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Magneto-optical spectroscopy with polarization-modulated light
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We present a combined theoretical and experimental study of magnetic resonance transitions induced by
polarization-modulated light in cesium vapor exposed to a transverse magnetic field. Signals are obtained by
phase-sensitive analysis of the light power traversing the vapor cell at six harmonics of the polarization modulation
frequency. Resonances appear whenever the Larmor frequency matches an integer multiple of the modulation
frequency. We have further investigated the modifications of the spectra when varying the modulation duty cycle.
The resonance amplitudes of both in-phase and quadrature components are well described in terms of the Fourier
coefficients of the modulation function. The background-free signals generated by the polarization modulation
scheme have a high application potential in atomic magnetometry.
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I. INTRODUCTION

Magneto-optical spectroscopy of atomic media is a pow-
erful tool that uses resonant optical interactions for detecting
magnetic resonance in atoms (a comprehensive review is given
by Alexandrov et al. [1]). Magnetic resonance transitions
are conventionally excited by a magnetic field oscillating
at the atoms’ Larmor frequency, but it has been known
since the seminal work by Bell and Bloom in 1961 [2]
that an amplitude-modulated (AM) resonant light beam can
also induce magnetic resonance transitions. More recently,
the Bell-Bloom method, in combination with phase-sensitive
detection, has found renewed interest [3,4], in particular for
its application in high-sensitivity atomic magnetometry [5].
Alternatively, modulation of either the light’s frequency or
polarization at the Larmor frequency induces magnetic reso-
nance. While frequency-modulation spectroscopy has become
a well-established method for high-sensitivity magnetometry
[6,7], little work has been devoted to polarization modulation
[8–11]. Recently, resonant polarization modulation has been
used to solve specific technical issues. The authors of Ref. [12]
have demonstrated that polarization modulation between cir-
cular and linear polarization states eliminates both dead zones
and heading errors in an alkali-metal-atom magnetometer.
Polarization modulation between circular polarization states
at the ground-state hyperfine transition frequency was shown
to increase the contrast of the clock resonance as described in
Ref. [13], and references therein.

A theoretical model deriving algebraic expressions for the
rich resonance structure of magnetic resonance transitions
driven by amplitude, frequency, and polarization modulation
has recently been presented [14]. So far the model predictions
were shown to give an excellent description of experimental
results obtained with amplitude modulation using phase-
sensitive detection [14] and for polarization modulation with
low-pass-filtered detection [11]. Here, we address polarization
modulation in combination with phase-sensitive detection.
We characterize, both experimentally and theoretically, the
magneto-optical resonance spectra observed in a transverse
magnetic field, when the helicity of the exciting laser beam
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is periodically reversed with different duty cycles. We first
introduce our experimental and theoretical methods and then
discuss the full magneto-optical resonance spectra as a func-
tion of the modulation duty cycle. We show that resonances
appear when the Larmor frequency is a harmonic of the mod-
ulation frequency and that the relative resonance amplitudes
are well described in terms of the Fourier coefficients of the
polarization modulation function.

II. METHOD

Experiments are carried out in a conventional magneto-
optical spectroscopy apparatus [11,15]. Light from a 894-nm
distributed feedback diode laser passes an electro-optical
modulator, which flips the light polarization between σ+ and
σ− polarizations at a constant frequency ωmod = 2π × 267 Hz.
The degrees of circular polarization were determined to be
99.7% and 99.8%, for σ+ and σ−, respectively. The laser
frequency can be tuned to any hyperfine component of the
cesium D1 line (6S1/2 → 6P1/2); however, the experiments
reported here were carried out on the Fg = 4 → Fe = 3
transition, which provides the highest magneto-optical reso-
nance contrast [16]. The modulated beam passes an evacuated
paraffin-wall-coated spherical cell containing cesium vapor at
room temperature (20 ◦C) saturated vapor pressure. The laser
beam diameter is about 10 times smaller than the cell diameter
(d = 30 mm) so that lensing or birefringence effects from
the cell itself do not critically affect the polarization quality.
This is testable in that linear polarization components will
create resonances at half of the Larmor frequency due to the
symmetry and evolution of any created spin alignment. We did
not see resonances in the experimental spectra arising from
spin alignment. The final excellent agreement between model
and experimental results (cf. Sec. III) strongly implies that the
cell has negligible effect on the light polarization.

The cell is isolated in a magnetically controlled environ-
ment [15], with nominal residual field components below
a few nT. The amplitude of a static magnetic field applied
orthogonally to the laser propagation direction, and hence the
Larmor frequency ωL, is scanned in the range ±4 ωmod. The
experimental signal is formed by detecting the light power
P (t) transmitted through the cell: The photocurrent signal is
converted into voltage, amplified, and then demodulated via a
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lock-in amplifier, which allows the simultaneous recording of
the in-phase and quadrature signals at six harmonics q ωmod of
the modulation frequency.

A. Model

For signal interpretation we apply the model developed in
Ref. [14] for a spin-oriented atomic sample under periodically
modulated excitation and detection. The key results of that
model are summarized here. The power transmitted through
the cell is given by the Lambert-Beer law, which, for an
optically thin atomic vapor of length L, is well approxi-
mated by P = P0 − P0 κL, where κ is the optical absorption
coefficient and L is the sample length. For a laser beam
resonant with a Fg → Fe hyperfine transition, incident on
atoms with a longitudinal spin orientation Sz, the absorption
coefficient becomes κ = κ0(1 − α ξ Sz). Here, κ0 is the peak
absorption coefficient of unpolarized atoms, ξ is the light
helicity, and α ≡ αFg,Fe

is the orientation analyzing power.
Dropping time-independent terms, the transmitted laser power
is given by

P (t) = (ακ0LP0) Sz(t)ξ (t), (1)

where Sz(t) is the time-dependent longitudinal spin orientation
resulting from the time-dependent solutions of the Bloch
equations under polarization modulation. A square-wave
modulation function ξ (t) is chosen to make a fast switch
between the two circular polarization states without spending
significant time in linearly polarized intermediate states. We
allow for modulation with arbitrary duty cycle (0 < η < 1)
chosen to be symmetric with respect to t = 0 and constrained
to have |ξ (t)| = 1, whose Fourier expansion is given by

ξ (t) =
+∞∑

j=−∞
gj (η) cos (jωt), (2)

g0(η) = 2η − 1 and gj �=0(η) = 2

π

sin (πjη)

j
. (3)

In-phase Iq and quadrature Qq parts of P (t) extracted by
demodulation at q ωmod can be written as

Iq(η) =
∞∑

m=−∞
aq,m(η)Am, Qq(η) =

∞∑

m=−∞
dq,m(η)Dm, (4)

where Am and Dm are, respectively, absorptive and dispersive
Lorentzian resonances given by

Am = γ 2

(m ωmod − ωL)2 + γ 2
, (5)

Dm = γ (m ωmod − ωL)

(m ωmod − ωL)2 + γ 2
, (6)

with amplitudes

aq,m(η) =
√

2ακ0L
P 2

0

Ps

gm(η)[gq−m(η) + gq+m(η)], (7)

dq,m(η) =
√

2ακ0L
P 2

0

Ps

gm(η)[gq−m(η) − gq+m(η)], (8)

where Ps is the optical pumping saturation power. We note that
the model was developed for the low power limit (aq,m,dq,m ∝
P 2

0 ), and that the experiments were carried out in that range.

III. ANALYSIS OF THE RESONANCE SPECTRUM

We have studied the demodulated signals as a function of
the detection harmonic q and modulation duty cycle η. Since
in the Fourier expansion of a symmetric η = 0.5 square wave
the even coefficients vanish, one sees from Eqs. (7) and (8)
that lock-in resonances appear only at odd m and even q. To
compare experimental and theoretical results we normalize
the in-phase and quadrature signals to the highest amplitude
absorptive and dispersive signals, respectively, found when
m = 1, q = 2, and η = 0.5. No other scaling factors are
needed. The normalized model signals thus read

Iq(η)

a2,1
=

∞∑

m=−∞

aq,m

a2,1
Am, (9)

and
Qq(η)

d2,1
=

∞∑

m=−∞

dq,m

d2,1
Dm. (10)

Theory also predicts d2,1/a2,1 = 1/2.
Experimental amplitudes are obtained by fitting the

recorded data with the absorptive and dispersive Lorentzians
of Eqs. (5) and (6), yielding fit amplitudes that represent
the model amplitudes (7) and (8), respectively. We then
normalize all fitted in-phase (quadrature) amplitudes to
the in-phase (quadrature) amplitude of the (m = 1, q = 2,
η = 0.5) resonance. The experimental d2,1/a2,1 ratio was
found to be 0.492(1), in accordance with the theory prediction.
In this way, we eliminate all secondary experimental param-
eters affecting the signal, e.g., detector quantum efficiency,
current-voltage converter gains, etc. The normalization of
the model predictions, of course, removes unknown theory
parameters (e.g., Ps , αFg,Fe

, κ0, etc).
In Figs. 1 and 2 we compare experimental and theoretical

spectra for different values of q when η = 0.50 and η =
0.10. No scaling has been applied beyond the normalization
procedure above.

As predicted, resonances are observed when the Larmor
frequency is a multiple of the modulation frequency, i.e.,
ωL = mωmod. An important point to note is that in contrast
to experiments with frequency- or amplitude-modulated light,
polarization modulation yields background-free in-phase and
quadrature signals. The amplitude of the zero-field level-
crossing (Hanle) resonance is proportional to g0, Eq. (3), and
thus vanishes for 50% duty cycle.

Figure 1 presents the signals obtained for η = 0.50, where
one can see the largest signals at m = 1 and q = 2 (the
absorptive and dispersive reference resonances for normal-
ization). This resonance is the most interesting for atomic
magnetometry, and work is ongoing to fully characterize the
signal and study the final sensitivity limit of the method. The
η = 0.5 duty cycle pumping, i.e., excitation with a symmetric
square wave, essentially corresponds to the so-called push-pull
optical pumping [17], whose effect is the synchronization of
the pumping light’s polarization modulation with the harmonic
evolution of the atomic quantum state in the external field.
Notable in the η = 0.5 case is that all q = odd resonances are
predicted to be zero by the model (as discussed at the start of
the section), and the data (only one trace for q = 1 is plotted in
the figure) show no signal at the detection limit in those cases.
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FIG. 1. (Color online) Magnetic field dependence at 50% duty
cycle (η = 0.50) of normalized in-phase and quadrature lock-in
signals, demodulated at even harmonics q of ωmod; the odd harmonic
signal is predicted to be zero, and the data (here q = 1 is shown)
support the prediction. The ratio between the Larmor frequency
and the modulation frequency is m, with m = ωL/ωmod, where
ωmod = 2π × 267 Hz. Black lines are measurements, and red (gray)
lines are the model prediction.

Figure 2 presents the signals obtained for η = 0.10, where q =
odd resonances are not null.

The magnetic resonance linewidths show no dependence
on m and q, consistent with the fact that the linewidth is
determined by relaxation mechanisms and power broadening
common to all resonances. In the antirelaxation wall-coated
cell, the primary relaxation mechanisms arise from spin-
exchange collisions and loss of the atoms to the alkali reservoir
via the entrance channel, followed in importance by collisions
between alkali atoms and the antirelaxation coating, and
magnetic field inhomogeneities, none of which has an expected
dependence on m or q.

We have investigated the dependence of the spectra on the
duty cycle η by varying η between 0.1 and 0.9 in steps of
0.05. For each value of η we measured the amplitudes of the
resonances occurring at ωL = ωmod, 2 ωmod, and 3 ωmod (i.e.,
for m = 1,2,3) in each of the six demodulation channels q =
(1, . . . ,6) ωmod. Figure 3 shows the experimental amplitudes
(after normalization) as a function of η and q, together with
the model predictions that are in excellent agreement with
experiment. We note the alternating symmetric-antisymmetric
η dependence with respect to η = 0.5 for odd and even q,
respectively.

The magnetic resonance linewidth depends on η because
the effective power driving either the σ+ or σ− transition—and
hence the power broadening of the line—depends on the duty

Quadrature In Phase
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FIG. 2. (Color online) Magnetic field dependence of normalized
in-phase and quadrature lock-in signals, demodulated at harmonic q

of ωmod, for laser light resonant with the Fg = 4 → Fe = 3 transition.
Black lines are measurements, and red (gray) lines are the model
prediction. The duty cycle was 10% (η = 0.10).

cycle η. For this reason the balanced σ+/σ− excitation with
η = 0.5 is expected to produce the narrowest resonances, as
observed in the experiment.

IV. SUMMARY AND CONCLUSIONS

We have studied magneto-optical resonances that occur
at multiples of the Larmor frequency when the polarization
of a resonant laser beam traversing an alkali atom vapor is
switched between left and right circular polarization. The
lock-in demodulated signals have a rich spectral structure that
is well reproduced by algebraic model predictions. The linear
zero crossings of the quadrature resonances can be used
as discriminator signals for magnetic field measurements.
The optimal resonance for magnetometry applications is the
one with q = 2,m = 1, and η = 0.5, since it has the largest
amplitude and simultaneously the narrowest linewidth. The
application of the polarization-modulation approach reported
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FIG. 3. (Color online) Normalized amplitude of the in-phase (left) and quadrature (right) signal for m = 1,2,3 (from top to bottom). The
amplitudes are function of the detection harmonic (q = 1, . . . ,6) and the duty cycle (0 < η < 1).

here to atomic magnetometry has a distinctive advantage
compared to similar approaches using amplitude or frequency
modulation, viz., the absence of a dc background on the in-
phase signal. In a feedback-locked magnetometer, an imperfect
phase setting transfers a part of the dc background onto the
quadrature signal, thereby introducing a shift in the magnetic
field measure and increasing power noise.

Finally polarization modulation with variable duty cycle
can also find applications in the preparation and manipulation

of specific atomic states, i.e., in metrology [18] and in quantum
information processing [19].

ACKNOWLEDGMENTS

This work is supported by SNF-Ambizione Grant
No. PZ00P2_131926. We thank the mechanical workshop
and the electronics pool of the Physics Department for expert
technical support.

022506-4



MAGNETO-OPTICAL SPECTROSCOPY WITH . . . PHYSICAL REVIEW A 88, 022506 (2013)

[1] E. B. Alexandrov, M. Auzinsh, D. Budker, D. F. Kimball, S. M.
Rochester, and V. V. Yashchuk, J. Opt. Soc. Am. B 22, 7 (2005).

[2] W. E. Bell and A. L. Bloom, Phys. Rev. Lett. 6, 280 (1961).
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