VOEB3LYP 0.79 1.08 4.50
Nenner and Schulz [1] 0.62 1.20 4.58
Modelli and Burrow [4] 0.72 1.18 4.48

data. However, π∗
1 lies below the experimental data, at around

0.41 eV. Although the position of π∗
3 is improved with the

inclusion of triplet-coupled excitations, π∗
1 is overcorrelated.

This was also observed by Palihawadana et al. [9] and by
Ferraz et al. [12] in electron collisions with pyrimidine. The
resonances obtained by Palihawadana [9] are in different order
compared to the results of Nenner and Schulz [1] and Mašı́n
et al. [6]. On the other hand, the lowest resonance of pyrimidine
does not appear in the calculated cross sections of Ferraz
et al. [12]. Our results are summarized in Table III.

To obtain further insight into the resonance spectrum
of pyridine, we carried out additional electronic structure
calculations using the program GAMESS [16]. We calculated
the virtual orbital energies (VOEs), which can be related
through Koopmans theorem to the vertical attachment energies
(VAEs), and obtained plots for some unoccupied orbitals
that represent an approximation to the resonant orbitals. We
employed the empirical scaling relations from [26,27] and
for the VOEs in two different calculations: (i) We optimized
the ground-state geometry using second-order Møller-Plesset
perturbation theory with the 6-31G(d), and we then carried out
an energy calculation at the optimized geometry within the HF
approximation with the same basis set. The calculated VOEs
were scaled as VAE = 0.64795VOE − 1.4298 (the VAE and
VOE are in eV). (ii) We performed geometry optimization
and energy calculations based on the density functional theory
(DFT) using the B3LYP functional and the 6-31G(d) basis
set. The VOEs were scaled as VAE = 0.80543VOE + 1.21099
(the VAE and VOE are in eV). These results are also shown in
Table III. Both calculations provide scaled VOEs in good agre-
ment with the ETS data of Nenner and Schulz and Modelli and
Burrow. We also obtained from the first calculation the lowest
unoccupied molecular orbital (LUMO), the LUMO + 1, and
the LUMO + 7, shown in Fig. 4. These π∗ orbitals belong to
the b1, a2, and b1 symmetries and represent an approximation
of the resonant orbitals. The DFT calculation provides LUMO,
LUMO + 1, and LUMO + 4 as the resonant orbitals, with the
same shape and symmetries as shown in Fig. 4.

Figure 5 shows the differential cross sections (DCSs) for
pyridine at 2, 3, 4, 6, 8.5, and 10 eV, obtained in the SEP
approximation with the Born closure. Also shown in this
figure are the experimental DCSs for pyrimidine and pyrazine
measured by Palihawadana et al. in two different studies [9,10]
at 3, 6, and 10 eV, and for benzene measured by Cho et al. [28]
at all energies above. In general the calculated DCSs for
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FIG. 4. (Color online) Top: LUMO, π∗(b1); middle: LUMO + 1,
π∗(a2); bottom: LUMO + 7, π∗(b1). See text for discussion. Gener-
ated using MACMOLPLT [17].

pyridine and the experimental DCSs for pyrimidine, pyrazine,
and benzene are very similar among themselves suggesting
that the replacement of a CH group in benzene by one
nitrogen in pyridine and by two nitrogen atoms in pyrazine and
pyrimidine has little effect in the DCSs at these energies. Some
differences are observed at lower scattering angles, where
the DCSs of pyridine increase due to the permanent dipole
moment of this molecule. At 6 eV the calculated DCS presents
a shape quite different from the experimental data, and shows
an f -wave behavior. This is the influence of the π∗

3 resonance
of pyridine, which is located at 5.8 eV in this calculation. At
10 eV, the calculated DCSs lies above the experimental data.
This behavior may indicate that at this energy it would be
important to allow flux loss from the elastic channel into the
inelastic ones by opening the inelastic channels, lowering the
elastic cross section towards the experiment [25].
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FIG. 5. (Color online) Differential cross sections for elastic
electron collisions with pyridine at 2, 3, 4, 6, 8.5, and 10 eV.
Solid (green) line: present results obtained in the SEP approximation
including singlet- and triplet-coupled excitations for A1 and B2

symmetries and singlet-coupled excitations for the B1 and A2 sym-
metries. The Born closure was also employed in these calculations.
Squares (cyan): experimental data for pyrimidine from [9]; diamonds
(orange): experimental data for pyrazine from [10]; circles (magenta):
experimental data for benzene from [28].

IV. CONCLUSIONS

We reported elastic integral, momentum transfer, and differ-
ential cross sections for collisions of low-energy electrons with
pyridine. We found two low-lying resonances in the B1 and A2

symmetries and a higher lying resonance in the B1 symmetry.
We employed two different treatments of polarization to the
B1 symmetry in order to obtain a correct location of the
third resonance, which is a mixture of shape and core-excited
resonances. Our results are in reasonable agreement with the
experimental data of Nenner and Schulz and Modelli and
Burrow. We compared our calculated differential cross sections
with the experimental data of Palihawadana et al. for pyrazine
and pyrimidine and of Cho et al. for benzene. The calculated
differential cross sections and the experimental data are very
similar among themselves.
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