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Analyzing and modeling the interaction potential of the ground-state beryllium dimer
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The factors that caused the Be2 potential to be quite different from other conventional van der Waals
potentials are quantitatively delineated with relatively simple self-consistent-field calculations. By decomposing
the potential into its three major components, we are able to show that the rather sudden change of slope in the
potential energy curve around 3.2 Å is the result of the interplay between the sp hybridization and the correlation
energy. It also enables us to model the interaction with a classical van der Waals potential, which provides
the proper long-range behavior of the system, and a short-range attraction which mimics the effects of the sp

hybridization.
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I. INTRODUCTION

It has been quite a challenge to determine the beryllium
dimer potential. At first even the existence of the beryllium
dimer was in question. In 1929, when Herzberg [1] failed
to produce Be2 in his laboratory, he concluded that the
interaction between two ground-state beryllium atoms is
repulsive. Before the calculations of Liu et al. in 1980 [2,3],
which showed that Be2 has a deep minimum (806 cm−1)
at a short bond length (2.49 Å), theoretical investigations,
including valence bond [4], self-consistent field [5], and
configuration interaction [6] calculations, all showed that the
Be2 dimer potential is repulsive. The existence of the beryllium
dimer was definitively established in 1984 after the observation
of the excitation spectrum of Be2 by Bondybey et al. [7,8].
This motivated another wave of theoretical studies. By now
over 100 papers with practically all theoretical methods of
quantum chemical calculations have appeared in the literature.
Calculations before 1995 were summarized by Røeggen and
Almlöf [9]. More recent publications can be found in Ref. [10].

As calculations get more and more sophisticated, the esti-
mated well depths become steadily deeper [11–20], exceeding
Bondybey’s initial experimental value (790 ± 30 cm−1) by
larger and larger amounts. These are complicated calculations
because of the small energy separation between the 2s

and 2p orbitals of the beryllium atom, which results in a
multiconfigurational ground state. For example, an all-electron
full configuration interaction calculation involved more than a
billion symmetry-adapted determinants [21].

In 2009, Merritt et al. [22] recorded the stimulated emission
pumping spectra that sample all the bond vibrational levels
of the ground state of beryllium dimer. The well depth De

(927.7 ± 2.0 cm−1) of the potential energy curve derived from
this experiment is in agreement with the high-level quantum
chemical estimate (938 ± 15 cm−1) of Patkowski et al. [23].
Furthermore, the shape of the experimental potential is very
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similar to the semiempirical potential obtained by tuning the
ab initio potential to reproduce experimental spectra [24].
Thus consensus on the ground-state potential of Be2 has
finally been reached.

Diatomic molecules formed from two closed-shell atoms
are van der Waals molecules. Dimers of group 2 (alkaline-earth
metals), group 12 (battery element), and group 18 (rare-gas)
are in this category. It is well known that the binding of van
der Waals molecules is mainly due to the dispersion energy.
For these dimers, the ground state is only weakly bound with a
large equilibrium distance. Apparently this is not the case for
the beryllium dimer, although the beryllium atom is a member
of the alkaline-earth family.

The long-range behavior of van der Waals molecules should
be described by the dispersion series −C6/R

6 − C8/R
8 −

C10/R
10, where Cn are known as the dispersion coefficients

(or van der Waals coefficients) [25,26]. At large R, where
there is no overlap of the two atomic wave functions, the
interatomic correlation is given by this dispersion series. At
small R, this series must be damped due to the electronic
overlap. There are several potential models [27–33] consisting
of a hybrid combination of a short-range Born-Mayer potential
and a damped dispersion series that can describe all dimers in
these families except the beryllium dimer [34]. We shall call
potentials that can be described by these models “classical van
der Waals potentials.”

The Be2 potential has a unique shape. It has a potential
well that is much deeper at a bond length much shorter
than that of Mg2, the heavier neighbor in the alkaline-earth
family. This is an anomaly [34]. Strangest of all, the beryllium
dimer potential curve has a rather sudden change of slope at
about 3.2 Å. This unique potential was described by Merritt
et al. [22] with an expanded Morse oscillator function. The
failure of this function to predict the v = 11 state was attributed
by Patkowski et al. [35] to its lack of proper long-range
behavior. The long-range potential is particularly important
for collisions of cold atoms, since they are sensitive to that
part of the potential [36–38].

The unique shape of the Be2 potential is due to the small
radius of the 1s2 core and the near degeneracy of 2s and 2p

energy levels of the beryllium atom. These factors facilitate a
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close approach of the beryllium atoms so that sp hybridization
can occur to make the Be2 bond much stronger than usual
[39–41].

In this paper, these factors are quantitatively delineated with
relatively simple self-consistent-field (SCF) calculations. The
Be2 potential is decomposed into three major components. The
attractive energy necessary for bonding is still the correlation
energy which can be described by a damped dispersion series,
just as in other van der Waals molecules. The change of slope
in the potential energy curve is explicitly shown to be the
result of the interplay between the correlation energy and
the sp hybridization which weakens the usual SCF repulsion.
The amounts that the repulsive wall is lowered can be
approximated by a smooth function. As a consequence, the
beryllium dimer potential can be modeled by a classical van
der Waals potential plus a simple short-range attraction.

Atomic units will be used in all calculations. For com-
parison with literature values, the results are reported in
energy units of cm−1 and length units of Å. For energy,
1 a.u. = 1 hartree = 2.194 74 × 105 cm−1; for distance,
1 a.u. = 1 bohr = 0.529 17 Å; for inverse distance, 1 a.u. =
1.889 75 Å−1.

II. METHODOLOGY AND CALCULATION

A. Near degeneracy of 2s and 2 p energy levels of the Be atom

Much insight can be gained from comparing the potential
energies of helium and beryllium dimers. Both atoms have an
outer closed electronic s2 shell. However, the large differences
in magnitude and shape between these two dimer potentials
are not what the similarity of the electronic configurations
of helium (1s2) and beryllium (1s22s2) atoms would suggest.
These differences are caused by the near degeneracy of the 2s

and 2p energy levels of the beryllium atom.
First, Stärck and Mayer [13] showed that a small energy

difference between the 2s and 2p orbitals of the Be atom results
in a considerable enhancement of the dispersion attraction in
Be2. Indeed, the dispersion coefficients of Be2 [C6(Be2) =
214 a.u.] [42] are much larger than that of He2 [C6(He2) =
1.461 a.u.] [43,44]. This makes the Be2 bond much stronger
than the He2 bond.

In addition, the near degeneracy enables the electrons on
the 2s orbital of the Be atom to easily gain access to an
entirely empty valence p shell. This sp hybridization will
lower the repulsion in Be2, as predicted by Kutzelnigg [39].
To quantitatively demonstrate this effect, we carried out SCF
calculations of the Hartree-Fock energies of both He2 and Be2.

The GAMESS(US) package [45] is used for these calculations,
and the results are counterpoise corrected [46]. To check
convergence, we have used aug-cc-pVDZ, aug-cc-pVTZ, and
aug-cc-pVQZ basis sets [47,48]. The differences in results
are hardly noticeable. In Fig. 1(a), we show the Hartree-Fock
interaction energies of He2 obtained with only s basis functions
(5s) and with a full basis set (5s4p3d2f ). In Fig. 1(b), the
results with basis functions of (6s), (6s5p), and (6s5p4d3f )
for Be2 are shown. Clearly for He2, the Hartree-Fock energy
calculated with the full basis set is not much different from that
with only the s basis function. In contrast, the Hartree-Fock
repulsion in Be2 is greatly reduced when hybridization with p

FIG. 1. (Color online) Comparison of Hartree-Fock interaction
energies of He2 and Be2. For He2 shown in (a), there is very little
difference between the results calculated with the full basis set and
with the s basis functions. For Be2 in (b), the repulsion obtained with
s basis functions is greatly reduced by the sp hybridization.

basis functions is possible. As we shall see, this hybridization
is the main reason that the shape of the Be2 potential is so
different from the classical van der Waals potential, such as
the He2 potential [49].

B. Components of the beryllium dimer potential

In the supermolecule approach of the interaction potential,
very often the first step is to calculate the Hartree-Fock energy,
and the rest is known as correlation energy which is given by
the dispersion series in the region of no atomic wave-function
overlap. Thus the potential energy V (R) of the beryllium dimer
can be written as

V (R) = VHF(R) + Vcorr(R). (1)

As seen in the preceding section, it is instructive to separate
out the contributions due to the near degeneracy of the 2s and
2p energy levels of the beryllium atom from the Hartree-Fock
level interaction energy VHF(R). So we write

VHF(R) = V
(s)

HF (R) + V
(sp)

HF (R), (2)
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TABLE I. The ground-state potential of the beryllium dimer and its components.

R (Å) VHF (cm−1) V
(s)

HF (cm−1) V
(sp)

HF (cm−1) Vcorr (cm−1) Vexact (cm−1)

2.00 7865.1255 19416.8377 −11551.7122 −6541.2355 1323.8900
2.05 6832.3174 17586.7683 −10754.4509 −6159.3774 672.9400
2.10 5959.5442 15941.3435 −9981.7993 −5789.3262 170.2180
2.15 5221.8515 14460.0149 −9238.1634 −5430.9235 −209.0720
2.20 4597.8259 13124.6643 −8526.8385 −5082.9706 −485.1447
2.25 4069.1508 11919.3092 −7850.1583 −4751.0237 −681.8729
2.30 3620.2157 10829.8502 −7209.6344 −4433.8410 −831.6253
2.40 2910.6182 8950.3534 −6039.7452 −3844.8023 −934.1841
2.44 2682.3292 8295.6466 −5613.3173 −3626.1638 −943.8346
2.50 2386.0862 7403.4291 −5017.3429 −3316.4173 −930.3311
2.60 1988.5489 6124.7997 −4136.2507 −2848.8072 −860.2583
2.70 1678.2604 5064.5090 −3386.2487 −2441.4495 −763.1891
2.80 1428.6310 4183.4397 −2754.8088 −2091.5068 −662.8758
3.00 1047.7980 2841.1830 −1793.3850 −1541.8158 −494.0178
3.50 471.9416 1043.0821 −571.1405 −759.2863 −287.3447
4.00 193.3492 364.1936 −170.8444 −396.9232 −203.5740
5.00 25.2165 38.4984 −13.2819 −112.4395 −87.2230
6.00 2.6060 3.5279 −0.9219 −34.1294 −31.5234
7.00 0.2283 0.3184 −0.0900 −12.0266 −11.7983
8.00 0.0176 0.0301 −0.0125 −4.9655 −4.9479

where V
(s)

HF (R) is the Hartree-Fock level energy calculated with
only s basis functions. That is, if E

Be2
HF(s)(R) is the Hartree-Fock

energy calculated with only s basis functions as described in
the preceding section, then

V
(s)

HF (R) = E
Be2
HF(s)(R) − 2EBe

HF(s).

Therefore, V
(sp)

HF (R) represents the energy coming from the
hybridization of the s and p atomic orbitals in the beryllium
atom and can be evaluated by the difference of VHF(R) and
V

(s)
HF (R) [V (sp)

HF (R) = VHF(R) − V
(s)

HF (R)]. It follows that

V (R) = V
(s)

HF (R) + V
(sp)

HF (R) + Vcorr(R). (3)

In our analysis, we take the nonrelativistic ab initio results
calculated by Patkowski et al. [23,50] as the exact potential
V (R). This potential recovers the measured vibrational en-
ergies with a root-mean-square error of only 3.4 cm−1 and
supports the presence of a 12th vibrational level. All their
ab initio data points are listed in the last column of Table I
as Vexact. These calculations are of course not exact, but
for convenience, we use the symbol Vexact to refer to these
high-quality benchmark results. We have calculated VHF(R)
and V

(s)
HF (R) as described in the preceding section. Their

numerical values together with V
(sp)

HF (R) and Vcorr(R) [from
Vexact(R) − VHF(R)] are also listed in Table I.

III. RESULTS AND DISCUSSION

A. Change of slope in the potential energy curve

Based on the numerical values in Table I, V
(s)

HF (R),
V

(sp)
HF (R), and Vcorr(R) together with V (R) are shown in Fig. 2.

It is clear from Eq. (1) that the bonding of the dimer comes
entirely from the attractive correlation energy Vcorr(R). But the
sp hybridization lowers the repulsive potential wall. This effect

is represented by V
(sp)

HF (R), which behaves like a short-range
attractive potential. It is practically equal to zero for R greater
than 5 Å. After its onset, it rapidly becomes more negative
as R decreases. It intersects the long-range correlation energy
Vcorr(R) at 3.2 Å. For R � 3.2 Å, Vcorr(R) dominates, and
for R � 3.2 Å, V

(sp)
HF (R) dominates. Therefore, the sum of

these two terms will be closer to Vcorr(R) for R > 3.2 Å, and
for R < 3.2 Å the sum will be closer to V

(sp)
HF (R). Since the

R dependences of V
(sp)

HF (R) and Vcorr(R) are characteristically
different, this results in a change of slope in the potential
energy curve V (R). Eventually, the sum of these two negative

FIG. 2. (Color online) The potential energy curve of the ground
state of Be2 and its components. The intersection of correlation energy
Vcorr and the energy due to sp hybridization V

(sp)
HF is the main reason

for the change of slope in the potential energy curve around 3.2 Å.
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FIG. 3. (Color online) The van der Waals interaction in the Be2

potential. The dots are the Be2 potential without the sp hybridization,
and the solid line is the Tang-Toennies model for van der Waals
potential, determined without adjustable parameters.

terms is overcome by the positive repulsive potential V
(s)

HF (R)
to form a potential well as shown in Fig. 2.

B. Modeling the beryllium dimer potential

It is possible to individually model the three components.
However, to clarify the relationship between the classical van
der Waals potential and the beryllium dimer potential, we first
make the following observation.

In the van der Waals molecule He2, the sp hybridization
effect is negligibly small. The Hartree-Fock energy is essen-
tially the same as V

(s)
HF (R), as we see in Fig. 1(a). In that

case, the total interaction energy, which is almost identical
to V

(s)
HF (R) + Vcorr(R), can be described by a classical van

der Waals potential. This suggests that for beryllium dimer,
V

(s)
HF (R) + Vcorr(R) may also be similarly modeled. This is

indeed the case. In Fig. 3, we show a van der Waals potential,
defined as

VvdW(R) = V
(s)

HF (R) + Vcorr(R), (4)

where V
(s)

HF (R) and Vcorr(R) are from Table I. The dots are the
numerical data and the solid line is a classical van der Waals
potential known as the Tang and Toennies (TT) model potential
(see below).

In 1984, Tang and Toennies [51] found that the potential
consists of the sum of the short-range repulsive Born-Mayer
potential A exp(−bR), and the long-range attractive potential
of damped asymptotic dispersion series,

VTT(R) = Ae−bR −
8∑

n=3

(
1 − e−bR

2n∑
k=0

(bR)k

k!

)
C2n

R2n
, (5)

could describe nearly perfectly the van der Waals potentials
for different types of systems such as the triplet state of H2,
the van der Waals dimers He2 and Ar2, as well as the van
der Waals molecules with open-shell atoms NaAr and LiHg.
This equation has been shown to have a firm foundation in the

generalized Heitler-London theory [52]. It is now known as
the TT potential.

Since Eq. (5) is derived from a physical model [51], it
is not surprising that it has predictive power. With accurate
dispersion coefficients, the different shapes of many van der
Waals potentials have been correctly predicted [34,53]. So
far among the systems examined, the only exception is the
beryllium dimer potential [34]. To find out why it fails in the
case of Be2 is one of the main objectives of the present study.

The first three dispersion coefficients C2n for many systems
can be predicted theoretically with a high degree of accuracy,
and higher coefficients can be generated from the recurrence
relation [54]

C2n =
(

C2n−2

C2n−4

)4

C2n−6. (6)

Equation (5) depends essentially on only two parameters A

and b. Conversely, the potential curve can also be uniquely
determined if the well minimum Re and the well depth De are
known. There is a simple program in the Appendix of Ref. [55]
which, with a given set of C2n, will automatically convert Re

and De into A and b.

For Be2, the first three dispersion coefficients (C6 =
214 a.u., C8 = 10 230 a.u., and C10 = 504 300 a.u.) are
accurately determined by Porsev and Derevianko [42]. The
well minimum Re = 4.5 Å (8.504 a.u.) and the well depth
De = 89.07 cm−1(0.000 406 a.u.) can also be pinpointed from
the data shown in Fig. 3. The Born-Mayer parameters A and
b calculated with the program in the Appendix of Ref. [55]
are A = 21.7721 a.u. and b = 1.2415 a.u. The TT potential
calculated with these parameters is shown in Fig. 3 as a solid
line. Note that this TT potential is constructed with no free
parameter, yet it can accurately describe the van der Waals
potential of Eq. (4) in the potential well and the long-range
region. This clearly shows that the Be2 potential has van der
Waals long-range behavior.

Recently, we have shown that the potentials of all alkaline-
earth dimers can be described by the TT potential model
[56–58] except for the Be2 potential [34]. The reason for this
exception is now clear. If there were no sp hybridization, the
Be2 potential could also be modeled by the TT potential.

Now to model the entire Be2 ground-state potential, we
must describe the difference Vd (R) between V (R) and VTT(R),

Vd (R) = V (R) − VTT(R). (7)

With V (R) taken from the last column (Vexact) of Table I and
VTT(R) calculated from Eq. (5), the difference is a smooth
function and can be closely fitted with a three-parameter
exponential function

Vd (R) = De−eR−f R2
, (8)

where D = −4.3224 a.u., e = 0.5891 a.u., and f = 0.0774
a.u. The origin of this function is due to the sp hybridization,
but it is very close to V

(sp)
HF (R) only for R > 3.5 Å. From

that point on down, as R decreases, the difference between
Vd (R) and V

(sp)
HF (R) starts to increase. This is because VTT(R)

is too hard in the inner repulsive region [59]. However, since
the deviation caused by the inaccuracy of VTT(R) in the inner
region is taken into account in Vd (R), the sum of VTT(R)
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FIG. 4. (Color online) The ground-state potential of the beryllium
dimer. The dots are the ab initio results calculated by Patkowski et al.
(Refs. [23] and [50]), and the solid line is generated with the present
model.

and Vd (R),

V (R) = Ae−bR −
8∑

n=3

(
1 − e−bR

2n∑
k=0

(bR)k

k!

)
C2n

R2n

+De−eR−f R2
, (9)

should still be a good description of the Be2 dimer potential. In
Eq. (9), only three parameters (D,e,f ) are obtained from fit-
ting [through Eq. (8)]; all other parameters are predetermined.
The potential energy calculated from Eq. (9) is shown in Fig. 4
as a solid line. The exact ab initio data points are shown as
dots. The agreement is clearly seen.

Finally, we should mention that the Be2 ground-state
potential was also successfully modeled by Patkowski et al.
[35] with a modified TT potential which has eight free
parameters in addition to the three dispersion coefficients.

These parameters are determined by fitting them to their
calculated ab initio points. In contrast, our model has only
three free parameters. It also seems to us that the physics of
our model is more transparent, since every term in our model
is associated with some definite meaning.

IV. CONCLUSION

The determinations of the beryllium dimer potential are
a great success stories of modern quantum chemistry and
laser spectroscopy. In our attempt to understand the strange
shape of this potential, we find that the conventional van
der Waals interaction theory is still relevant to this case. By
decomposing the potential into its three major components,
we are able to show that the change of the slope in the
potential energy curve around 3.2 Å is the result of the interplay
between the sp hybridization and the correlation energy. It also
enables us to model the entire interaction by a classical van
der Waals potential plus a smooth short-range attraction. The
classical van der Waals potential, of which the physics is clear,
provides the proper long-range behavior of the system, which
is important for cold atom physics. The short-range attraction
of Eq. (8) mimics the sp hybridization effects, which make
the Be2 molecule unique. While all other alkaline-earth dimer
potentials can be described by the TT model [34], for Be2 it
is necessary to include this extra term [as in Eq. (9)] for the
description of its interaction potential.
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