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The lowest three tune-out wavelengths of the four alkaline-earth-metal atoms Be, Mg, Ca, and Sr are determined
from tabulations of matrix elements produced from large first-principles calculations. The tune-out wavelengths
are located near the wavelengths for the 3P o

1 and 1P o
1 excitations. The measurement of the tune-out wavelengths

could be used to establish a quantitative relationship between the oscillator strength of the transition leading to
existence of the tune-out wavelength and the dynamic polarizability of the atom at the tune-out frequency. The
longest tune-out wavelengths for Be, Mg, Ca, Sr, Ba, and Yb are 454.9813, 457.2372, 657.446, 689.200, 788.875,
and 553.00 nm, respectively.
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I. INTRODUCTION

The dynamic polarizability of an atom gives a measure
of the energy shift of the atom when it is exposed to an
electromagnetic field [1,2]. For an atom in any given state,
one can write

�E ≈ − 1
2αd (ω)F 2, (1)

where αd (ω) is the dipole polarizability of the quantum
state at frequency ω, and F is a measure of the strength
of the ac electromagnetic field. The limiting value of the
dynamic polarizability in the ω → 0 limit is the static dipole
polarizability.

The dynamic polarizability will go to zero for certain
frequencies of the applied electromagnetic field. The wave-
lengths at which the polarizability goes to zero are called the
tune-out wavelengths [3–7]. Atoms trapped in an optical lattice
can be released by changing the wavelength of the trapping
laser to that of the tune-out wavelength for that atom. Very
recently, tune-out wavelengths have been measured for the
rubidium [5] and the potassium atoms [6]. The advantage of
a tune-out wavelength measurement is that it is effectively
a null experiment; it measures the frequency at which the
polarizability is equal to zero. Therefore it does not rely on a
precise determination of the strength of an electric field or the
intensity of a laser field. Accordingly, it should be possible to
measure tune-out wavelengths to high precision and proposals
to measure the tune-out wavelengths of some atoms with one
or two valence electrons have been advanced [8].

The present paper describes calculations of the three longest
tune-out wavelengths for Be, Mg, Ca, and Sr. The tune-out
wavelengths for the alkaline-earth-metal atoms arise as a
result of the interference between the dynamic polarizability
coming from a weak transition and a large background
polarizability. The tune-out wavelengths typically occur close
to the excitation energy of the weak transitions. The atomic
parameters that determine the values of the longest tune-out
wavelengths are identified. The calculations utilize tables of
matrix elements from earlier calculations of polarizabilities
and dispersion coefficients [9–13]. These were computed using
a nonrelativistic semiempirical fixed core approach that has
been applied to the description of many one- and two-electron

atoms [14–17]. In addition, the longest tune-out wavelengths
for Ba and Yb are determined by making recourse to previously
determined polarizabilities and oscillator strengths.

II. FORMULATION

The transition arrays for the alkaline-earth-metal atoms
are essentially those used in previous calculations of the
polarizabilities and dispersion coefficients for these atoms
[9–13]. These were computed with a frozen core configuration
interaction (CI) method. The Hamiltonian for the two active
electrons is written

H =
2∑

i=1

(
−1

2
∇2

i + Vdir(ri) + Vexc(ri) + Vp1(ri)

)

+Vp2(r1,r2) + 1

r12
. (2)

The direct, Vdir, and exchange, Vexc, interactions of the
valence electrons with the Hartree-Fock (HF) core were
calculated exactly. The �-dependent polarization potential Vp1

was semiempirical in nature with the functional form

Vp1(r) = −
∑
�m

αcoreg
2
� (r)

2r4
|�m〉〈�m|. (3)

The coefficient αcore is the static dipole polarizability of
the core and g2

� (r) = 1 − exp
(−r6/ρ6

�

)
is a cutoff function

designed to make the polarization potential finite at the origin.
The cutoff parameters ρ� were initially tuned to reproduce the
binding energies of the corresponding alkaline-earth positive
ion, e.g., Mg+. Some small adjustments to the ρ� were made
in the calculations of alkaline-earth-metal atoms to further
improve agreement with the experimental spectrum.

A two body polarization term, Vp2, was also part of the
Hamiltonian [14,15,18,19]. The polarization of the core by one
electron is influenced by the presence of the second valence
electron. Omission of the two-body term would typically result
in a ns2 state that would be too tightly bound. The two body
polarization potential is adopted in the present calculation with
the form

Vp2(ri ,rj ) = −αcore

r3
i r3

j

(ri · rj )gp2(ri)gp2(rj ), (4)
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where gp2 had the same functional form as g�(r). The cutoff
parameter for gp2(r) is usually chosen by averaging the
different one-electron cutoff parameters.

The use of a fixed core model reduced the calculation of
the alkaline earths and their excited spectra to a two-electron
calculation. The two-electron wave functions were expanded
in a large basis of two-electron configurations formed from
a single electron basis mostly consisting of Laguerre-type
orbitals. Typically the total number of one-electron states
would range from 150 to 200. The use of such large basis
sets means that the error due to incompleteness of the basis is
typically very small.

Details of the calculations used to represent Be, Mg, Ca,
and Sr have been previously described [9–13]. We refer
to these semiempirical models of atomic structure as the
configuration interaction plus core polarization (CICP) model
in the subsequent text.

For Be, the matrix element list is exactly the same as
the matrix element list used in Ref. [9]. However, the
energies of the low-lying 2s2p 1,3P o states were set to the
experimental binding energies. In the case of the triplet state,
the energy chosen was that of the J = 1 spin-orbit state. Using
experimental energies is important for tune-out wavelength
calculations since the tune-out wavelength depends sensitively
on the precise values of the excitation energies of nearby
excited states. In the case of Mg and Ca, the reference matrix
elements were those used in dispersion coefficient calculations
[10–12]. The energies of the low-lying Mg and Ca excited
states were also set to experimental values for calculations of
the tune-out wavelengths.

The matrix element set for Sr incorporated experimental
information. An experimental value was used for the 5s2 1Se-
5s5p 1P o matrix element [20] and the energy differences for
the low-lying excitations were set to the experimental energies.
This matrix element set was used to calculate dispersion
coefficients between two strontium atoms, and also between
strontium and the rare gases [13].

A. Energies

The energy levels of ground state and some of the lowest
energy 1,3P o excited states for Be, Mg, Ca, and Sr are listed
in Table I. The polarization potential cutoff parameters were
chosen to reproduce the energy of the most tightly bound state
of each symmetry. The energy of the second lowest state does
not have to agree with the experimental energy. The reasonable
agreement with experimental energies for the second lowest
states is an indication that the underlying model Hamiltonian
is reliable.

B. Line strengths

Tables II and III give the line strengths for a number of the
low-lying transitions of the alkaline-earth metals comparing
with available experimental and theoretical information. The
line strength can be calculated as

Sij = |〈ψi ; LiJi | | rkCk(r̂) | | ψj ; LjJj 〉|2. (5)

TABLE I. Theoretical and experimental energy levels (in Hartree)
for some of the low-lying states of alkaline-earth metals. The energies
are given relative to the energy of the core. The experimental data
were taken from the National Institute of Science and Technology
(NIST) tabulation [21] and for triplet states are the energies of the
J = 1 state.

State Experiment CICP

Be
2s2 1Se

0 −1.0118505 −1.0118967
2s2p 1P o

1 −0.8179085 −0.8178898
2s3p 1P o

1 −0.7376168 −0.7376426
2s2p 3P o

1 −0.9117071 −0.9116666
2s3p 3P o

1 −0.7434484 −0.7433848
Mg

3s2 1Se
0 −0.8335299 −0.8335218

3s3p 1P o
1 −0.6738246 −0.6737887

3s4p 1P o
1 −0.6086897 −0.6086551

3s3p 3P o
1 −0.7338807 −0.7336286

3s4p 3P o
1 −0.6155347 −0.6156088

Ca
4s2 1Se

0 −0.6609319 −0.6609124
4s4p 1P o

1 −0.5531641 −0.5531844
4s5p 1P o

1 −0.4935704 −0.4934062
4s6p 1P o

1 −0.4710284 −0.4706060
4s4p 3P o

1 −0.5916298 −0.5913732
4s5p 3P o

1 −0.4943762 −0.4948801
3d4p 3P o

1 −0.4817070 −0.4815337
Sr

5s2 1Se
0 −0.6146377 −0.6146378

5s5p 1P o
1 −0.5157723 −0.5157723

5s6p 1P o
1 −0.4592740 −0.4591686

5s5p 3P o
1 −0.5485511 −0.5476478

5s6p 3P o
1 −0.4603223 −0.4600070

4d5p 3P o
1 −0.4446740 −0.4446176

The CICP values were computed with a modified transition
operator [14,19,22], e.g.,

r = r − [1 − exp(−r6/ρ6)]1/2 αdr
r3

. (6)

The cutoff parameter used in Eq. (6) was taken as an average
of the s, p, d, and f cutoff parameters. The specific values are
detailed elsewhere [9–13].

There appears to be no experimental or theoretical data
available for the strontium 5s2 1Se → 5s6p 3P o

1 transition [35].
The line strength adopted for this transition was determined
by estimating the mixing between the 5s6p 1P o

1 and 5s6p 3P o
1

states caused by the spin-orbit interaction. The transition
rates for the 5s6p 1P o

1 → 5s4d 1De
2 and 5s6p 3P o

1 → 5s4d 1De
2

have been measured [35,36]. The ratio of these transition
rates can be used to make an estimate of the singlet:triplet
mixing between the two 5s6p states with J = 1. Using the
singlet:triplet mixing ratio, and the CICP line strength for
the 5s2 1Se → 5s6p 1P o

1 transition, we estimate the 5s2 1Se →
5s6p 3P o

1 line strength to be 0.012.
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TABLE II. Comparison of line strengths for the principal transitions of Be and Mg. The CIDF values are produced using the given oscillator
strength and transition energies. The multiconfiguration Hartree-Fock (MCHF) and many-body perturbation theory (MBPT) values are derived
from the published reduced matrix elements. Numbers in brackets represent the uncertainties in the last digits. The notation a[b] means a × 10b.

Final state �E (a.u.) CICP MCHF CIDF [23] MBPT Experiment

Be
2s2p 1P o

1 0.193942 10.63 10.64 [24] 10.338 10.63 [25] 10.37(39) [26]; 10.36(23) [27]
2s3p 1P o

1 0.274199 0.0474 0.04911 [24]
2s2p 3P o

1 0.100143 5.947[−8] [24] 6.049[−8]
2s3p 3P o

1 0.268402 3.182[−9] [24]

Mg
3s3p 1P o

1 0.159705 16.26 16.05 [28] 16.51 16.24 [25] 17.56(94) [29]; 17.22(84) [30]; 16.48(81) [31]
3s4p 1P o

1 0.224840 0.7062 0.7541 [28]
3s3p 3P o

1 0.099649 3.492[−5] [28] 2.806[−5] 4.096[−5] [32] 2.78(44)[−5] [33]; 3.10(42)[−5] [31]
3s4p 3P o

1 0.217995 4.238[−7] [34]

III. POLARIZABILITIES

A. Static polarizabilities

The polarizabilities for the ground states of Be, Mg,
Ca, and Sr are listed in Table IV. All polarizabilities are
computed using experimental energy differences for the lowest
energy excited states. The present polarizabilities are in good
agreement with the previous high quality calculations.

These polarizabilities contain contributions from the core
electrons. The electric dipole response of the core is de-
scribed by a pseudo-oscillator strength distribution [15,64,65].

Oscillator strength distributions have been constructed by
using independent estimates of the core polarizabilities to
constrain the sum rules [15,66–68]. These take the form

αcore =
∑

i

fi

ε2
i

, (7)

where fi is the pseudo-oscillator strength for a given core
orbital and εi is the excitation energy for that orbital. The
sum of the pseudo-oscillator strengths is equal to the number
of electrons in the atom. The pseudo-oscillator strength
distributions are tabulated in Table V.

TABLE III. Comparison of line strengths for the principal transitions of Ca, Sr, Ba, and Yb. The CIDF line strengths are produced using the
given oscillator strength and transition energies. The MCHF and CI + MBPT values are determined from published reduced matrix elements.
Numbers in brackets represent the uncertainties in the last digits. The notation a[b] means a × 10b.

Final state �E (a.u.) CICP MCHF CIDF [37] MBPT Experiment

Ca
4s4p 1P o

1 0.107768 24.37 24.51 [38] 24.31 [25] 24.67(90) [39]; 24.9(4) [40]
24.12(1) [41]; 24.3(1.1) [42]

4s5p 1P o
1 0.167362 0.00666 0.0529 [38]

4s4p 3P o
1 0.069302 0.0011022 [38] 0.001156 [32] 0.00127(3) [43]; 0.00124(7) [44]; 0.00127(11) [45]

4s5p 3P o
1 0.166556 1.2423[−4] [38]

Sr
5s5p 1P o

1 0.098865 28.07 32.18 [46] 28.8 28.0 [25] 27.54(2) [20]; 27.77(16) [47];
27.12 [48] 31.0(7) [40]; 29.2(9) [49]

5s6p 1P o
1 0.155364 0.0712 0.0492 [46] 0.0790 [48] 0.068(10) [49]

5s5p 3P o
1 0.066087 0.01718 0.0256 [32] 0.02280(54) [20]; 0.02206(51) [50]

0.0250 [48] 0.02418(50) [51]; 0.0213(58) [49]
5s6p 3P o

1 0.154315 0.012a

Ba
6s6p 1P o

1 0.082289 31.8 30.47 [25] 29.91(25) [52]
29.92 [53]

6s6p 3P o
1 0.066087 0.309 0.2746 [53] 0.259(13) [54]

Yb
6s6p 1P o

1 0.098865 16.9 22.85 [55] 17.30 [56]; 17.206(17) [57]
19.4(7.0) [58]

6s6p 3P o
1 0.066087 0.324 0.325 [55] 0.335 [59]

0.29(8) [58]

aThe experimental 5s6p 1P o
1 line strength [49] was multiplied by 0.179 to allow for mixing with the 5s6p 3P o

1 configuration.
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TABLE IV. Static dipole polarizabilities for the alkaline-earth-
metal atom ground states. All values are in atomic units. Hybrid
values were computed by replacing the line strength for the resonance
transition with the best available experimental value.

Be Mg Ca Sr

Present: CICP 37.73 71.39 159.4 197.8a

Theory: RCCSD [60] 158.00 198.85
Experiment [61] 169(17) 186(15)
CI + MBPT [62] 37.76 71.33 159.0 202.0
CI + MBPT-SD [48] 198.9
Hybrid: Sum rule [62] 157.1(1.3)b 197.2(2)a

aAn experimental value [20] was used for the 5s2 1Se-5s5p 1P o matrix
element.
bAn experimental value [63] was used for the 4s2 1Se-4s4p 1P o matrix
element.

The relative uncertainties in the polarizabilities are assessed
at 0.1% for Be, 0.5% for Mg, 1.5% for Ca, and 1% for Sr.

B. Dynamic polarizabilities and feasibility analysis

The tune-out wavelengths first require calculations of
the dynamic polarizabilities. Some nonrelativistic forbidden
transitions to the nsnp 3P o

1 states are included in the present
calculation. The line strengths of these transitions are collected
from MCHF calculations [24,28,34,38] and the all-order
MBPT calculations [48]. These line strengths are listed in
Tables VI and VII.

The dynamic polarizabilities are dominated by the
ns2 1Se→ nsnp 1P o

1 resonant transition. Figures 1 and 2
show the dynamic polarizabilities of neutral calcium near the
tune-out wavelengths and are typical of all the alkaline-earth-
metal atoms. The tune-out wavelengths all occur close to the
excitation energies for transitions to 1P o

1 or 3P o
1 states. The first

tune-out wavelength is associated with the ns2 1Se → nsnp 3P o
1

intercombination transition. The dynamic polarizability for
this transition becomes large and negative just after the
photon energy becomes large enough to excite the nsnp 3P o

1
state. This large negative polarizability will cancel with the

TABLE V. Pseudospectral oscillator strength distributions for the
Be2+, Mg2+, Ca2+, and Sr2+ cores. Energies are given in a.u. Refer
to the text for interpretation.

i εi fi εi fi

Be2+ Mg2+

1 10.473672 1.0 50.576100 2.0
2 4.813272 1.0 5.312100 2.0
3 3.826606 6.0

Ca2+ Sr2+

1 149.495476 2.0 583.696195 2.0
2 16.954485 2.0 80.400045 2.0
3 13.761013 6.0 73.004921 6.0
4 2.377123 2.0 13.484060 2.0
5 1.472453 6.0 10.708942 6.0
6 5.703458 10.0
7 1.906325 2.0
8 1.107643 6.0

positive polarizability from the remaining states at the tune-out
wavelength. The dynamic polarizability also has a sign change
when the photon energy exceeds the excitation energy for
the nsnp 1P o

1 state. This change in the polarizability is not
associated with a tune-out wavelength. At energies larger
than the ns2 1Se → nsnp 1P o

1 resonant transition energy the
polarizability is negative. Additional tune-out wavelengths
occur just prior to the excitation energies of the higher
ns2 1Se → 1,3P o

1 transitions.
As can be seen from Figs. 1 and 2, the tune-out wavelengths

for the alkaline-earth-metal atoms arise as a result of the
interference between the dynamic polarizability arising from
a weak transition and a large background polarizability. In the
vicinity of the tune-out wavelength the variation of background
polarizability with energy will be much slower than the
variation of the tune-out transition. The polarizability near
the tune-out wavelength can be modeled as

α = α0 + f

�E2 − ω2
, (8)

where α0 is the background polarizability arising from all
transitions except the transition near the tune-out wavelength.
The background polarizability is evaluated at the tune-out
wavelength ωto. Setting α = 0 gives

ωto =
√

�E2 + f

α0
. (9)

When f/α0 � �E is obeyed, and this will generally be the
case for the transitions discussed here, one can write

ωto ≈ �E

(
1 + f

2α0�E2

)
. (10)

Equation (10) can be used to make an estimate of the tune-out
wavelength. When the background polarizability is negative,
the tune-out frequency is lower than the excitation energy of
the transition triggering the tune-out condition. The quotient
f/(2α0�E2) provides an estimate of the relative difference
between the transition frequency and tune-out frequency in
the vicinity of a transition.

Equation (10) can also be used for an uncertainty analysis.
Setting Xshift = f/(2α0�E2), one has

δXshift

Xshift
= δf

f
+ δα0

α0
. (11)

The contribution to the uncertainty in Xshift due to the
uncertainty in the transition energy does not have to be
considered at the present level of accuracy.

Neglecting the frequency dependence of α0, the variation
in α with respect to variations in ω2 is

dα

dω2
= −f

(�E2 − ω2)2
. (12)

Writing ω2 = ω2
to − δ(ω2) = �E2 + f

α0
− δ(ω2) in the vicin-

ity of ωto gives

dα

dω2
= −f(

f

α0
− δ(ω2)

)2 . (13)
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TABLE VI. Breakdown of contributions to the static polarizability and the dynamic polarizabilities at the three longest tune-out wavelengths
λto for beryllium and magnesium. The remainder term comes from all the valence transitions other than those specifically listed in the table.
The uncertainty in the tune-out wavelength is given by δλto. The oscillator strengths of the transition predominantly canceling the polarizability
due to the resonant transition are given in the row labeled f . The notation a[b] means a × 10b.

Be
λto (nm) ∞ 454.9813 169.7578 166.422
ωto (a.u.) 0 0.10014335 0.26840210 0.2737827
f 3.970[ −9] 5.694[ −10] 8.674[ −3]
δλto (nm) 3.2[ −8] 8.2[ −10] 0.012
2s2p 1P o

1 36.526 49.806 −39.908 −36.790
2s3p 1P o

1 0.115 0.133 2.741 35.093
2s2p 3P o

1 0.396[ −6] −51.070 −0.640[ −7] −0.614[ −7]
2s3p 3P o

1 0.790[ −8] 0.918[ −8] 35.518 −0.195[ −6]
Remainder 1.034 1.079 1.597 1.649
αcore 0.0523 0.0523 0.0524 0.0524
Total 37.728 0 0 0

Mg
λto (nm) ∞ 457.2372 209.0108 205.768
ωto (a.u.) 0 0.09964927 0.21799519 0.2214311
f 2.320[ −6] 6.159[ −8] 0.1056
δλto (nm) 0.0002 2.57[ −7] 0.238
3s3p 1P o

1 67.878 111.151 −78.637 −73.590
3s4p 1P o

1 2.094 2.606 34.922 69.578
3s3p 3P o

1 0.234[ −3] −115.325 −0.617[ −4] −0.593[ −4]
3s4p 3P o

1 0.130[ −5] 0.164[ −5] 40.017 −0.408[ −4]
Remainder 0.939 1.086 3.215 3.529
αcore 0.481 0.482 0.483 0.483
Total 71.392 0 0.0 0

At ω = ωto, δ(ω2) = 0, and one has

dα

dω2
= −α2

0

f
, (14)

or

dα

dω
= −2ω0α

2
0

f
≈ −2�Eα2

0

f
. (15)

The variation of the polarizability with ω is inversely propor-
tional to the oscillator strength of the tune-out transition. Let
us suppose that the condition for determination of the tune-out
wavelength is that the polarizability be set to zero with an
uncertainty of ±0.1 a.u. This means the photon energy should
be determined with a frequency uncertainty of

�ω = 0.1f

2�Eα2
0

. (16)

For Be and Mg, �ω would be 7.6 × 10−13 a.u. and 8.8 ×
10−11 a.u., respectively. These energy widths are very narrow
and difficult to achieve with existing technology. The energy
windows for calcium and strontium would be �ω = 5.2 ×
10−10 a.u. and �ω = 6.9 × 10−9 a.u., respectively.

C. Tune-out wavelengths for Be, Mg, Ca, and Sr

Tables VI and VII list the three longest tune-out wave-
lengths for beryllium, magnesium, calcium, and strontium.
These are determined by explicit calculation of the dynamic
polarizability at a series of ω values. The contributions of

the various terms making up the dynamic polarizability at
the tune-out wavelengths are given. The longest tune-out
wavelength for all the atoms is dominated by two transitions,
namely, the resonance transition and the longest wavelength
intercombination transition. The size of the polarizability
contributions from all other transitions relative to that coming
from the resonant transitions are 2.5%, 3.7%, 3.6%, and 3.7%
for Be, Mg, Ca, and Sr, respectively, at the longest tune-out
wavelength. This dominant influence of resonant transitions
means that a measurement of these tune-out wavelengths will
result in a quantitative relationship between the dynamic po-
larizability and the oscillator strength for the lowest energy in-
tercombination transition. For example, tune-out wavelengths
would make it possible to determine the intercombination
oscillator strength given a value for the polarizability and/or
the oscillator strength for the resonance transition.

The differences between the tune-out energy and the nearest
excitation energy can be estimated from Eq. (9). Values of Xshift

for the lowest energy tune-out frequencies for Be → Sr are
Xshift = 3.9 × 10−9, 1.0 × 10−6, 2.0 × 10−5, and 3.6 × 10−4,
respectively. These ratios give an initial estimate of the relative
precision needed in the wavelength to resolve the tune-out
condition. Measurement of the longest tune-out wavelength
for beryllium requires a laser with a very precise wavelength.
The level of precision required actually exceeds the precision
with which the Be 2s2 1Se

0 → 2s2p 3P o
1 energy is given in the

NIST tabulation [21]. On the other hand, measurement of the
Sr tune-out wavelength is much more feasible.
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TABLE VII. Breakdown of contributions to the static polarizability and dynamic polarizabilities at the three longest tune-out wavelengths
for calcium and strontium. The remainder term comes from all the valence transitions other than those specifically listed in the table. The
uncertainty in the tune-out wavelength is given by δλto. The oscillator strengths of the transition predominantly canceling the polarizability due
to the resonant transition are given in the row labeled f . The notation a[b] means a × 10b.

Ca
λto (nm) ∞ 657.446 273.563 272.287
ωto (a.u.) 0 0.0693035 0.1665552 0.1673360
f 5.092[ −5] 1.379[ −5] 7.431[ −4]
δλto (nm) 0.003 0.005 0.282
4s4p 1P o

1 150.734 257.030 −108.554 −106.827
4s5p 1P o

1 0.027 0.032 2.760 86.758
4s6p 1P o

1 1.097 1.267 4.757 4.911
4s4p 3P o

1 0.011 −266.414 −0.0022 −0.0022
4s5p 3P o

1 0.497[ −3] 0.601[ −3] 86.039 −0.053
Remainder 4.422 4.919 11.803 12.015
αcore 3.160 3.166 3.197 3.198
Total 159.452 0 0 0

Sr
λto (nm) ∞ 689.200 295.348 293.670
ωto (a.u.) 0 0.0661105 0.1542699 0.1551514
f 1.101[ −3] 1.235[ −3] 7.371[ −3]
δλto (nm) 0.042 0.011 0.049
5s5p 1P o

1 185.788 336.054 −129.482 −127.012
5s6p 1P o

1 0.305 0.373 21.763 111.764
4d5p 1P o

1 0.734 0.848 2.777 2.869
5s5p 3P o

1 0.252 −348.600 −0.057 −0.056
5s6p 3P o

1 0.052 0.064 87.972 −4.772
Remainder 4.901 5.430 11.113 11.292
αcore 5.813 5.831 5.914 5.915
Total 197.845 0 0 0

Equation (11) which is used to estimate the uncertainties
in Xshift, can also be used to determine the uncertainties
in the tune-out wavelengths. Uncertainties in the tune-out
wavelengths are given in Tables VI–VIII.

Tables VI and VII also list the tune-out wavelengths near
the ns(n + 1) 1,3P o

1 excitations. These tune-out wavelengths
are more sensitive to polarizability contributions from higher
transitions. For example, about 25% of the positive polariz-
ability contributions for the tune-out wavelength associated
with the 4s5p 3P o

1 excitation come from states other than the
4s2 1Se → 4s5p 3P o

1 transition. These tune-out wavelengths
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FIG. 1. (Color online) The dynamic polarizability of the neutral
calcium atom in the vicinity of the longest tune-out wavelength.

are in the ultraviolet part of the spectrum and would be more
difficult to detect in an experiment.

D. Heavier systems, Ba and Yb

There are two other atoms, namely, Ba and Yb with similar
structures to those discussed earlier. The present calculational
methodology cannot be applied to the determination of the
tune-out wavelengths for these atoms due to relativistic effects.
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FIG. 2. (Color online) The dynamic polarizability of the neutral
calcium atom in the vicinity of the second and third longest tune-out
wavelengths.
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TABLE VIII. Tune-out frequencies ωto and wavelengths λto for
the longest tune-out wavelengths of barium and ytterbium. The
uncertainty in the tune-out wavelength is given by δλto. The oscillator
strengths and dipole polarizabilities adopted in the calculation are
collected from [53,62] for barium and [55] for ytterbium. The
contribution to the polarizability at the tune-out frequency due to
the resonance transition is given. The transition energies for barium
and model 2 for ytterbium are taken from the NIST tabulation [21].
Model 2 for ytterbium has two low-lying strong transitions and data
for both are given. The dynamic polarizability of −428.162 a.u. for
model 2 for Yb was computed with only the 6s2 1Se

0 → 6s6p 1P o
1

transition. The second value of αrest allows for the change in the
polarizability (due to the 6s6p 3P o

1 transition) at the wavelength of
357.78 nm.

Property Value

Ba
Sresonant 29.92
fresonant 1.641
αd (a.u.) 273.5
αrest (a.u.) 27.92
fresonant/(�E2

resonant − ω2
to) (a.u.) 477.772

�E(6s2 1Se
0 → 6s6p 3P o

1 ) (a.u.) 0.05757669
f (6s2 1Se

0 → 6s6p 3P o
1 ) 0.0105

ωto (a.u.) 0.0577574
λto (nm) 788.875
δλto (nm) 0.295

Yb: Model 1
Sresonant (a.u.) 22.85
fresonant 1.802
αd (a.u.) 141
αrest (a.u.) 9.614
fresonant/(�E2

resonant − ω2
to) (a.u.) 249.973

�E(6s2 1Se
0 → 6s6p 3P o

1 ) (a.u.) 0.08197762
f (6s2 1Se

0 → 6s6p 3P o
1 ) 0.0178

ωto (a.u.) 0.0823938
λto (nm) 553.00

Yb: Model 2
Sresonant (a.u.) 17.25, 5.543
fresonant 1.314, 0.4851
αd (a.u.) 141
αrest (a.u.) 9.614, 7.726∑

i fi,resonant/(�E2
i,resonant − ω2

to) (a.u.) 256.064, −426.162
�E(6s2 1Se

0 → 6s6p 3P o
1 ) (a.u.) 0.08197762

�E(6s2 1Se
0 → 4f −16s25d 1P o

1 ) (a.u.) 0.13148223
f (6s2 1Se

0 → 6s6p 3P o
1 ) 0.0178

ωto,1 (a.u.) 0.0823844
λto,1 (nm) 553.06
ωto,2 (a.u.) 0.126997
λto,2 (nm) 358.78

However, Eq. (9) can be used to make an initial estimate of
their longest tune-out wavelengths.

The background polarizability α0 is dominated by the
ns2 1Se

0 → nsnp 1P o
1 resonant transition which contributes

more than 96%. The contribution to α0 from all other
transitions, defined as αrest, is much smaller and changes slowly
when the frequency changes in the vicinity of the tune-out
frequency.

Assuming αrest has the same value at ω = 0 and ωto, the
value of αrest can be calculated as

αrest = αd − fresonant

�E2
resonant

− f

�E2
, (17)

where αd is the static polarizability of the ground states,
fresonant and �Eresonant, and f and �E are the oscillator
strengths and transition energies of the resonant transition and
the transition near the tune-out wavelength, respectively. Then
the background polarizability α0 can be represented as

α0 = fresonant

�E2
resonant − ω2

+ αrest. (18)

With this background polarizability, one can approximately
predict the tune-out wavelength using Eq. (9).

The differences between the predicted longest tune-out
wavelengths in this way and the values obtained using the
exact background polarizability are only 2 × 10−9, 3 × 10−6,
3 × 10−5, and 2 × 10−3 nm for Be → Sr which are much
smaller than the uncertainties of the tune-out wavelengths.

All the information adopted in the calculations for barium
and ytterbium are listed in Table VIII. The predicted longest
tune-out wavelength for barium was λto = 788.875 nm. The
energy window was �ω = 3.6 × 10−8 a.u. and Xshift was
0.003 14. The uncertainty of the longest tune-out wavelengths
for barium was δλto = 0.295 nm. The larger uncertainty in this
tune-out wavelength was caused by the larger value of Xshift.

Additional complications are present for ytterbium. The
values for model 1 reported in Table VIII did not explicitly
include the nearby 4f −16s25d 1P o

1 state in the polarizability
calculation. This spectrum exhibits considerable mixing be-
tween the resonance 6s6p 1P o

1 state and the 4f −16s25d 1P o
1

core excited state [69]. This mixing is caused by the small
difference in the binding energies for the two states. This is
the reason for the large difference between the CI + MBPT
and experimental values for the resonant line strength in
Table III. It has been argued that in cases such as this that
one should use theoretical energy differences in polarizability
calculations [55,69]. So for our initial calculation of the
tune-out frequency we use the CI + MBPT excitation energy
for the resonant transition and the experimental excitation
energy for the 6s6p 3P o

1 . This model, which is detailed in
Table VIII, predicts the longest tune-out wavelengths to be
λto = 553.00 nm. The energy window �ω = 1.6 × 10−7 a.u.,
while Xshift = 0.005 09.

Another model has been made that explicitly includes the
4f −16s25d 1P o

1 state in the polarizability calculation. In this
model the line strength and excitation energy for the resonant
excitation are set to experimental values. The line strength
17.25(7) was taken as the average of the two photoassociation
line strengths [56,57] and its uncertainty was derived from
the difference of the two values and the quoted uncertainty
of Ref. [57]. The excitation energy for the 4f −16s25d 1P o

1
state is set to experiment. The line strength for the 6s2 1Se

0 →
4f −16s25d 1P o

1 transition was tuned by the requirement that
the two states of model 2 have the same polarizability as the
resonant excitation for model 1. A summary of the important
parameters of the model 2 analysis is detailed in Table VIII.
This model gives a tune-out wavelength of λto = 553.06 nm.
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The energy window �ω = 1.53 × 10−7 a.u., while Xshift =
0.004 97.

Model 2 also allows for the existence of an additional tune-
out wavelength located between the excitation frequencies
of the 6s6p 1P o

1 and 4f −16s25d 1P o
1 states. This tune-out

wavelength will be sensitive to the ratio of the respective
line strengths and model 2 predicts λto = 358.78 nm with
Xshift = −0.0332. For this calculation αrest was set to 7.726 a.u.
by allowing for the frequency variation of the polarizability
contribution from the 6s2 1Se

0 → 6s6p 3P o
1 oscillator strength.

The complications of the structure of Yb are so severe
that only indicative estimates of the uncertainty are possible.
For the longest tune-out frequency, we set δf , the uncertainty
in the 6s2 1Se

0 → 6s6p 3P o
1 oscillator strength to 1.5%. The

relative uncertainty in the polarizability due to other transitions
at the tune-out frequency was initially set to 0.018 [55]. To
this was added an additional uncertainty of 0.024 = 6/250,
the difference between the model 1 and 2 predictions of the
polarizability at the tune-out frequency. The final uncertainty in
the tune-out wavelength of the longest transition was 0.550 nm.

There is little experimental information to assist in the
assessment of the uncertainty of the tune-out wavelength
near 358.78 nm. The tune-out wavelength lies between
the 6s2 1Se

0 → 6s6p 1P o
1 and 6s2 1Se

0 → 4f −16s25d 1P o
1

transitions and its value would be largely determined by
the ratio of the oscillator strengths to those transitions. The
uncertainty was determined by an analysis that permitted 1.8%
variations in the polarizability for the two resonant transitions
while simultaneously admitting a 0.1/17.25 = 0.0058
variation in the 6s2 1Se

0 → 6s6p 1P o
1 oscillator strength. The

uncertainty in λto,2 was 0.23 nm. This uncertainty should
be interpreted with caution since the value of the tune-out
wavelength is very sensitive to the line strength adopted for
the 6s2 1Se

0 → 4f −16s25d 1P o
1 transition and this is estimated

by an indirect method.

IV. CONCLUSION

The three longest tune-out wavelengths for the alkaline-
earth-metal atoms from Be to Sr have been estimated from

large scale configuration interaction calculations. The longest
tune-out wavelengths for Ba and Yb have been estimated by
using existing estimates of the polarizability and oscillator
strengths. The longest tune-out wavelengths all occur at
energies just above the nsnp 3P o

1 excitation threshold and arise
due to negative polarizability from the ns2 1Se

0 → nsnp 3P o
1

inter-combination line canceling with the rest of the polar-
izability. The rest of the polarizability is dominated by con-
tributions from the ns2 1Se

0 → nsnp 1P o
1 resonant transition,

with about 96%–97% of the polarizability arising from this
transition. A high precision measurement of the longest tune-
out wavelengths is effectively a measure relating the oscillator
strength of the ns2 1Se

0 → nsnp 3P o
1 inter-combination line to

the polarizability of the alkaline-earth-metal atoms. The very
small oscillator strengths of the Be and Mg intercombination
lines might make a measurement of the tune-out wavelengths
for these atoms difficult. The viability of a tune-out wavelength
measurement is greater for the heavier calcium and strontium
atoms with their stronger intercombination lines. The longest
wavelengths are all in the visible region.

The second longest tune-out wavelength for all alkaline
atoms occurs just before the excitation threshold of the
ns2 1Se

0 → ns(n+1)p 3P o
1 transition. Experimental detection

of the second longest tune-out wavelength is more difficult
since the oscillator strengths of the ns2 1Se

0 → ns(n+1)p 3P o
1

transitions are smaller and the transition is in the ultraviolet.
The third longest tune-out wavelengths are typically triggered
by the ns2 1Se

0 → ns(n + 1)p 1P o
1 transition. The oscillator

strengths for the transition are about 0.1%–5% the size of
the resonant oscillator strength. The potential for detection of
a zero in the dynamic polarizability is larger, but once again
the transition lies in the ultraviolet region.
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