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Jost-function approach to quantum defect theory
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We present an approach to the quantum-defect theory theory using the Jost functions and Jost solutions as the
main building blocks. An attractive feature of this approach is that it allows us to avoid use of the explicit form
of the solutions of the radial Schrödinger equation for the Coulomb problem. We obtain a concise representation
of the Jost function for the superposition of the Coulomb and short-range potentials, which distinctly separates
terms analytic in k2 and terms singular at k = 0. This representation can be used to design simple and efficient
procedures allowing us to determine scattering phase shifts from the information about the bound states.
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I. INTRODUCTION

Quantum-defect theory (QDT) is a well-known method
allowing us to describe a variety of atomic phenomena,
such as photoionization or electron-ion scattering in terms
of just a few parameters. The values of the parameters can be
inferred either from the experimental data or from a theoretical
calculation. These parameters, moreover, can be chosen to be
slowly varying functions of energy in the reaction threshold
region, which means that determining a set of the QDT
parameters at a fixed energy, one obtains a description of the
phenomena which may exhibit marked energy dependence,
such as photoionization or autoionization profiles.

The QDT is based essentially on the properties of the radial
wave functions describing electron motion in the Coulomb
field. The foundation of the method was, therefore, laid out in
1928 [1] shortly after the advent of the quantum mechanics.
The QDT has been subsequently elaborated by many workers.
A (necessarily incomplete) list of the theoretical developments
and applications of the QDT includes generalization to the
multichannel case [2,3] and QDT description of various atomic
[4–7] or molecular [8] processes. A relativistic version of QDT
has been developed [9]. A detailed description of the history
of the subject written by the founders of the QDT can be found
in the review works [10,11].

The work done by these authors (and many others whom
we can not cite for the lack of space) demonstrated great
practical utility and versatility of the QDT method. It may
not be an easy task to find a problem in atomic or molecular
physics to which QDT has not been applied with success.
Yet, occasionally, the subject is revisited. Thus, the work [12]
reported a rigorous study of the character of the singularity
of the S matrix at the threshold point E = 0 employing
careful analysis of the regular and irregular Coulomb solutions.
Such a study, we believe, is highly desirable. Indeed, in
earlier works, the numerous practical implementations of
QED were the priority, and mathematical rigor was of only
secondary importance. For example, somewhat loose terms
such as “almost analytical function” can be found in many
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papers and textbooks to describe the often encountered in
QDT situation, when a function under study is a sum of
a truly analytic (i.e., represented by a series convergent
near the threshold point E = 0) function, and a function
exponentially decreasing in some region of the complex k

plane. Adding such an exponentially decreasing function to a
truly analytic function changes completely the nature of the
series used to represent the function near E = 0. A convergent
series representing the function in a circle around the point
E = 0 may become an asymptotic one, and asymptotic series
generally can represent a given function only in some sector
of a circle. Not taking proper account of this fact may lead
to erroneous results as was demonstrated in [12]. Aside from
the purely academic interest in determining the true nature
of the singular point arising in QDT expressions, its proper
description is important, therefore, from the purely pragmatic
point of view. Having such a description at our disposal,
we may devise reliable numerical schemes, in particular, the
schemes for the extrapolation across the threshold point E = 0,
which constitutes the main goal of QDT.

We should note also, and that is another motive of our
undertaking this study, that in developing the QDT, emphasis
is usually put on the various explicit forms of the solutions
of the Coulomb-Schrödinger equation. Such an approach, we
believe, may obscure to some extent the physical content of
the theory which can not depend on the particular choice of
the Coulomb solutions.

The theoretical exposition of QDT method can, we believe,
be developed in a more concise and illuminating way. Follow-
ing, we present an approach to the QDT theory based on the
use of the Jost functions [13,14]. It is known that description of
scattering based on the Jost functions can be used to describe
near-threshold phenomena (such as zero-energy resonances)
in a concise and economic way [15].

We are trying in what follows to achieve the same goal
providing a description of the QDT method based on the Jost
functions.

II. THEORY AND RESULTS

We shall recapitulate very briefly some well-known facts
from the scattering theory on which the derivation presented
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below will rely. We consider the single-channel case and
spherically symmetric potential, so that after separating radial
and angular variables the radial Schrödinger equation for a
given angular momentum l can be written as

−1

2

d2φ

dr2
+

(
V (r) + λ2 − 1

4

2r2

)
φ = k2

2
φ, (1)

where the potential V (r) = − 1
r

+ Vs(r) is assumed to be a
superposition of the Coulomb potential and a short-range
potential Vs(r) vanishing beyond certain r = r0, λ = l + 1

2 .
Two Jost functions f +(λ,k) and f −(λ,k) can be

introduced as usual [16], using solutions f +
λ (k,r)

and f −
λ (k,r) (the Jost solutions) of Eq. (1) with

boundary conditions limr→∞ e−i(ikr+ ln 2kr
k

)f +
λ (k,r) = 1, and

limr→∞ ei(ikr+ ln 2kr
k

)f −
λ (k,r) = 1. Regular solution φλ(k2,r) of

Eq. (1) which will be convenient to us to normalize by the
boundary condition �(λ + 1

2 ) limr→0 φλ(k2,r)/rλ+ 1
2 = 1 can

then be expressed using the Jost functions (this is in fact the
definition of the Jost functions) as

φλ(k2,r) = 1

2ik
[f −(λ,k)f +

λ (k,r) − f +(λ,k)f −
λ (k,r)]. (2)

By the well-known Poincare theorem, solution (2) is an
analytic (in fact entire) function of k2. Functions f +(λ,k)
and f −(λ,k) are regular and analytic in the upper and lower
half planes of the complex plane k, respectively. In the
region Imk > 0, function f +(λ,k) has a sequence of pure
imaginary zeros kn = iκn, where κn = 1/

√−2En, and En

are the energies of the bound states with a given angular
momentum l which our system may possess. These are the
only zeros of f +(λ,k) in the upper half plane. On the real axis
and for k > 0, a relation δl = − arg f +(λ,k) holds, where δl is
the scattering phase shift and arg f +(λ,k) is the argument of
the Jost function. The Jost function thus contains information
about both energy levels of a system and the scattering phase
shifts. Function f −(λ,k) possesses similar properties in the
lower half of the k-complex plane.

Bound states and the scattering phase shifts being the two
main ingredients of the QDT theory, Jost functions can provide
us a means of the concise formulation of the theory. This can be
done as follows. Consider first the pure Coulomb case, when
short-range interaction in Eq. (1) is absent.

A. Coulomb case

The explicit form of the Jost functions is given in this
case by [16] (for the sake of convenience we adopt a slightly
different normalization)

f ±(λ,k) = (2k)−λ− 1
2 e− π

2k e±i π
2 (λ− 1

2 )

�
(
λ + 1

2 ∓ i
k

) . (3)

We shall need below another solution of Eq. (1) for the
Coulomb potential which would be an analytic function of k2.
It is known [16] that solution (2) can be continued analytically
to the λ complex plane with excluded half-integer points on
the negative real axis λ = − 1

2 ,− 3
2 . . . .

By the Poincare theorem again, f +
λ (k,r) and f +

λ (k,r) being
solutions of a differential equation depending analytically on a
parameter, and satisfying boundary conditions not containing

this parameter, are analytic functions of λ. Moreover, since
parameter λ enters Eq. (1), only via λ2 we can conclude that
f +

λ (k,r) and f +
λ (k,r) are even analytic functions of λ, so that

f ±
λ (k,r) = f ±

−λ(k,r). Since analytic continuation in variable
λ preserves analyticity in k2, we may conclude that for λ �=
1
2 , 3

2 . . . the function

φ1λ(k2,r) = 1

2ik
[f −(−λ,k)f +

λ (k,r) − f +(−λ,k)f −
λ (k,r)]

(4)

will also be a solution of Eq. (1) analytic in k2.
One can see from Eqs. (2), (3), and (4) that solutions φλ and

φ1λ become linearly dependent for the physically important
case of λ belonging to the set C of the half-integers λc =
1
2 , 3

2 . . ., which corresponds to the integer values of angular
momentum. Indeed, for these λ’s the ratios of the coefficients
with the functions f +

λ (k,r) and f −
λ (k,r) in Eqs. (2) and (4),

A+(λc,k) = f +(−λc,k)/f +(λc,k) (5)

and

A−(λc,k) = f −(−λc,k)/f −(λc,k) (6)

are equal, as can be easily seen from Eq. (3). It is easy to see
from Eq. (3) also that A(λc,k) = A−(λc,k) = A+(λc,k) is a
polynomial in k2.

For λ belonging to the set C of positive half-integers, we
may define solution φ2 analytic in k2 by means of a limiting
procedure

φ2λc
(k2,r) = lim

λ→λc

A(λc)φλ − φ1λ

λ − λc

. (7)

This limit can be computed if we express in Eq. (7) φ1λ in terms
of φλ and f +

λ (k,r) using Eqs. (2) and (4) with the following
result:

φ2λc
(k2,r) = −φλc

(k,r)
∂A+(λ,k)

∂λ
|λ=λc

+ α(λc,k)f +
λc

(k,r).

(8)

The coefficient α(λc,k) in this equation can easily be expressed
in terms of the Jost functions, but we shall not need its exact
form below.

Having at our disposal analytic solutions given by Eqs. (2)
and (8), we can find the Jost functions for the general case of
the superposition of the Coulomb and short-range interactions
in Eq. (1) as described in the following.

B. Superposition of the Coulomb and short-range interactions

From now on, we consider only the case of the positive half-
integer values λ = λc = l + 1

2 corresponding to the integer
values of angular momentum l in Eq. (1). In the outer region,
where short-range interaction vanishes, the regular solution
Fλc

(k2,r) of Eq. (1), analytic in k2, can be represented as a
combination of the Coulomb solutions we have defined above:

Fλc
(k2,r) = B(k2)φλc

(k2,r) + C(k2)φ2λc
(k2,r), (9)

where B(k2) and C(k2) are some analytic functions of k2.
Expressing Coulomb solutions by means of Eqs. (2)

and (8) as combinations of the solutions f +
λ (k,r) and f −

λ (k,r),
one can easily find that coefficient with f −

λ (k,r) in the
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Eq. (9) will be given by the expression B(k2)f +(λc,k) +
C(k2)f +(λc,k) ∂A+(λ,k)

∂λ
, where the derivative is to be computed

at the point λ = λc corresponding to the physical integer value
of the angular momentum. In the outer region, where Eq. (9)
is valid, solutions f +

λ (k,r) and f −
λ (k,r) are the same both

for the case of the pure Coulomb and for the superposition
of the Coulomb and short-range interactions (they satisfy the
same differential equation in the outer region and identical
asymptotic boundary conditions). From the definition of the
Jost functions in Eq. (2) and the discussion above, we conclude
that the Jost function F+(λc,k) for the superposition of the
Coulomb and short-range potentials can be represented as

F+(λc,k) = B(k2)f +(λc,k) + C(k2)f +(λc,k)
∂A+(λ,k)

∂λ
,

(10)

where f +(λc,k) are the Coulomb Jost functions (3), B(k2) and
C(k2) are analytic functions of k2, and function A+(λ,k) is
defined in Eq. (5). Jost function F−(λc,k) can be found from
Eq. (10) by means of the well-known symmetry relations [16].

We can use Eq. (10) to solve easily and efficiently the
main problem of the QDT: recovering the information about
the scattering phase shifts from the known energy levels. We
note, first, that since for positive real k the functions Fλc

(k2,r),
φλc

(k2,r), and φ2λc
(k2,r) are real, the functions B(k2) and

C(k2) are real there too. Moreover, we know that for the small-k
function, B(k2) is positive. We can consider, therefore, the
modified function

F+
1 (λc,k) = f +(λc,k) + D(k2)f +(λc,k)

∂A+(λ,k)

∂λ
,

(11)

where D(k2) = C(k2)/B(k2) is a function analytic in some
vicinity of k = 0. Functions F+

1 (λc,k) and F+(λc,k) clearly
have the the same set of zeros in the region near k = 0 in the
upper half plane, and their phases coincide for real positive k.
By the general properties of the Jost functions we mentioned
above, F+

1 (λc,k) has, therefore, zeros in the upper half plane
at the points kn = iκn, where κn = 1/

√−2En, and En are the
energies of the bound states. On the real axis for k > 0 we

TABLE I. Bound levels’ energies and corresponding quantum
defects for the ns and np states of Li atom obtained using the model
potential [17].

n En (a.u.) μn En (a.u.) μn

ns np

2 −0.1978053 0.4101137 −0.1364203 0.0855435
3 −0.0801823 0.5028439 −0.0600582 0.1146468
4 −0.0402412 0.4750778 −0.0328452 0.0983410
5 −0.0243354 0.4672069 −0.0207862 0.0954690
6 −0.0163168 0.4643701 −0.0143377 0.0946502
7 −0.0117005 0.4629371 −0.0104847 0.0943122
8 −0.0087997 0.4620952 −0.0079997 0.0941446
9 −0.0068582 0.4615533 −0.0063039 0.0940528
10 −0.0054952 0.4611825 −0.0050953 0.0939991
11 −0.0045016 0.4609177 −0.0042037 0.0939653
12 −0.0037550 0.4607225 −0.0035272 0.0939414
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FIG. 1. (Color online) Phase shift δs due to the short-range
potential for l = 0. Results based on the interpolation procedure with
nodes corresponding to the levels ns: n = 4–7 (green long dashed
line), n = 4–8 (blue short dashed line), n = 4–10 (magenta dots).
Red solid line: data obtained by solving the Schrödinger equation
with the model potential.

have a relation δ = − arg F+
1 (λc,k), where δ is the scattering

phase shift.
It is extremely easy to devise a scheme which will allow

us to extract information about the phase of the F+
1 (λc,k)

provided we know locations of some zeros of this function
in the vicinity of k = 0. We first compute, according to
Eq. (11), values of the analytic function D(k2) at the points
corresponding to the known zeros of F+

1 (λc,k). There are
various ways to approximate an analytic function provided we
know its values at a number of points. The most straightforward
is, perhaps, a simple Lagrange interpolation, representing
D(k2) as a polynomial in k2 of some degree equal to the
number of points used for interpolation minus one.

This approach is illustrated below using the Li atom. We
use the model potential [17] to describe the atom. Using the
potential, we find numerically the bound levels and phase
shifts. Bound levels’ energies and corresponding quantum
defects are shown in Table I.

We choose different sets of the bound levels as nodes for the
polynomial extrapolation procedure. Results for the phase shift
δs due to the short-range potential (i.e., total phase shift minus
the Coulomb phase shift) are shown in Fig. 1 for s states of Li,
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FIG. 2. (Color online) Phase shift δs due to the short-range
potential for l = 1. Results based on the interpolation procedure with
nodes corresponding to the levels np: n = 4–7 (green long dashed
line), n = 4–8 (blue short dashed line), n = 4–10 (magenta dots).
Red solid line: data obtained by solving the Schrödinger equation
with the model potential.
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and in Fig. 2 for the p states. We see from the figures that the
simple Lagrange extrapolation is quite efficient. The accuracy,
as the figures show, steadily improves with increasing number
of the nodes. This is, of course, what we could have expected
since we are solving essentially an extrapolation problem for a
function D(k2) in Eq. (11), which, as we have shown above is a
truly analytic analytic function representable by a converging
series in k2. Lagrange extrapolation should represent such
functions quite reliably and, as the figures show, this is indeed
the case.

III. CONCLUSION

We presented an approach to the QDT theory using the
Jost functions and Jost solutions as the main building blocks.
An attractive feature of this approach is that we could
altogether avoid use of the explicit form of solutions of the
radial Schrödinger equation for the Coulomb problem. All we
needed to derive Eq. (11) were general analytic properties of
the Jost functions and the Jost solutions. Derivation of this
result without explicit manipulations with particular Coulomb
solutions was, in fact, one of the motivations of this work.
Use of the various explicit forms of the Coulomb solutions
in the theory leads often to cumbersome expressions, and,
more importantly, obscures the physical content of the theory,
which, obviously, can not depend on the particular choice
of the Coulomb solutions. Note, also, that since we relied

mainly on the fairly general properties of the Jost functions
and Jost solutions, the procedure can be easily modified to
include the case when other long-range interactions (besides
Coulomb) are present. In particular, we can consider the case
when the long-range part of the potential includes Coulomb
and dipole potential A/r2, for which the Jost functions are
known explicitly [18].

Equation (10) gives us a concise representation of the Jost
function for the superposition of the Coulomb and short-range
potentials. This representation distinctly separates analytic in
k terms, and terms singular at k = 0. It gives us, therefore, an
information about the nature of the singularity of the Jost func-
tion (and hence, the intimately related S matrix) at the point
k = 0, a question which was studied by other means in [12].

The formula for the modified Jost function (11) provides,
as we have seen, the basis on which simple and efficient
procedures allowing us to determine scattering phase shifts
from the information about the bound states can be built. Use of
this formula in practice requires a solution of the extrapolation
problem for a function D(k2) in Eq. (11). This function, as
we have shown above, is a truly analytic analytic function
representable by a converging series in k2. There is a variety
of numerical techniques allowing us to solve this problem
accurately and efficiently, starting from the straightforward
Lagrange to more accurate Pade extrapolation. As we have
seen, even the simplest low-order Lagrange extrapolation
procedure gives quite accurate results.
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[18] C. A. López and I. Saavedra, Nucl. Phys. 53, 519 (1964).

022702-4

http://dx.doi.org/10.1017/S0305004100011919
http://dx.doi.org/10.1088/0370-1328/88/4/302
http://dx.doi.org/10.1088/0022-3700/2/1/302
http://dx.doi.org/10.1088/0022-3700/11/23/017
http://dx.doi.org/10.1088/0022-3700/11/23/018
http://dx.doi.org/10.1103/PhysRevA.2.353
http://dx.doi.org/10.1103/PhysRevA.22.979
http://dx.doi.org/10.1088/0034-4885/46/2/002
http://dx.doi.org/10.1364/JOSA.65.000979
http://dx.doi.org/10.1007/s100530050044
http://dx.doi.org/10.1007/s100530050044
http://dx.doi.org/10.1103/PhysRev.82.840
http://dx.doi.org/10.1088/0953-4075/46/6/065202
http://dx.doi.org/10.1088/0953-4075/46/6/065202
http://dx.doi.org/10.1016/j.adt.2004.07.003
http://dx.doi.org/10.1016/j.adt.2004.07.003
http://dx.doi.org/10.1016/0029-5582(64)90631-5



