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We present the electronic Casimir-Polder effect for a system consisting of two impurities on a one-dimensional
semiconductor quantum wire. Due to the charge transfer from the impurity to a one-dimensional conduction
band, the impurity states are dressed by a virtual cloud of the electron field. The attractive electronic Casimir
force arises due to the overlap of the virtual clouds. The Van Hove singularity causes the persistent bound state
(PBS) to appear below the band edge even when the bare impurity state energy is above the band edge. Since the
decay rate of the virtual cloud of the PBS in space is small, the Casimir force can be of a very long range. While
the overlap of the electronic virtual cloud is consistent with the idea of the radiation reaction, it is shown that
also vacuum fluctuations play a role in the electronic Casimir force as a result of the fermionic anticommutation
relations. We introduce an effective mass, different from the effective band mass of the conduction band, which
is associated with the distance of the energy of the PBS from the band edge where the Van Hove singularity is
located and determines the decay rate of the electronic Casimir-Polder force.
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I. INTRODUCTION

Dressing is a fundamental phenomenon of quantum field
theory. Every quantum particle is dressed by virtual quanta
through an interaction with a quantum field. It has been
recognized that mass renormalization and damping are ac-
companied with this dressing process. They are represented,
respectively, by the real part and the imaginary part of the
self-energy of a quasiparticle interacting with a field. The
Casimir effect [1] predicted by Casimir in 1948 is one of
the typical examples of dressing processes, and its related
phenomena have been extended to vast areas of physics, such
as elementary particle physics, cosmology, quantum optics,
chemical physics, nanotechnology, and biology [2–5].

In the Casimir effect, two neutral bodies in their ground state
attract each other by coupling to the electromagnetic vacuum
field. The Casimir effect is profound because it clearly reveals
the presence of the virtual quanta of a field even in the ground
state of the source-field system, despite that one would expect
that the lowest possible state of a source coupled to a field
should be devoid of quanta of radiation. A ground-state source
interacts with a vacuum field by virtual transitions, which give
rise to a virtual cloud around the source, and the overlap of the
virtual clouds causes the Casimir force on the sources.1

While the Casimir effect has been traditionally explained
by a perturbative approach [6,7], there are many systems
in which a perturbative analysis is inappropriate. As an
example, when the coupling of a source with a field becomes
strong, nonperturbative effects must be taken into account,
as in photonic crystals where interesting radiative effects

*stanaka@p.s.cias.osakafu-u.ac.jp
1In a strict manner, we should call the present system as a

Casimir-Polder effect since the bodies are microscopic objects, such
as atoms. However, in the present paper, we may refer to the attractive
interaction of the impurity atoms as Casimir effect, for simplicity.

arise due to the strong coupling, such as giant Lamb shift
and enhanced spontaneous decay [8–10]. A nonperturbative
method is required to study the electronic Casimir effect of
the present one-dimensional system, since there is the Van
Hove singularity in the density of states of the one-dimensional
conduction band [11–13]. Due to the divergence of the density
of states at the band edge, the coupling strength of the atom
with the field becomes enormously strong, which prevents us
from using a perturbative analysis. We have recently found the
nonanalytic decay rate of an unstable particle embedded in a
one-dimensional semiconductor as an example of a peculiar
feature due to the Van Hove singularity [12].

Even in the weak coupling, when one studies the Casimir-
Polder effect in an excited state, perturbative methods break
down due to the resonant singularity [14–18]. Therefore it
is necessary to develop nonperturbative methods in order to
study Casimir effects in these various systems.

Recently, nonperturbative methods for dressed states of
the electromagnetic field have been developed [19,20]. We
have derived an exact expression of the atom-atom and atom-
surface Casimir-Polder interaction energy with a nonpertur-
bative method which uses Bogolioubov-type transformations
[21,22]. Then it is important to reveal characteristic features of
nonperturbative effects of Casimir forces in various systems.

In this work we study a Casimir effect in a pure electronic
system of a one-dimensional semiconductor with two impurity
atoms. An attractive force appears between the two impurity
atoms due to an overlap of the virtual cloud of free elec-
trons around the impurity atoms, which is equivalent to the
mechanism of the electromagnetic Casimir force where the
virtual photon clouds surrounding neutral atoms overlap each
other. A characteristic feature of the electronic Casimir effect
is seen in the distance dependence of the force: The electronic
Casimir force decreases exponentially with the distance, while
it decreases with a power law in the electromagnetic case.
This difference is attributed to a finite effective mass of the
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electronic field, while the radiation field is a massless field.
Then the electronic Casimir force is to be compared to the
attractive nuclear force described by the Yukawa potential,
which is caused by the exchange of a relativistic massive meson
field [6,7].

One of the striking features of the Van Hove singularity
is an appearance of the bound state just below the band edge
regardless of the bare impurity energy [12,13,23]: We call this
bound state persistent bound state (PBS), which cannot be
described by a usual perturbation method. In the present work
we find that the tail of the virtual cloud in the PBS extends
to a long distance with a very small exponential decay rate.
Therefore the attractive force works between the two impurity
atoms even when they are separated by a long distance. On the
other hand, for a short distance, the electronic Casimir force
does not follow the exponential law.

As for the physical understanding of the Casimir effect,
two alternative interpretations have been presented for the
electromagnetic Casimir effect: One is the radiation reaction
and the other is the vacuum fluctuations. In the picture of the
radiation reaction, the zero-point field is a superfluous concept,
and the Casimir effect is attributed to the interaction of the
atom with the field which the other atom creates. On the other
hand, in the picture of vacuum fluctuations, the zero-point field
plays an essential role, where the antinormal ordering of the
field operators in the vacuum state gives vacuum fluctuations.
The interaction energy is influenced by the presence of
vacuum fluctuations. Although these two interpretations look
qualitatively different, Milonni et al. revealed that they are two
sides of the same coin about the Casimir effect [6,7,24,25].

In this work, however, we emphasize that the electronic
Casimir-Polder effect is interpreted in terms of the radiation
reaction field, where one of the two sources creates a virtual
cloud of the field around itself, and the interaction of this field
with the other atom induces the Casimir-Polder energy which
is the origin of the Casimir-Polder force. There is no need to
utilize the idea of vacuum fluctuations of the field as a cause
of the electronic Casimir-Poder effect.

In Sec. II we present a model system which consists of
the one-dimensional semiconductor on which two neutral
impurity atoms are separately placed. The charge transfer
between the impurity and the semiconductor substrate is
taken into account. The dressed ground state of the complete
system (impurity atoms + field) is obtained in Sec. III using a
nonperturbative method.

In Sec. IV the electronic Casimir energy is evaluated and
we show that the Casimir energy becomes a long-range force
with a very small decay rate for the PBS. It is found that the
spatial extension of the electronic Casimir force of an adsorbed
atom on the silicon semiconductor reaches to a few hundred
Angstrom.

In Sec. V we show that the electronic Casimir-Polder effect
can be interpreted in line with the thought of the radiation
reaction. It is clear for a boson field that the Casimir effect
does not require the vacuum fluctuations, because the boson
field can be translated to a classical field with use of the
correspondence of the commutation relation to the Poisson
bracket. In the present case, however, since there is no clear
correspondence between the fermion field and a classical field,
we see that vacuum fluctuations play a role in the antinormal

ordering of the field operators. In Sec. V we then introduce
an effective fermion field which can be compared with the
relativistic massive scalar field, and define a new effective
mass, different from the effective band mass of the conduction
electron. We give a summary in Sec. VI.

II. MODEL

We shall consider a system where two neutral impu-
rity atoms, e.g., Na0(2S1/2) and I0(2P3/2), are placed on a
one-dimensional semiconductor wire at x = 0 and x = R,
respectively, as shown in Fig. 1(a). In Fig. 1(b) we show the
energy scheme of the semiconductor band structure and the
impurity states, where the bare energies of the outermost shell
of the impurities fall in the energy gap between the valence
and the conduction bands. In the present work we assume that
the bare energies of the impurities are close to the conduction
band so that we neglect the interaction between the impurity
states and the valence band.

In the study of the Casimir effect, it is important to
distinguish between a source system and a continuous field
in order to clarify the role of the vacuum field. In the present
work we recognize the two impurity atoms as a source system
and the semiconductor conduction band as a continuous field.

The source system is described by

ĤA = ε1d
†
1d1 + ε2d

†
2d2, (1)

where the first and second terms represent the impurity states
at x = 0 and x = R, respectively, with energies ε1 and ε2. The
operators di and d

†
i (i = 1,2) are electron annihilation and

creation operators for the impurity states.

Na0 I0

one-dimensional semiconductor

(a)

fully occupied valence band 

unoccupied conduction band 

Na0
I0

(b)

ε2
ε1

x = 0 x = R

x

En
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gy

0

FIG. 1. Two impurity atoms with their outermost energy levels
embedded in the energy gap of a one-dimensional semiconductor.
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The eigenstates of ĤA are described by (one-electron
subspace)

|di〉A = d
†
i |0〉A (i = 1,2), (2)

with the eigenenergies εi , where |0〉A is an electron vacuum of
the impurity system defined by

di |0〉A = 0 for i = 1,2. (3)

The field Hamiltonian of the one-dimensional conduction
band is written as

ĤF =
∑

k

εka
†
kak, (4)

where ak and a
†
k are the conduction band electron operators

that satisfy anticommutation relations. In Eq. (4) we take the
free electron energy dispersion relation

εk = h̄2k2

2me

, (5)

with an effective conduction band mass me. The lowest band
edge of the conduction band is taken to be the energy origin,
as shown in Fig. 1(b). The wave number k represents a normal
mode of the free electron field. By imposing the usual periodic
boundary conditions, the wave number is discretized as

kj = 2πj

L
(j = integer), (6)

where L is the length of the system. The wave function with a
wave number k is given by

ψk(x) ≡ 〈x|k〉 = 1√
L

eikx. (7)

In the limit of large length L → ∞, we have

1

�

∑
j

→
∫

dk, �δKr
k,k′ → δ(k − k′), (8)

where � ≡ L/2π .
The vacuum state |{0k}〉F of the field satisfies

ak|{0k}〉F = 0, for ∀k. (9)

The zero-point energy of the bare vacuum state is given by

E0 = F〈{0k}|ĤF |{0k}〉F = 0. (10)

A conduction electron with a wave number k created from the
vacuum field |{0k}〉F is given by

|1k,{0}′〉F ≡ a
†
k|{0k}〉F , (11)

where |{0}′〉 denotes a direct product of the states of all normal
modes except a mode k. The state |1k,{0}′〉F is an eigenstate
of ĤF with the energy εk:

ĤF |1k,{0}′〉F = εk|1k,{0}′〉F . (12)

For simplicity we shall write the vacuum state |{0k}〉F and the
state |1k,{0}′〉F by |0〉F and |1k〉F , respectively.

We consider that the source-field interaction is attributed
to the charge transfer interaction between the impurity atoms

and the conduction band which is represented by

ĤAF = g1V̂1 + g2V̂2 (13a)

= g1

∑
k

(V1ka
†
kd1 + V ∗

1kd
†
1ak)

+ g2

∑
k

(V2ka
†
kd2 + V ∗

2kd
†
2ak), (13b)

where g1 and g2 are dimensionless coupling constants. When
we assume a point interaction at the position of the impurity,
the interaction potentials of V1k and V2k are represented by

V1k = V ∗
1k = V, (14a)

V2k = V eikR, V ∗
2k = V e−ikR, (14b)

where g1 and g2 are the dimensionless coupling constants. In
this work we take V as an energy unit. We further denote

v ≡ V√
�

. (15)

The total Hamiltonian is the sum of ĤA, ĤF , and ĤAF ,

Ĥ = ĤA + ĤF + HAF . (16)

In the present work we consider a single electron vector
space which is spanned by a basis set of the total source-field
system:

|d1; 0〉 ≡ |d1〉A ⊗ |0〉F , (17a)

|d2; 0〉 ≡ |d2〉A ⊗ |0〉F , (17b)

|0; k〉 ≡ |0〉A ⊗ |1k〉F , (17c)

where the atomic states |α〉A (α = d1,d2,0) and the field state
|β〉F (β = 0,1k) are defined above. In terms of the vector
space generated by {|d1; 0〉,|d2; 0〉,|0; 1k〉}, the Hamiltonian is
represented by

Ĥ = ε1|d1; 0〉〈d1; 0| + ε2|d2; 0〉〈d2; 0| +
∑

k

εk|0; k〉〈0; k|

+ g1v√
�

∑
k

(|0; k〉〈d1; 0| + |d1; 0〉〈0; k|)

+ g2v√
�

∑
k

(eikR|0; k〉〈d2; 0| + e−ikR|d2; 0〉〈0; k|), (18)

which is of the same form as the two-level Friedrichs model
[26]. This type of Hamiltonian, known as Newns-Anderson
Hamiltonian, has been extensively used to describe the
adsorption of an atom on a surface [27,28].

In the next section we solve the eigenvalue problem of the
Hamiltonian given by Eq. (18), and obtain the true (interacting)
vacuum state for our system. The Casimir-Polder force is
obtained by taking a negative derivative of the renormalized
vacuum energy as a function of R.

In this paper we adopt the following notations according to
Ref. [29]. By dividing the eigenvalue problem of Ĥ by h̄2/2m,
we consider the eigenvalue problem

H̃ |φ0〉 = ζ |φ0〉, (19)

with

H̃ = H̃A + H̃F + H̃AF , (20)
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where

H̃A = ζ1|d1; 0〉〈d1; 0| + ζ2|d2; 0〉〈d2; 0|, (21a)

H̃F =
∑

k

ζk|0; k〉〈0; k|, (21b)

H̃AF = g1Ṽ1 + g2Ṽ2 (21c)

= g1u√
�

∑
k

(|0; k〉〈d1; 0| + |d1; 0〉〈0; k|)

+ g2u√
�

∑
k

(eikR|0; k〉〈d2; 0| + e−ikR|d2; 0〉〈0; k|).
(21d)

In Eqs. (21) we denote

ζj ≡ εj

h̄2/2me

(j = 1,2); u ≡ v

h̄2/2me

, ζk ≡ k2. (22)

Note that the dimension of these variables are [ζ ] = [L−2] and
[u] = [L−3/2]. Corresponding to the energy unit V , we take
the length unit as

l0 ≡
(

h̄2/2me

V

)1/2

. (23)

As an example, when we take the effective mass of silicon as
me = 0.16m0, where m0 is a bare electron mass, and V = 1 eV
for a typical charge transfer energy, the unit of length is
estimated to be l0 = 4.9 Å.

III. DRESSED QUANTUM VACUUM STATE

In this section we obtain the dressed ground state of the
Hamiltonian H given by Eq. (18) by using a projection
method outlined in Appendix A [30–33]. The dressed ground
state |φ0〉 is obtained as the lowest-energy state of the
solutions of

H̃ |φ0〉 = ζg|φ0〉, (24)

where ζg is a negative real number. We consider the projection
operator onto the field vacuum state |0〉F :

P̂ (d,0) ≡ |d1; 0〉〈d1; 0| + |d2; 0〉〈d2; 0|
= (|d1〉〈d1| + |d2〉〈d2|)A ⊗ |0〉〈0|F . (25)

As shown in Eq. (A9), the P̂ (d,0) component of |φ0〉 is
obtained by solving the eigenvalue problem of the self-energy
operator �̂(z):

�̂(ζg)|u0〉 = ζg|u0〉, (26)

where |u0〉 is a normalized eigenstate of �̂(ζg) defined by

|u0〉 ≡ N−1/2
0 P̂ |φ0〉. (27)

In Eq. (26) the components of the self-energy operator are
represented in terms of the discrete state basis of Eqs. (17a)
and (17b) as

�11(ζ ) ≡ 〈d1; 0|�̂(z)|d1; 0〉
= ζ1 + g2u2

1

�

∑
k

1

(ζ − ζk)+
, (28a)

�21(ζ ) ≡ 〈d2; 0|�̂(ζ )|d1; 0〉
= g2u1u2

�

∑
k

e−ikR

(ζ − ζk)+
, (28b)

�12(ζ ) ≡ 〈d1; 0|�̂(ζ )|d2; 0〉
= g2u1u2

�

∑
k

eikR

(ζ − ζk)+
, (28c)

�22(ζ ) ≡ 〈d2; 0|�̂(ζ )|d2; 0〉
= ζ2 + g2u2

1

�

∑
k

1

(ζ − ζk)+
. (28d)

The summations on k in Eqs. (28) reduce to Cauchy integrals
in the large volume limit, which are evaluated as

g2u2
1

�

∑
k

1

(ζ − ζk)+
= g2u2

1

∫ ∞

−∞

dk

ζ+ − ζk

= −g2v2
1

iπ√
ζ+

, (29a)

g2u1u2

�

∑
k

eikR

(ζ − ζk)+
= g2u1u2

∫ ∞

−∞

eikR

ζ+ − ζk

dk

= −g2u1u2
iπ exp(i

√
ζ+R)√

ζ+
,

(29b)

where the “ + ” sign denotes the direction of the analytic
continuation from the upper half of the complex ζ plane.

As seen in Eqs. (29), we find a divergence in the self-
energies at the band edge ζ = 0 due to the Van Hove
singularity. As an example, we show in Figs. 2(a) and 2(b)
the real and the imaginary parts of the self-energy �12(ζ ′)
for R = 10, respectively, as a function of ζ ′ ≡ Re(ζ ), where
g = 0.1.

Then the eigenvalue problem of Eq. (26) is represented in
terms of the discrete basis as(

�11(ζg) �12(ζg)

�21(ζg) �22(ζg)

)(
β1

β2

)
= ζg

(
β1

β2

)
, (30)

where

β1 ≡ 〈d1; 0|u0〉, β2 ≡ 〈d2; 0|u0〉, (31)

which are determined under the condition

β2
1 + β2

2 = 1. (32)

From Eq. (30) we have

β2

β1
= −�11 − ζg

�12
, (33)

and with (32) we have

β1 =
[

1 + (�11 − ζg)2

�2
12

]− 1
2

. (34)

The dressed ground-state energy ζg is then obtained as the
lowest energy solution of the characteristic equation of∣∣∣∣�11(ζg) − ζg �12(ζg)

�12(ζg) �22(ζg) − ζg

∣∣∣∣ = 0. (35)

The wave function of the dressed ground state is obtained by
adding the Q̂ component to the P̂ component as shown in
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(a)

(b)

ζ

ζ

ReΞ12 (ζ )
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0 ]
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0 ]

[ l−2
0 ]
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0 ]
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FIG. 2. The (a) real and (b) imaginary parts of �12(ζ ′) for R = 10,
with g = 0.1, where ζ ′ ≡ Re[ζ ], where l0 is a length unit given in
Eq. (23).

Eq. (A13):

|φ0〉 = N 1/2
0 {|u0〉 + Q̂Ĉ(ζg)|u0〉} (36a)

= N 1/2
0

{
|d1; 0〉β1 + |d2; 0〉β2

+ 1√
�

∑
k

u

ζg − ζk

(g1β1 + g2e
ikRβ2)|0; k〉

}
,

(36b)

where β1 and β2 are given in Eqs. (33) and (34). In Eqs. (36)
the normalization constant N0 is determined by

1 = 〈φ0|φ0〉
= N0

{
1 − ∂

∂ζ

[
�11(ζ )β2

1 + �22(ζ )β2
2

+�12(ζ )β1β2 + �21(ζ )β2β1
]∣∣∣∣

ζ=ζg

}
. (37)

The second line of Eq. (36b) represents the virtual cloud of the
electron field in the dressed ground state |φ0〉.

IV. ELECTRONIC CASIMIR EFFECT

Now we show the electronic Casimir effect in our system.
In this work we consider a symmetric case where

ζ1 = ζ2 = ζ0, g1 = g2 = g, (38)

which leads to

β1 = β2 = 1√
2
. (39)

In this case, the characteristic equation of Eq. (35) is factorized
as

[ζg − �11(ζg) − �12(ζg)][ζg − �11(ζg) + �12(ζ0)] = 0.

(40)

The dressed ground state must appear below the band edge
ζg < 0.

Taking into account that for ζg < 0,

Re�11(ζg) < 0, Re�12(ζg) < 0, (41a)

Im�11(ζg) = Im�12(ζg) = 0, (41b)

the ground-state energy is obtained by solving

ζg = �11(ζg) + �12(ζg). (42)

Using Eqs. (28) and (29), Eq. (42) reduces to a transcendental
equation as

ζg − ζ0 = −πg2u2√−ζg

(1 + e−
√

−ζgR). (43)

In Appendix B we show that the integrals in Eqs. (29) are
attributed to the branch point effect of the self-energies and
follow the exponential decay in contrast to the electromagnetic
case, where they follow a power law decay. In Appendix B we
also show that this difference in the distance dependence of the
Casimir force originates from the different energy dispersion
of the field in the two cases. The dressed ground-state energy
is obtained as a function of R and ζ0 from Eq. (43):

ζg = ζg(R; ζ0). (44)

The right-hand side of Eq. (43) is a self-energy correction
to the bare impurity energy, where the second term vanishes
in the limit R → ∞, while the first term remains constant. In
this limit,

lim
R→∞

ζg(R; ζ0) = ζsg, (45)

where ζsg is the single-impurity ground-state energy given as
a solution of

ζsg − ζ0 = − πg2u2√−ζsg

. (46)

The ground-state energy ζg(R; ζ0) is represented as an
intersection of the left-hand side and the right-hand side of
Eq. (43), which are shown in Fig. 3 by the dotted and solid
lines, respectively, with R = 10 and g = 0.1.

It is found that the ground-state energy ζg(R; ζ0) always
appears below the band edge for any value of ζ0 due to
the Van Hove singularity. Then we call this bound state a
persistent bound state (PBS) which cannot be obtained by the
perturbation method from the bare impurity state. Indeed, the
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0.15 0.10 0.05 0.05 0.10

0.15
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ζg
ζ0ζ0

ζg − ζ0

ζg − ζ0

−πg2u2

−ζg

(1 + e−
√

−ζgR)
[ l−2

0 ]

[ l−2
0 ]

FIG. 3. Characteristic relation for R = 10 with g = 0.1, where l0
is a length unit given in Eq. (23).

self-energy shift |ζg − ζ0| is much larger than the strength
of the interaction (gv)2 = 0.01 as shown in Fig. 3. The
appearance of the PBS is a major consequence of Van Hove
singularity of the one-dimensional electronic band. In Fig. 4
we show ζg as a function of ζ0 for several values of R: R = 1
(solid line), R = 5 (dashed line), and R = 10 (dotted line),
along with the single impurity ground-state energy ζsg drawn
by the thin line.

We define the Casimir energy as the energy difference
between ζg and ζsg:

ζC(R; ζ0) ≡ ζg(R; ζ0) − ζsg. (47)

The Casimir force is then obtained by the negative derivative
of ζC(R; ζ0) with respect to R:

FC(R; ζ0) ≡ − ∂

∂R
ζC(R; ζ0). (48)

In Fig. 5 we show a log plot of FC(R; ζ0) as a function
of R for ζ0 = −0.5 (solid line), ζ0 = 0 (long dashed line),
ζ0 = 0.5 (short dashed line), and ζ0 = 1.0 (dotted line). The
R dependence of the Casimir force is changed at R � Rc ≡
1/

√−ζsg: For R � Rc, which we call a long regime, the
Casimir force decreases exponentially with a decay rate given
by

√−ζsg , while it deviates from the exponential law for
R � Rc, which we call a short regime. In Fig. 5 Rc is evaluated
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FIG. 4. Ground-state energy ζg as a function of ζ0 for R = 1
(solid line), R = 5 (dashed line), R = 10 (dotted line), and ζsg (thin
line). The length unit is given by Eq. (23).

R

ζ0 = − 0 .5

ζ0 = 0

ζ0 = 0 .5

−FC

ζ0 = 1.0

[ l0 ]

[ l− 3
0

]

FIG. 5. A log plot of Casimir force for the ground state as a
function of R for ζ0 = −0.5 (solid line), ζ0 = 0 (long dashed line),
ζ0 = 0.5 (short dashed line), and ζ0 = 1.0 (dotted line). The critical
values Rc are 1.36, 3.17, 16.0, and 31.9 for ζ0 = −0.5, 0, 0.5, and 1.0,
respectively. In the case of adsorbed atom on a silicon semiconductor,
the length unit of l0 is evaluated to be 4.9 Å.

as Rc = 1.36, 3.17, 16.0, and 31.9 for ζ0 = −0.5, 0, 0.5, and
1.0, respectively.

In the long-distance regime, by expanding ζg around ζsg

in Eq. (43), the distance dependence of the Casimir energy is
approximated by

ζC(R; ζ0) � −
πg2u2√

−ζsg

1 + πg2u2

2(−ζsg )3/2

e−
√

−ζsgR (for R � Rc), (49)

leading to

FC(R; ζ0) � − πg2u2

1 + πg2u2

2(−ζsg )3/2

e−
√

−ζsgR (for R � Rc). (50)

The exponential decay is a characteristic feature of a Casimir
force due to a massive quantum field, such as a meson field,
responsible for the Yukawa force [6]. The decay rate of the
Yukawa force is the Compton wavelength of a meson particle
h̄/mc � 10−14 m. Contrarily to the short-range nuclear force,
the present electronic Casimir force can be of very long range
for large ζ0, as shown in Fig. 5. This is because, as ζ0 increases,
the dressed ground state is obtained as a nonperturbative PBS,
so that the decay rate

√−ζsg becomes small as mentioned
above. In Sec. V we shall discuss the effective mass of the
present case which determines the exponential decay rate.
With use of the length unit evaluated at the end of Sec. II, we
can find out that for the case of adsorbed atom on a silicon
semiconductor, the decay rate is evaluated as 1/78.4 Å−1

for ζ0 = 0.5 and 1/156 Å−1 for ζ0 = 1.0. This means that
the covalent bonding between the adsorbed atoms on a one-
dimensional silicon surface is enhanced by the charge transfer
through the one-dimensional conduction band.

On the other hand, for R � Rc, the distance dependence of
the Casimir force differs from the exponential decay. In this
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case, we approximate Eq. (43) as

ζg − ζ0 = −πg2u2√−ζg

[
1 +

nc∑
n=0

1

n!
(−√−ζgR)n

]
, (51)

where the upper limit of the sum nc is taken to be a large
integer so that

(
√−ζgR)nc  1 or

(
R

Rc

)nc

 1. (52)

In this case
√−ζg is obtained as the lowest solution of the

nc-order polynomial equation. As a result, the Casimir force
differs from the exponential law.

The difference of the R dependence of the Casimir force at
Rc reminds us the R dependence of the van der Waals–Casimir-
Polder force between two atoms as shown in Appendix B
where the R dependence as a power law becomes different
at a wavelength corresponding to an atomic transition wave
number. However, it should be noted that the van der Waals
force is evaluated within a perturbation method, while the
nonexponential decay in the short regime of the present system
is due to a nonperturbative effect.

The long-range character of the electronic Casimir force
for the PBS is well reflected in a long tail of the virtual cloud
of the field. With use of Eq. (7), the spatial extension of the
dressing field is given by

〈x|φ0〉 = N 1/2
0

gu√
�

∑
k

1 + eikR

√
2L

eikx

ζg − ζk

(53a)

= N 1/2
0

gu√
2π

∫ ∞

−∞
dk

1 + eikR

√
2

eikx

ζg − ζk

(53b)

= −N 1/2
0

√
π

2

gu√−ζg

(e−
√

−ζg |x| + e−
√

−ζg |x−R|),

(53c)

where the normalization constant is obtained by Eqs. (28),
(29), (37), and (39) as

N−1
0 = 1 − ∂

∂ζ
[�11(ζ ) + �12(ζ )]|ζ=ζg

(54a)

= 1 + πg2u2

2

{
1

|ζg|3/2
+ e−

√
|ζg |R

|ζg|
(

R + 1

|ζg|1/2

)}
.

(54b)

In Fig. 6(a) we show the intensity of the virtual cloud
|〈x|φ0〉|2 for the cases ζ0 = −0.5 (solid line), ζ0 = 0 (long
dashed line), ζ0 = 0.5 (short dashed line), and ζ0 = 1.0 (dotted
line), where the two sources are located at R = 0 and R = 20.
When ζ0 is far below the band edge (ζ0 = −0.5), the virtual
cloud is well localized around the sources and the overlap of
the clouds is very small. On the other hand, as ζ0 increases
across the band edge, the virtual cloud is extended far from
the impurities and there is a large overlap between the clouds
centered at the sources. Because of this long extension of
the virtual cloud of the PBS, the electronic Casimir force is
effective even at a large distance.

0.4 0.2 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

x

| x|φ0 |2

ζ0

k

φ0|a†
kak|φ0

(a)
(b)
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FIG. 6. (Color online) (a) The intensity of the virtual cloud
|〈x|φ0〉|2 for ζ0 = −0.5 (solid line), ζ0 = 0 (long dashed line),
ζ0 = 0.5 (short dashed line), and ζ0 = 1.0 (dotted line). (b) The
number of the virtual quanta of the dressed electron as a function
of ζ0.

V. DISCUSSION

We have shown so far that the electronic Casimir-Polder
effect is caused by an overlap of the virtual clouds of the
electron field. In this section we shall show that the electronic
Casimir-Polder effect can be interpreted by the radiation
reaction field [6,7,24]. In the idea of the radiation reaction,
one of the two sources creates a virtual cloud of the field
around itself, and the interaction of this field with the other
atom induces the Casimir-Polder energy which is the origin of
the Casimir-Polder force [7].

In the present case we first consider a dressed state of a
single impurity at x = 0 described by

∣∣φ1
s

〉 = N 1/2
s

{
|d1; 0〉 + g√

�

∑
k

u

ζsg − ζk

|0; k〉
}

, (55)

where

N−1
s = 1 + πg2u2

2|ζsg|3/2
. (56)

The second term of Eq. (55) describes the virtual cloud of the
field around the impurity atom at x = 0. The tail of the cloud
extends to the position where the other dressed atom is located
at x = R, which is described by

∣∣φ2
s

〉 = N 1/2
s

{
|d2; 0〉 + g√

�

∑
k

ueikR

ζsg − ζk

|0; k〉
}

. (57)

The virtual cloud of the first dressed atom interacts with the
second dressed atom, and the interaction energy is evaluated
by

ζRR = 〈
φ2

s

∣∣gṼ2

∣∣φ1
s

〉
(58a)

= Ns〈d2; 0|gṼ2|
{

gu√
�

∑
k

1

ζsg − ζk

|0; k〉
}

(58b)

= Ns

g2u2

�

∑
k

eikR

ζsg − ζk

(58c)

= Ns�12(ζsg). (58d)
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In the equations above, ζRR is obtained from the interaction
Hamiltonian of atom 2 with the electron field, evaluated
between the states corresponding to the dressing cloud of
atom 1 and the bare state of atom 2. Since ζRR coincides
with ζC(R; ζ0) given by Eq. (49) in the long-distance regime,
the electronic Casimir effect in the long-distance regime can
be interpreted in line with the idea of the radiation reaction
field.

Let us show that the ordering of the fermion operators of the
field plays an important role in the evaluation of 〈φ2

s |gṼ2|φ1
s 〉

given by Eqs. (58). For that purpose we represent the dressed
states of Eqs. (55) and (57) in terms of the new fermion
operators given by

d̃
†
1 ≡ N 1/2

s

(
d
†
1 + gu√

�

∑
k

1

ζsg − ζk

a
†
k

)
, (59a)

d̃
†
2 ≡ N 1/2

s

(
d
†
2 + gu√

�

∑
k

eikR

ζsg − ζk

a
†
k

)
. (59b)

The dressed states are then represented by∣∣φ1
s

〉 = d̃
†
1 |0; {0}〉, ∣∣φ2

s

〉 = d̃
†
2 |0; {0}〉. (60)

Therefore Eqs. (58) is represented by

ζRR = 〈0; {0}|d̃2gṼ2d̃
†
1 |0; {0}〉 (61a)

= Ns

g2u2

�

∑
k

eikR

ζsg − ζk

〈{0}|aka
†
k|{0}〉 (61b)

= Ns�(ζsg). (61c)

Equation (61b) indicates that the antinormal ordering of the
field operators is attributed to the Casimir energy, suggesting
that the vacuum fluctuations also plays a role [7].

Here we would like to make a comment on a critical
difference of the vacuum fluctuations in the cases of a fermion
and a boson field. Note that a fermion field operator follows
anticommutation relations, while a boson field operator fol-
lows commutation relations. It is possible to translate a creation
and annihilation boson operator into a Fourier component of
a classical field, since we can correspond the commutation
relation of the boson field to a Poisson bracket of the classical
field as normal modes [13,34]. As a result, Casimir effect for
a classical field can be interpreted by a radiation reaction, or
a overlap of virtual clouds, in the same way as for a quantum
boson field, while vacuum fluctuations do not exist in classical
Casimir effects.

In the fermion case, however, we cannot discuss the
Casimir effect in terms of a classical field because there
is no correspondence between the anticommutation relation
and Poisson bracket. Therefore, we can see that the vacuum
fluctuations of the electronic field have a role in the electronic
Casimir effect as mentioned above.

In the preceding section below Eq. (50) we have made a
comment on the resemblance of the exponential decay of the
electronic Casimir force with a Yukawa force due to the meson
field. While the decay rate of the Yukawa force is determined
by the fixed value of the meson mass, the decay rate of the
electronic Casimir force is changed with the bare impurity
energy. Here we shall discuss the effective mass of the present
case which determines the exponential decay rate.

For that purpose let us introduce an effective massive
fermion field whose Hamiltonian is described by

H̃ eff
F =

∑
k

ζ̃kã
†
kãk + gu√

�

∑
k

(γkãk + γ ∗
k ã

†
k), (62)

where the effective massive fermion field operators ãk and ã
†
k

satisfy the anticommutation relation as

{ãk,ã
†
k′ } = δk,k′ , {ãk,ãk′ } = {ã†

k,ã
†
k′ } = 0, (63)

and have the spectrum

ζ̃k ≡ ζsg + ζk. (64)

The second term in (62) represents the interaction with the
sources, which gives a boundary condition onto the effective
field. The coupling constants depend on the position of the
sources as

γk ≡
√
Ns

2
(1 + eikR), γ ∗

k ≡
√
Ns

2
(1 + e−ikR). (65)

We take an ansatz for the dressed vacuum state under the
weak coupling condition as

|�G〉 = χ0|0〉F +
∑

k

χka
†
k|0〉F , (66)

where the bare vacuum state of the field satisfies

ãk|0〉F = 0, for ∀k, (67)

with the bare vacuum energy E0 = 0. The interacting vacuum
energy is then obtained by a second-order perturbation theory
as

EG � −g2u2

�

∑
k

|γk|2
ζ̃k

(68a)

= −g2u2

�

∑
k

1 + eikR

ζsg + ζ̃k

(68b)

= −g2u2
∫

dk
1 + eikR

ζsg + ζ̃k

, (68c)

which yields the same Casimir force in the long-distance
regime as given by Eq. (50). We have shown in Appendix C
that the field Hamiltonian is exactly diagnonalized and that the
interacting vacuum energy gives the same results as the above
in the weak coupling case.

We notice that the effective field Hamiltonian (62) takes
the same form as the meson field Hamiltonian interacting with
two separate sources, leading to the nuclear force described by
Yukawa potential as

V (R) = − g

4πc

e−κR

R
, (69)

where the decay rate is κ ≡ mc/h̄ [7]. Thus we may compare
our effective field with a relativistic scalar field. By comparison
of ε̃k given by Eq. (64) with the spectrum of a meson field

h̄ωk = h̄c
√

κ2 + k2 � h̄cκ

(
1 + k2

2κ2

)
, for

k

κ
 1, (70)

we can find that ζsg of Eq. (64) corresponds to the rest energy
h̄cκ of the relativistic scalar field. This means that, by injection
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of energy beyond the energy gap |ζsg|, a field particle is created
in the conduction band.

This shows that the energy gap in the electronic Casimir
effect leads to a finite effective mass that leads to the
exponentially decaying virtual cloud surrounding the atomic
particle. This is a striking contrast in the case of the photon,
since the virtual cloud of the photon surrounding exchange
decay in the power law because the rest mass is zero.

VI. CONCLUDING REMARKS

In this work we have presented the electronic Casimir effect
for a system consisting of two impurities on a one-dimensional
semiconductor. Due to the charge transfer from the impurity
to one-dimensional conduction band, the impurity states are
dressed by a virtual cloud of the electron field. The attractive
electronic Casimir force arises due to the overlap of the virtual
clouds. The Van Hove singularity causes the persistent bound
state to appear below the band edge even when the bare
impurity state energy is above the band edge. Since the virtual
cloud of the PBS extends to a long distance, the Casimir force
can be very of long range, even with its exponential decay. It
is found that the spatial extension of the electronic Casimir
force of an adsorbed atom on the silicon semiconductor
reaches to a few hundred Angstrom. Therefore the covalent
bonding of the adsorbed atoms on the semiconductor surface is
strongly enhanced by the charge transfer via a one-dimensional
conduction band.

The electronic Casimir-Polder effect can be interpreted in
terms of the radiation reaction field, where one of the two
sources creates a virtual cloud of the field around itself, and
the interaction of this field with the other atom induces the
Casimir-Polder energy which is the origin of the Casimir-
Polder force. The difference of the vacuum fluctuations of
the boson field and fermion field has been discussed by
noticing a correspondence between the commutation relation
and Poisson bracket.

We have introduced an effective massive fermion field
whose mass is given by the energy gap between the bound
state and the band edge of the conduction band. This gives a
new insight to the effective mass which is different from an
effective band mass of the conduction band.

Recently several sophisticated experimental methods have
been developed to observe the Casimir-Polder effect [4,35].
These methods can be also used to detect the electronic
Casimir-Polder effect. We think that one of the possible
experiments to detect the electronic Casimir-Polder effect
is to measure the change of their oscillation frequency of
the impurities around their equilibrium positions due to the
Casimir-Polder force. Indeed, such an oscillation frequency
change has been recently used to detect the Casimir-Polder
force between a condensate and a surface under nonequilib-
rium conditions [36].

In this paper we have focused on a homopolar system in
which two adaptors are identical. In the case of a heteropolar
adsorbed molecule, such as NaI shown in Fig. 1(b), the ionic
bonding effect should be taken into account. However, in a
long distance, the covalent boding is important in the ground
state instead of the ionic bonding effect as seen in an adiabatic

potential curve of a NaI molecule [37]. Furthermore, when
the molecule is absorbed on a surface of a condensed matter,
the ionic bonding effect is screened out and less important,
while the covalent bonding due to the charge transfer through
the semiconductor conduction band becomes more important.
In our work we focus on the electronic Casimir-Polder effect
in such a long distance that the ionic bonding does not play a
major role.

In the case of a homopolar molecule, such as an adsorbed
H2 molecule [38,39], we have to take into account Coulomb
repulsion of two electrons, which can be incorporated in our
model Hamiltonian and may modify the electronic levels of
the system. However, since the electronic wave function is
extended over in the semiconductor, the Coulomb interaction
between the two electrons becomes suppressed. As a result,
the ground-state function of the two electron system is
approximated well to be a simple direct product of |φ0〉
with opposite spins, resulting in the long-range electronic
Casimir-Polder effect in this work.
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APPENDIX A: BRILLOUIN-WIGNER-FESCHBACH’S
PROJECTION METHOD FOR THE EIGENVALUE

PROBLEM OF A MULTILEVEL FRIEDRICHS MODEL

In this Appendix we solve the eigenvalue problem of a
multidiscrete level Friedrichs model. We solve the eigenvalue
problem of a Hamiltonian given by

H = H0 + gV, (A1)

where

H0 =
N∑

j=1

εj |dj 〉〈dj | +
∑

k

εk|k〉〈k|, (A2a)

gV = g√
�

∑
k

N∑
j=1

(vjk|dj 〉〈k| + v∗
jk|k〉〈dj |). (A2b)

In Eqs. (A2) |dj 〉 denotes bare discrete states with energy
εj , and |k〉 denotes continuous states with energy εk . N is the
number of discrete states.

Taking into account the situation where the resonant state
appears by a resonance, we consider the complex eigenvalue
problem of H in extended Hilbert space [30]. We consider the
following right- and left-eigenvalue problems:

H |φj 〉 = zj |φj 〉, 〈φ̃j |H = zj 〈φ̃j |, for j = 1–N, (A3)
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for the discrete states, and

H |φk〉 = zk|φk〉, 〈φ̃k|H = zk〈φ̃k|, (A4)

for the continuous field.
In this paper we focus on the discrete states because we

want to investigate the Casimir effect of the dressed ground
state. Therefore, we consider the projection operators onto the
bare discrete states and its complement as

P̂ (d) ≡
N∑

j=1

|dj 〉〈dj |, Q̂(d) ≡ 1 − P̂ (d). (A5)

Acting P̂ (d) and Q̂(d) onto the first equation of Eq. (A3), we
have

P̂H0P̂ |φj 〉 + P̂ gV Q̂|φj 〉 = zj P̂ |φj 〉, (A6a)

Q̂gV P̂ |φj 〉 + Q̂HQ̂|φj 〉 = zj Q̂|φj 〉. (A6b)

Hereafter in this Appendix we drop the superscripts in P̂ (d)

and Q̂(d) for simplicity. From the second equation we have

Q̂|φj 〉 = Q̂Ĉ(z)P̂ |φj 〉, (A7)

where

Ĉ(z) ≡ 1

(z − Q̂HQ̂)+
Q̂gV P̂ . (A8)

Equation (A7) means that the Q̂ component is obtained as
a functional of the P̂ component of |φj 〉. In Eq. (A8) Ĉ(z)
contains a Cauchy integral in the propagator, and the sign +
in the denominator implies to take analytic continuation from
the upper half plane to the lower half plane [31].

Substituting Eq. (A7) into Eq. (A6a) results in

�̂(zj )P̂ |φj 〉 = zj P̂ |φj 〉, (A9)

or extracting the normalization constant Nj of |φj 〉 from the
above Eq. (A9) reduces to

�̂(zj )|uj 〉 = zj |uj 〉, (A10)

where we have defined

|uj 〉 ≡ N−1/2
j P̂ |φj 〉. (A11)

In Eq. (A9) or (A10) �̂c(z) is a self-energy operator given by

�̂(z) = P̂H0P̂ + P̂gV Q̂
1

(z − Q̂HQ̂)+
Q̂gV P̂ , (A12)

where the + sign in the denominator determines the direction
of the analytic continuation of a Cauchy integral which appears
in the propagator. It should be noted that �̂(z) acts as a operator
in the N -discrete state vector subspace. This is an analog of a
collision operator in Liouville space [31].

In order to obtain the P̂ component of |φj 〉, we solve the
nonlinear eigenvalue problem of �̂ in a discrete state subspace
of {|dj 〉}.

Taking into account Eq. (A7), the discrete eigenstates of H

is then given by

|φj 〉 = N 1/2
j [|uj 〉 + Q̂Ĉ(zj )|uj 〉]. (A13)

0 branch cut

ε

−α2

0 2nd Riemann sheet

1st Riemann sheet
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−α2
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I2

CR(a) (b)

CP

FIG. 7. (Color online) A contour in the energy space. Contour
goes along the first and second Riemann sheet.

APPENDIX B: BRANCH POINT EFFECT
OF THE SELF-ENERGIES

In this Appendix we study the integral in Eq. (29):

I (z) ≡
∫ ∞

−∞

eikR

k2 − z̃+
dk, (B1)

where z̃ ≡ 2mez/h̄
2 and the + sign means to place z in the

upper half complex plane. In this work we are concentrated to
the region of Re[z] < 0 and Im[z] = 0, and we consider∫ ∞

−∞

exp(ikx)

α2 + k2
dk (for α > 0), (B2)

where α ≡ −Re[z]. Here we rewrite this with use of the energy
variable ε defined by

ε ≡ k2, i.e., k = √
ε. (B3)

Here we have to notice that
√

ε is a two-valued function with a
singularity at ε = 0, which forces us to use the second Riemann
sheet to consider the integral. In Fig. 7 we show the branch cut
in the complex ε plane, where we take a branch cut depicted
by a broken line.

So we divide the integral (B2) into two parts as

∫ ∞

−∞

exp(ikx)

α2 + k2
dk =

∫ 0

−∞

exp(ikx)

α2 + k2
dk +

∫ ∞

0

exp(ikx)

α2 + k2
dk

≡ I1 + I2. (B4)

In I1, since k is negative, we take ε = |k| exp(i2π − iδ), where
δ is a positive infinitesimal, while in I2, since k is positive, we
take ε = |k| exp(iδ), as shown in Fig. 7(a) in the ε plane. By
taking this contour we change the integral in k plane to ε plane:

I1 =
∫

I1

exp(i
√

εx)

α2 + ε

dε

2
√

ε
, (B5a)

I2 =
∫

I2

exp(i
√

εx)

α2 + ε

dε

2
√

ε
. (B5b)

When we move the branch cut as shown in Fig. 7(b), it
is seen that both the contours of the integrals belong to
different Riemann sheets: I1 and I2 belong to the first and
second Riemann sheets, respectively. Figure 7(b) shows that
the integral is attributed to the branch point effect.

022518-10



NONPERTURBATIVE APPROACH FOR THE ELECTRONIC . . . PHYSICAL REVIEW A 88, 022518 (2013)

k

CR

CB

0

θ

R

FIG. 8. A deformed contour.

In order to evaluate Eqs. (B5), we consider a closed loop
contour as shown in Fig. 7(a) consisting of I1 + I2 + CR +
CP . Since I1 + I2 + CR + CP = 0 and CR = 0, we have

I1 + I2 = −
∫

CP

exp(i
√

εx)

α2 + ε

dε

2
√

ε
(B6a)

= −(−2πi) Res[ε = −α2] = π

α
e−αx, (B6b)

where we have used the fact that ε = −α2 is in the first
Riemann sheet, resulting in

√−α2 = α exp(iπ/2) = iα.
Next we compare this result with the electromagnetic

case which presents the power law decay due to the branch
point effect. We consider the following integral in which
we encounter the calculation of the Casimir energy in the
electromagnetic case [7]:

∫ ∞

0
kn exp(ikx)

k + k0
dk, (B7)

where k0 represents a wave number corresponding to an atomic
transition energy.

First we deform the contour as shown in Fig. 8. The
integral along CR vanishes because this part brings about
limR→∞ exp(−Rx sin θ ) = 0 at the large radius of k. The
integral along CB (branch point contribution) has to be
evaluated. For that purpose, we transform the variable as
k = iu. The integral then becomes

∫ ∞

0
kn exp(ikx)

k + k0
dk = i

∫ ∞

0
(iu)n

exp(−xu)

iu + k0
du

=
∫ ∞

0
(iu)n

exp(−xu)

u − ik0
du. (B8)

Next we transform the variable u with y as y = xu, which
leads Eq. (B8) to

∫ ∞

0
kn exp(ikx)

k + k0
dk = in

∫ ∞

0

(
y

x

)n exp(−y)
y

x
− ik0

dy

x

= in

xn

∫ ∞

0

yn exp(−y)

y − ik0x
dy. (B9)

It is found that the integral has a contribution only within
y ∼ 1 due to the exponential factor. And for a long range of
x compared to the atomic transition length 1/k0, i.e., far-zone

case 1  k0x, Eq. (B9) can be approximated as∫ ∞

0
kn exp(ikx)

k + k0
dk � in+1

k0xn+1

∫ ∞

0
yn exp(−y)dy

= in+1

n! k0

1

xn+1
. (B10)

On the other hand, for the near-zone case 1 � k0x, we can
evaluate Eq. (B7) as∫ ∞

0
kn exp(ikx)

k + k0
dk � in

xn

∫ ∞

0
yn−1 exp(−y)dy

= in

(n − 1)!

1

xn
. (B11)

Equations (B10) and (B11) explain the retardation effect of
the van der Waals–Casimir-Polder force which shows x−6 and
x−7 dependence for near and far zone, respectively [7].

APPENDIX C: EXACT DIAGONALIZATION OF THE
EFFECTIVE FIELD HAMILTONIAN

The effective field Hamiltonian introduced in Sec. V can be
diagonalized if we reorder the operator such that

H̃ eff
F =

∑
k

{
ζ̃k

1

2
(a†

kak − aka
†
k) + γkak + γ ∗

k a
†
k

}
+ ζ̃0

≡
∑

k

h̃k + ζ̃0, (C1)

where

ζ̃0 ≡ 1

2

∑
k

ζ̃k. (C2)

The eigenvalue problem of the Hamiltonian of h̃k is readily
solved as

h̃k|ϕk±〉 = ζ̃k±|ϕk±〉, (C3)

where the eigenvalues are obtained as

ζ̃k± = ±ζk

2

√
1 + 4|γk|2

ζ 2
k

. (C4)

The eigenstates of h̃k are given by

|ϕk±〉 = c0k±|0k〉 + c1k±a
†
k|0k〉, (C5)

where

c0k±
c1k±

= ζk

2γk

(
1 ±

√
1 + 4|γk|2

ζ 2
k

)
, (C6)

with

|c0k±|2 + |c1k±|2 = 1. (C7)

The field ground state are then given by

|�G〉 =
∏
k

(c0k−|0k〉 + c1k−a
†
k|0k〉), (C8)
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and the ground-state energy of the field is given by

ζG = ζ0 +
∑

k

ζ̃k− =
∑

k

ζk

2
−

∑
k

ζk

2

√
1 + 4|γk|2

ζ 2
k

. (C9)

In the weak coupling case ζG is approximated by

ζG �
∑

k

ζk

2
−

∑
k

ζk

2

(
1 + 2|γk|2

ζ 2
k

)
(C10a)

= −g2u2

�

∑
k

1 + eikR

ζsg + k2
(C10b)

= −g2u2
∫

dk
1 + eikR

ζsg + k2
, (C10c)

which yields the Casimir force in the long regime given by Eq. (50).
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