
PHYSICAL REVIEW A 88, 022338 (2013)

Entanglement of movable mirrors in a correlated-emission laser
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We propose an experimental scheme for entangling two macroscopic mechanical resonators (movable mirrors)
by their coupling to the two-mode fields of a correlated-emission laser inside a doubly resonant cavity. With this
aim we investigate the quantum Langevin equations that describe the interaction of the field-mirror system in
conjuction with the master equation of the correlated-emission laser. We show that the steady-state entanglement
of two mirrors as well as that of two-mode fields can be obtained in the regime of strong field-mirror coupling
when the input lasers are scattered at the anti-Stokes sidebands. Remarkably, the degree of entanglement for both
the mirror pair and the field pair can be controlled by an external field driving the gain medium. Our scheme is
able to entangle two macroscopic objects with current state-of-the-art experimental apparatus.
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I. INTRODUCTION

Quantum entanglement [1] has received a lot of interest
in different areas of physics. Entanglement of microscopic
objects such as photons and ions [2] has been demonstrated
and it is of fundamental and practical importance whether
we can generate entanglement between mesoscopic and even
macroscopic objects.

Optomechanical coupling via radiation pressure between a
cavity field and a movable mirror [3] is a promising approach
to study entanglement of mesoscopic systems. Quantum
superposition states of a microscopic cavity field and a massive
moving mirror have been studied through optomechanical
control [4–7]. Other works have investigated the optome-
chanical entanglement of a movable mirror and a cavity
field [8], of a micromechanical resonator and output fields
[9], and even atom-light-mirror tripartite entanglement [10].
Experimentally, strong coupling between a micromechanical
resonator and a cavity field has been demonstrated [11], paving
the way towards quantum optical control of entanglement in
mesoscopic objects.

Recently different schemes have also been proposed to
entangle two movable mirrors via optomechanical coupling
in a ring cavity [12], in two separate cavities using two
entangled output fields from a nondegenerate parametric
amplifier [13], in a double-mode cavity driven by squeezed
light fields [14], in a classically driven Fabry-Pérot cavity [15],
and by injecting broadband squeezed vacuum light and laser
light into a cavity [16]. On the other hand, a doubly resonant
cavity system has been recently proposed as an entangled-light
amplifier using both a three-level cascade [17] and a four-level
atomic system [18].

With all these works considered, an interesting question
arises as to whether a doubly resonant cavity with a gain
medium inside can be used to entangle its two movable mirrors
coupled via radiation pressure to the intracavity fields. First,
entanglement of movable mirrors manifests Schrödinger’s
idea [1] on macroscopic entanglement, which is of conceptual
importance. Second, from a practical point of view, entan-
glement between the end mirrors in an active Michelson
interferometer is relevant in the detection of gravitational

waves [19], as in the Laser Interferometer Gravitational Wave
Observatory (LIGO) [20].

In this regard, Zhou et al. recently studied a scheme
of using injected atomic coherence, that is, the coherence
necessary to generate entanglement is supplied in the form
of the initial superposition state of atoms [21]. They showed
that the two cavity modes are entangled when interacting
with cascading three-level atoms with initial coherence and
that the entanglement can be transferred to the mechanical
mirrors via radiation pressure. Considering the laser operation,
however, one may apply an external driving field to a gain
medium in order to establish the atomic coherence, e.g., in
a correlated-spontaneous-emission laser (CEL) [22], rather
than simply preparing an initial state of coherence. In this
paper, therefore, we consider the CEL system with an external
driving field [17,22] to generate entanglement between two
movable mirrors or two-mode fields. We show that in the
regime of strong field-mirror coupling, the entanglement
between the field modes can be transferred to the movable
mirrors when the cavity-driving laser frequencies are both
scattered to the anti-Stokes sidebands. Remarkably, in contrast
to previous work [14,16,21], our scheme can control the degree
of entanglement of two movable mirrors and of two field modes
with an external field driving the gain medium.

The paper is structured as follows. In Sec. II we describe
our scheme and introduce the Hamiltonian of the system. In
Sec. III we derive the linearized quantum Langevin equations
for the field-mirror subsystem. In Sec. IV we study the en-
tanglement generation between two mirrors in three different
scattering processes. In Sec. V we summarize the main results
of this work.

II. THE MODEL AND HAMILTONIAN OF THE SYSTEM

We consider a scheme for using a gain medium inside a
doubly resonant cavity with two movable mirrors M1 and
M2 (see Fig. 1). The gain medium consists of three-level
atoms with the natural linewidth γ in a cascade configuration
[Fig. 1(b)] pumped to the lowest level |c〉 at a rate ra .
The atoms have two dipole-allowed transitions |a〉-|b〉 and
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FIG. 1. (Color online) (a) Scheme of entangling movable mirrors
in a doubly resonant cavity. The gain medium inside the cavity is
driven by an external field and also interacts with two cavity modes.
(b) Level diagram of the gain medium.

|b〉-|c〉 that are coupled to two nondegenerate cavity modes
at frequencies ν1 and ν2, respectively. They also have a
dipole-forbidden transition |a〉-|c〉 that can be induced by a
resonant semiclassical laser field with Rabi frequency � and
phase φ. As shown in Ref. [17], the dipole-forbidden transition
can be induced, for example, by applying a strong magnetic
field for a magnetic-dipole-allowed transition. Each of the
mirrors is treated as a quantum-mechanical harmonic oscillator
with an effective mass m and frequencies ωmj

(j = 1,2). The
annihilation and the creation operators of each vibrational
mode are bj and b

†
j satisfying [bj ,b

†
j ] = 1.

In the interaction picture, the Hamiltonian of the system
under the rotating-wave approximation is given by HI =
H

af

I + H
f m

I , where [8,17]

H
af

I = h̄g1(σaba1 + a
†
1σba) + h̄g2(σbca2 + a

†
2σcb)

− h̄
�

2
(σace

−iφ + σcae
iφ), (1)

H
f m

I =
2∑

j=1

(
h̄δrpj

a
†
j aj + h̄ωmj

b
†
j bj

)

+
2∑

j=1

ih̄
(
Eja

†
j e

iδj t − E∗
j aj e

−iδj t
)

− h̄G1q1a
†
1a1 − h̄G2q2a

†
2a2. (2)

Here H
af

I and H
f m

I describe the atom-field and the field-
mirror interaction, respectively. In Eq. (1), the first two terms
represent the interaction between the atomic medium and
the two cavity modes with coupling strengthes g1 and g2,
respectively. σij (i,j = a,b,c) is the Pauli pseudospin operator
|i〉〈j | of the atoms. a1,a2 and a

†
1,a

†
2 are the annihilation and

the creation operators of each cavity mode. The third term in
Eq. (1) generates an atomic coherence between the levels |a〉
and |c〉, which contributes to the lasing operation of the CEL.

In Eq. (2), the first line represents the energies of the
cavity modes and the movable mirrors. Note that δrp1 and
δrp2 denote the frequency shift of each cavity mode due to
radiation pressure, which will be clarified later. We assume
a resonant condition on the shifted cavity modes, i.e., (ν1 −
δrp1 ) − (ωa − ωb) = 0 and (ν2 − δrp2 ) − (ωb − ωc) = 0. The
second line in Eq. (2) represents two laser fields driving

the cavity modes, where |Ej | =
√

2Pj κj

h̄ωLj

with input power

Pj , laser frequencies ωLj
, and decay rates κj of each mode.

Here δj ≡ νj − δrpj
− ωLj

is the effective detuning of each
cavity-driving field. The third line in Eq. (2) corresponds to the
coupling via radiation pressure [3] of mirrors and cavity modes
with the coupling rates Gj ≡ νj

Lj

√
h̄

mωmj

and cavity lengths

Lj . We also define dimensionless position and momentum
operators qj = (bj + b

†
j )/

√
2 and pj = (bj − b

†
j )/i

√
2 for the

mirrors.

III. DYNAMICAL EQUATIONS OF THE ATOM-CAVITY
AND MIRROR-CAVITY SUBSYSTEMS

In this section, we introduce the master equation for the
reduced density operator of the cavity field modes in the CEL
and then derive the quantum Langevin equations for the field-
mirror subsystem separately. This approach is justified if the
atom-field interaction is much stronger than the field-mirror
interaction, and the atomic medium is here treated as a general
reservoir to the two cavity modes.

A. Master equation for the two-mode fields

We first introduce the master equation for the two-mode
fields in the CEL. We focus on the regime γ � κj where
the atoms reach their steady state much faster than the cavity
fields so that we can eliminate the dynamics of the atoms. The
master equation is obtained from the interaction Hamiltonian
H

af

I using the standard methods of laser theory [17,23] as

ρ̇ = −α11(a1a
†
1ρ + ρa1a

†
1 − 2a

†
1ρa1)

−α22(a†
2a2ρ + ρa

†
2a2 − 2a2ρa

†
2)

− [α12a1a2ρ + α21ρa1a2 − (α12 + α21)a2ρa1]

− [α12ρa
†
1a

†
2 + α21a

†
1a

†
2ρ − (α12 + α21)a†

1ρa
†
2]

− κ1(a†
1a1ρ + ρa

†
1a1 − 2a1ρa

†
1)

− κ2(a†
2a2ρ + ρa

†
2a2 − 2a2ρa

†
2). (3)

The first two terms proportional to α11 and α22 in the
above equation describe the emission from level |a〉 and the
absorption from level |c〉, respectively. The next two terms
correspond to the effective coupling of the two cavity modes
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via atomic coherence generated by the classical field �. The
last two terms represent the damping of each cavity mode with
rate κj (j = 1,2).

In Eq. (3), the two quantum fields of the cavity are taken
into account to second order in the coupling constants g1 and
g2 while the classical laser field is considered to all orders in
the Rabi frequency �. The coefficients α11, α22, α12, and α21

are then given by

α11 = g2
1ra

4

3�2

(�2 + γ 2)(�2/4 + γ 2)
, (4)

α22 = g2
2ra

1

(�2 + γ 2)
, (5)

α12 = −g1g2ra

�

γ (�2 + γ 2)
, (6)

α21 = g1g2ra

4

�(�2 − 2γ 2)

γ (�2 + γ 2)(�2/4 + γ 2)
, (7)

where the phase of the driving field is assumed to be φ = −π
2

for simplicity.
With the above master equation, we can address the

effective field-field coupling due to the gain medium in the
CEL. Furthermore, the diffusion coefficients for the cavity
modes are readily derived from the master equation using
Einstein’s relation [23]. For any operators O1,O2 and their
noise operators FO1 ,FO2 , it follows from Einstein’s relation

2 〈DO1O2〉 = d

dt
〈O1O2〉 −

〈(
dO1

dt
− FO1

)
O2

〉

−
〈
O1

(
dO2

dt
− FO2

)〉
(8)

that the nonzero diffusion coefficients are

2
〈
D

a
†
1a1

〉 = 2α11, 2
〈
D

a1a
†
1

〉 = 2κ1,

2
〈
D

a2a
†
2

〉 = 2(κ2 + α22), (9)

2
〈
Da2a1

〉 = 2
〈
D

a
†
1a

†
2

〉 = −(α12 + α21).

In the following, we use these diffusion coefficients in
specifying the correlation functions of the cavity-mode noise
operators.

B. The quantum Langevin equations and the
steady-state covariance matrix

Now we derive the quantum Langevin equations for the
field-mirror subsystem and obtain their covariance matrix in
steady state. We consider a general analysis for the field-mirror
subsystem including cavity decay, mirror damping, cavity-
mode noise, and the Brownian noise of the mirrors. With the
help of the master equation (3) and the field-mirror interaction
Hamiltonian H

f m

I , the nonlinear quantum Langevin equations
are obtained as

ḃ1 = −iωmb1 + i
G1√

2
a
†
1a1 − γmb1 + ξ1,

ḃ2 = −iωmb2 + i
G2√

2
a
†
2a2 − γmb2 + ξ2,

ȧ1 = −(
κ1 + iδrp1

)
a1 + iG1a1q1 + E1e

iδ1t

+α11a1 + α12a
†
2 + Fa1 ,

ȧ2 = −(
κ2 + iδrp2

)
a2 + iG2a2q2 + E2e

iδ2t

−α22a2 − α21a
†
1 + Fa2 . (10)

We here assume that the two mirrors have the same damping
rate γm and the same oscillation frequency ωm. In Eq. (10),
we have the quantum Brownian noise operators ξj and ξ

†
j with

their δ-correlated function at temperature T in the limit of
large mechanical quality factor Q = ωm/γm � 1 [24],

〈ξj (t)ξ †
k (t ′) + ξ

†
k (t ′)ξj (t)〉/2 ≈ γm(2n + 1)δjkδ(t − t ′), (11)

where n = [exp(h̄ωm/kBT ) − 1]−1 denotes the average
thermal photon number and kB is the Boltzmann constant.
We introduce the nonzero correlation functions of the cavity
noise operators Fa1 , F

a
†
1
, Fa2 , and F

a
†
2

in the presence of the
atomic medium as〈

FO1 (t)FO2 (t ′)
〉 = 2 〈DO1O2〉 δ(t − t ′), (12)

where 〈DO1O2〉 are given by Eq. (9).
The nonlinear Langevin equations can be transformed

to linearized Langevin equations of zero-mean fluctuation
operators around c-number steady values. This is justified if
the input power Pj to the cavity modes is very large [25].
That is, we take bj = bjs + δbj and ãj = αjs + δãj , where
ãj ≡ aj e

−iδj t are the slowly varying field-mode operators. The
steady values are given by

p1s = p2s = 0, qjs = Gj |αjs |2
ωm

,

(13)

α1s = E1

s1
, α2s = E2

s2
,

with sj = i(νj − Gjqjs − ωLj
) + κj + (−1)jαjj and pjs =

(bjs − b∗
js)/i

√
2, qjs = (bjs + b∗

js)/
√

2. The term νj −
Gjqjs − ωLj

represents the effective detuning of each cavity-
mode frequency. Thus it follows that the mean frequency shift
due to radiation pressure, which is introduced in Eq. (2), is
given by δrpj

≡ Gjqjs .
We introduce the slowing varying fluctuation operators

δb̃j (t) ≡ δbj (t)eiωmj
t and δaj (t) ≡ δãj (t)eiδj t and write the

linear quantum Langvin equations for them as

δ ˙̃b1 = −γmδb̃1 +
√

2γmb1in

+ i
G1α

∗
1s√

2
δa1e

i(ωm−δ1)t + i
G1α1s√

2
δa

†
1e

i(ωm+δ1)t ,

δ ˙̃b2 = −γmδb̃2 +
√

2γmb2in

+ i
G2α

∗
2s√

2
δa2e

i(ωm−δ2)t + i
G2α2s√

2
δa

†
2e

i(ωm+δ2)t ,

δȧ1 = −κ11δa1 + α12δa
†
2 + Fa1

+ i
G1α1s√

2
(δb̃1e

−i(ωm−δ1)t + δb̃
†
1e

i(ωm+δ1)t ),

δȧ2 = −κ22δa2 − α21δa
†
1 + Fa2

+ i
G2α2s√

2
(δb̃2e

−i(ωm−δ2)t + δb̃
†
2e

i(ωm+δ2)t ), (14)

where κ1 = κ2 = κ for simplicity and κ11 ≡ κ − α11 and
κ22 ≡ κ + α22. We have introduced the noise operators
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bjin ≡ ξj e
iωmt/

√
γm for the mirrors’ vibrational modes (j =

1,2), which satisfy the correlation relations [26]

〈b†jin(t)bkin(t ′)〉 = nδjkδ(t − t ′),
(15)

〈bjin(t)b†kin(t ′)〉 = (n + 1)δjkδ(t − t ′).

It has been shown in [9,10] that the optomechanical interaction
and consequently the field-mirror entanglement are enhanced
when the cavity-driving light is scattered by the vibrating
cavity boundary at the first Stokes (ωLj

− ωm) and anti-Stokes
(ωLj

+ ωm) sidebands. Therefore there are two choices of
interest to us for the detuning of each cavity-driving field,
i.e., δ1 = ±ωm and δ2 = ±ωm. It is seen from Eqs. (14) that
for the anti-Stokes sidebands δj = +ωm, the field fluctuation
operators δaj are coupled to the movable-mirror fluctuation
operator δb̃j effectively in a beam-splitter-like (BSL) process.
On the other hand, for the first Stokes sidebands δj = −ωm,

each pair of operators δaj and δb̃j is coupled effectively
in a parametric down-conversion (PDC) process. Due to the
symmetric configuration of field-field and mirror-mirror in
our setup, we may deal with three different situations, i.e.,
δ1 = δ2 = +ωm, δ1 = δ2 = −ωm, and δ1 = −δ2 = ±ωm.

We define the dimensionless position and momentum fluc-
tuation operators δqj = (δb̃j + δb̃

†
j )/

√
2, δpj = (δb̃j − δb̃

†
j )/

i
√

2, δxj = (δaj + δa
†
j )/

√
2, and δyj = (δaj − δa

†
j )/i

√
2

and their corresponding noise operators qjin, pjin, Fxj
, and

Fyj
(j = 1,2). We also define u = (δq1,δp1,δq2,δp2,

δx1,δy1,δx2,δy2)T . Then, the linear Langevin equations in the
rotating-wave approximation (ωm � κ,G) can be written in a
compact form as

u̇(t) = Au(t) + B(t), (16)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−γm 0 0 0 0 −(
δ1
ωm

)
G 0 0

0 −γm 0 0 G 0 0 0
0 0 −γm 0 0 0 0 −(

δ2
ωm

)
G

0 0 0 −γm 0 0 G 0
0 −(

δ1
ωm

)
G 0 0 −κ11 0 α12 0

G 0 0 0 0 −κ11 0 −α12

0 0 0 −(
δ2
ωm

)
G −α21 0 −κ22 0

0 0 G 0 0 α21 0 −κ22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (17)

and B(t) = (
√

γmq1in,
√

γmp1in,
√

γmq2in,
√

2γmp2in,Fx1 ,Fy1 ,

Fx2 ,Fy2 ). For simplicity the parameters of the two field-mirror
pairs are chosen such that G1α1s = G2α2s = |Gjαjs |. The
effective coupling rate is thus defined as G ≡ Gjαjs/

√
2,

which is controlled by the cavity-driving input power P ≡
P1 = P2.

We study the quantum fluctuations of the operators when
the system reaches a steady state. Since the quantum noises
qjin,pjin and Fxj

,Fyj
are all zero-mean Gaussian noises and

the dynamics has been linearized, the steady state of the
system becomes a zero-mean multipartite Gaussian state.
We define the covariance matrix (CM) of the system whose
elements are Vij = [〈ui(∞)uj (∞) + uj (∞)ui(∞)〉]/2. The
system can reach a stable steady state when all real parts
of the eigenvalues of the drift matrix A are negative.
The eigenvalues s are given by the roots of the equation
s4 + a3s

3 + a2s
2 + a1s + a0 = 0 with a0 = (κ11γm + δ1

ωm
G2)

(κ22γm + δ2
ωm

G2) + α12α21γ
2
m, a1 = γ 2

m(κ11 + κ22) + 2γm

(κ11κ22 + α12α21) + G2( δ1
ωm

κ22 + δ2
ωm

κ11) + γm( δ1
ωm

+ δ2
ωm

),

a2 = 2γm(κ11 + κ22) + (κ11κ22 + γ 2
m + α12α21) + G2( δ1

ωm
+

δ2
ωm

), and a3 = (κ11 + κ22 + 2γm)(δj = ±ωm, j = 1,2). We
obtain from the Routh-Hurwitz stability criterion [27] the
following stability conditions:

ai > 0 (i = 0,1,2,3), a3a2a1 > a2
1 + a2

3a0. (18)

Now we simply assume that the parameters satisfy the
stationarity conditions; then the CM in the steady state satisfies

the Lyapunov equation [15]

AV + V AT = −D, (19)

where

D =
(

Dm 0

0 Df

)
, (20)

with Dm = diag[γm(2n + 1),γm(2n + 1),γm(2n + 1),
γm(2n + 1)] and

Df =

⎛
⎜⎜⎜⎜⎝

κ + α11 0 −α12+α21
2 0

0 κ + α11 0 α12+α21
2

−α12+α21
2 0 κ + α22 0

0 α12+α21
2 0 κ + α22

⎞
⎟⎟⎟⎟⎠ . (21)

The exact solution of the CM can be obtained from Eq. (19)
with nontrivial elements under three different situations of
interest to us. We pick up relevant elements in each case
to obtain a two-mode covariance matrix V s in the steady
state with u = (δQ1,δP1,δQ2,δP2)T where Qj = qj ,xj and
Pj = pj ,yj (j = 1,2) and test the entanglement conditions
for three different pairs of macroscopic objects, namely,
field-field, field-mirror, and mirror-mirror.

IV. QUANTITATIVE MEASURE OF ENTANGLEMENT
FOR A BIPARTITE GAUSSIAN STATE

In this section, we investigate the degree of entanglement
for each bipartite Gaussian state of the field-mirror system
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FIG. 2. (Color online) Logarithmic negativity EF of the two-mode fields as a function of �/γ . (a) Effect of the cavity-driving laser power
P on EF at n = 50 for P = 0 mW (blue solid curve), P = 50 mW (red dashed curve), and P = 100 mW (purple dotted curve). (b) Effect
of thermal noise of the mirrors on EF at P = 100 mW for n = 50 (blue solid curve), n = 200 (red dashed curve), and n = 300 (purple
dotted curve). The optomechanical doubly resonant cavity parameters are taken as γm = 2π × 50 Hz, κ = 2π × 215 kHz, ωm = 2π × 3 MHz,
m = 5 ng, L1 = 1.064 mm, and L2 = 0.810 mm according to recent experiments [11,35]. The input laser wavelengths are λ1 = 810 nm
and λ2 = 1064 nm and the input power P varies from 0 to 100 mW so that 0 � G/

√
κγm � 140. The atom-cavity coupling strength is

g1 = g2 = g = 2π × 2.5 MHz, the injection rate ra = 1.6 MHz, and the atomic decay rate γ = 1.7 MHz.

under three different detuning conditions leading effectively
to a BSL or PDC process for the mirror-field coupling. By
definition, a quantum state ρ̂ of a bipartite system is said
to be separable if and only if ρ̂ can be written as a convex
combination of product states, i.e.,

ρ̂ =
∑

j

pj ρ̂jA ⊗ ρ̂jB, (22)

where ρ̂jA and ρ̂jB are the density operators of mode A and
mode B respectively with the probability sum

∑
j pj = 1

(0 � pj � 1). Many criteria have been proposed to test
the separability for a continuous-variable (CV) bipartite
system [28–34].

In this paper we employ a quantitative measure of entan-
glement, i.e., the logarithmic negativity EN [32] that is based
on the negative eigenvalues of the density matrix under partial
transposition. In the case of a two-mode Gaussian state, the
logarithmic negativity is given by

EN = max{0,−ln2η−} + max{0,−ln2η+}, (23)

where η± are the two positive roots of the characteristic
function of the covariance matrix,

η4 − (detVA + detVB − 2detVC)η2 + detV s = 0. (24)

In the above we assume a block-matrix form of the covariance
matrix as

V s =
(

VA VC

V T
C VB

)
. (25)

In the following we investigate the effects of various
parameters such as the input power P , the driving field
�, and the temperature T of the mirrors on the degree
of output entanglement. In turn this analysis shows that
the generated entanglement can be controlled by adjusting
experimental conditions, particularly the external driving field
�. We consider three different detuning conditions, i.e., δj =
+ωm, δj = −ωm, and δ1 = −δ2 = ωm, to find an experimental
configuration relevant to output entanglement.

A. Both field-mirror pairs coupled in a BSL process

We first discuss the case of δj = +ωm (j = 1,2) so that
the field-mirror effective coupling is a BSL process for both
pairs. As has been shown in Refs. [9,35,36], the effective BSL
process for the field-mirror coupling is very stable since this
process followed by the cavity photon decay leads to the
cooling of the movable mirrors [36]. We find from the stability
conditions (18) that the cross-coupling strengths α12 and α21

cannot be too large since α12α21 becomes negative for � >√
2γm. On the other hand, the cavity loss κ and field-mirror

coupling strength G are preferably large from Eq. (18). We
study our scheme in the strong radiation-pressure coupling
regime, i.e., G2/γm � κ .

1. Field-field pair

Let us first look at the entanglement of two-mode fields. In
Figs. 2(a) and 2(b), we plot the logarithmic negativity of the
two-mode fields as a function of the driving field strength �

for different cavity-driving laser powers P and thermal noises
n of the mirrors. Except for the case of � = √

2γ , we see that
there generally arises entanglement between the two-mode
fields caused by the external driving field, which couples the
coherence of the gain medium to the cavity modes.

To understand the behavior of the logarithmic negativity
with the driving field �, we also plot in Fig. 3 the effective
field-field coupling strength α ≡ α2

21/(κ11κ22 + α12α21). By
comparing Figs. 2 and 3, we see that the effective coupling
α and the degree of entanglement behave very similarly as a
function of �. That is, the driving field � controls the effective
field-field coupling which in turn determines the shape of the
degree of entanglement in Fig. 2. There are two peaks of
entanglement EF in Fig. 2 at � ≈ 0.5γ and � ≈ 6γ , which
correspond to two maxima of the effective field-field coupling
strength in Fig. 3.

When the cavity-driving power P changes from 0 to
a nonzero value [Fig. 2(a)], we see that the degree of
entanglement is slightly reduced. This is due to the coupling of
the cavity-field mode to a mirror. The effective coupling G of

022338-5



GE, AL-AMRI, NHA, AND ZUBAIRY PHYSICAL REVIEW A 88, 022338 (2013)

g

2 Π
2.50MHz

g

2 Π
2.25MHz

g

2 Π
2.00MHz

2 4 6 8 10
Γ

0.2

0.4

0.6

0.8

Α

FIG. 3. (Color online) Influence of atom-cavity coupling on the
effective two-mode field coupling strength α; α as a function of �/γ

for the coupling g = 2π × 2.00, 2π × 2.25, and 2π × 2.50 MHz.
The other parameters are the same as in Fig. 2.

the field-mirror pair in Eq. (17) is defined as G ≡ Gjαjs/
√

2
so that it increases with the input power P in view of Eq. (13).
Therefore, noting that there is no direct interaction between the
two mirrors in our setup, the effective coupling G indirectly
transfers the entanglement of two fields to that of two mirrors
(Fig. 4). We also observe in Fig. 2(b) that the degree of
entanglement decreases with the thermal noise n of the mirrors.
Except for two small regions around � = 0 and � = √

2γ

where α21 = 0, we generally obtain steady-state entanglement
for the two-mode fields. The range of those two regions with
no entanglement increases as the thermal noise n increases.

2. Field-mirror pair

On the other hand, the field-mirror pairs are coupled in a
BSL process and it has been proved [37,38] that a nonclassical
input state is required to have an entangled output state in a
BSL process. Under this theorem, we readily see that there
arises no entanglement between field and mirror due to the
classical input states in our scheme.

3. Mirror-mirror pair

Although there is no entanglement between the cavity fields
and the movable mirrors, we show that the entanglement

between the two-mode fields can be transferred to entan-
glement of the mirrors. To be more elaborate, the effective
coupling between the two mirrors can be obtained from
Eq. (14) by eliminating adiabatically the dynamics of the
field modes δaj under the condition κ � γm(2n + 1) and
substituting into the mirrors’ vibrational modes [13]. It can be
shown in the corresponding equations that the two vibrational
modes are coupled to each other in a PDC process so that it is
possible to generate entanglement between the two movable
mirrors.

In Fig. 4, the degree of entanglement of the two movable
mirrors is plotted against the external field � for different
cavity-driving laser powers P and thermal noises n. We
observe in the figures that the degree of entanglement for
the movable mirrors has a similar curve to that of the two-
mode fields for a large input power P and a small thermal
noise n. In our scheme there is no direct interaction between the
mirrors so one may say that the entanglement of the two-mode
fields is transferred to entanglement of the mirrors due to
the field-mirror coupling (radiation pressure). In Fig. 4(a), we
observe that at a large cavity-driving power P , the value of
EM is comparable to that of EF in the strong-coupling regime
(G/

√
κγm = 140). In Fig. 4(b), we also see that the degree

of entanglement for the mirrors is reduced with increasing
temperature. From the figure, we see that a macroscopic
bipartite entanglement can be realized despite the condition
kBT > h̄ωm.

To see the effect of the atom-cavity coupling strength on
the output entanglement, we plot EM versus T for different
values of g with � = 6γ in Fig. 5. We observe that the degree
of entanglement EM increases with the atom-cavity coupling
g. This is consistent with the increasing field-field coupling
strength α so that a higher entanglement from the fields
can be transferred to the mirrors. However, g has an upper
bound restricted by both the cavity loss κ and the field-mirror
coupling strength G such that the stability condition Eq. (18)
is satisfied.

In Fig. 6, we plot EM versus T for different values of κ

with � = 6γ to see the effect of cavity loss on entanglement.
This plot shows that the slope of EM versus T decreases
with increasing cavity loss; however, it is desirable to have a

2 4 6 8 10
Γ

0.02
0.04
0.06
0.08
0.10
0.12
0.14

EM

P 100mW
P 50mW
P 10mW

(a)

2 4 6 8 10
Γ

0.02
0.04
0.06
0.08
0.10
0.12
0.14

EM

n 300
n 200
n 50

(b)

FIG. 4. (Color online) Logarithmic negativity EM of the movable mirrors as a function of �/γ . (a) Effect of the cavity-driving laser power
p on entanglement for n = 50 with P = 10 mW (blue solid curve), P = 50 mW (red dashed curve), and P = 100 mW (purple dotted curve).
(b) Effect of thermal noise on entanglement at P = 100 mW for n = 50 (blue solid curve), n = 200 (red dashed curve), and n = 300 (purple
dotted curve). The other parameters are the same as in Fig. 2.
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FIG. 5. (Color online) Effect of atom-cavity coupling on the
two mirrors’ entanglement EM; EM as a function of the mirrors’
environmental temperature T at � = 6γ for the couplings g =
2π × 2.00, 2π × 2.25, and 2π × 2.50 MHz. The other parameters
are the same as in Fig. 2.

smaller κ in order to obtain a higher entanglement. A larger
cavity loss results in a smaller field-field coupling strength
α so that the degree of entanglement for both the field-field
pair and the mirror-mirror pair is reduced with otherwise the
same parameters. We also see that the critical temperature
above which the entanglement EM disappears increases with
decreasing cavity loss.

Therefore, we have demonstrated that macroscopic bipartite
entanglement of both the field-field and the mirror-mirror pair
can be obtained with the degree of entanglement controllable
by an external driving field that implements a correlated-
emission laser under experimentally realizable conditions.

B. Field-mirror pairs coupled in different processes

We now study the case of the two field-mirror pairs coupled
in two different processes, e.g., field 1 (F1) and mirror 1 (M1)
are coupled in a BSL process and field 2 (F1) and mirror 2
(M2) are coupled in a PDC process. We obtain from Eq. (18)
one necessary condition needed for the steady-state solution
in this case as(

κ11 + G2

γm

)(
κ22 − G2

γm

)
+ α12α21 > 0. (26)

Now the parametric region is restricted to the regime of weak
field-mirror coupling as one of the field-mirror pairs is coupled

0.0 0.2 0.4 0.6 0.8 1.0
T(K)

0.05

0.10

0.15

EM

Κ

2 Π
600kHz

Κ

2 Π
400kHz

Κ

2 Π
215kHz

FIG. 6. (Color online) Influence of cavity loss on the two mirrors’
entanglement EM; EM as a function of environmental temperature
T at � = 6γ for cavity losses g = 2π × 215, 2π × 400, and 2π ×
600 kHz. The other parameters are the same as in Fig. 2.

in the PDC process which is hindered by the stability condition
[10]. This stability region is approximately G2

γm
< α11 + α22.

In this case we find there are only three bipartite pairs,
i.e., F1F2, F2M2, and F1M2, that are coupled effectively in a
PDC process to generate an entangled stationary state. All the
other bipartite states are Gaussian states coupled effectively
in a BSL process which cannot be entangled states due to the
classical inputs. Due to the weak radiation-pressure coupling,
the field-mirror pair coupled in a PDC process is poorly
entangled. Therefore, in this case we obtain only the entangled
two-mode fields of the correlated-emission laser significantly
and its degree of entanglement is slightly reduced by the weak
radiation-pressure coupling.

C. Both field-mirror pairs coupled in a PDC process

In this section, the field-mirror coupling is considered in
a PDC process for both pairs; therefore the systems of field-
mirror pairs are very unstable. To see this, we derive from
Eq. (18) two necessary conditions by setting δj = −ωm:

(
κ11 − G2

γm

) (
κ22 − G2

γm

)
+ α12α21 > 0,

γm(2α12α21 + 2κ11κ22 + κ11γm + κ22γm) (27)

−G2(κ11 + κ22 + 2γm) > 0.

This condition is more stringent than Eq. (26) leaving us very
little to play with. Although all the bipartite states (F1M1,
F2M2, F1F2, F1M2, F2M1, and M1M2) in this case are
Gaussian states coupled effectively in a PDC process, there is
no significantly entangled bipartite state except the two-mode
fields due to the weak radiation-pressure coupling restricted
by the stability condition.

Therefore, we conclude that the seemingly achievable
entanglement of movable mirrors coupled effectively in a PDC
process is not practicable due to the stability condition Eq. (27).
In this case, we obtain only the entangled bipartite Gaussian
states of the two-mode fields in the steady-state solution.

V. CONCLUSION

We have studied the gain medium of cascading three-level
atoms placed inside a doubly resonant cavity as a scheme for
entangling two-mode fields whose entanglement can be trans-
ferred to two movable mirrors through radiation pressure. We
first studied the master equations of the atom-cavity subsystem
and the quantum Langevin equations of the mirror-cavity
subsystem in order to derive the dynamical coupling equations
among the two cavity fields and the two mirrors. We considered
three different cases of tuning the two cavity-driving laser
frequencies such that δj = +ωm, δ1 = −δ2 = +ωm, and δj =
−ωm and generalized the three cases to the Lyapunov equation
(19) for the stationary covariance matrix V with a generalized
drift matrix A in the rotating-wave approximation. In each
case, we investigated three types bipartite Gaussian states in
steady state and the entanglement conditions quantitatively
with the logarithmic negativity EN as well as the stability
conditions obtained from the drift matrix.

Remarkably, the generated entanglement can be controlled
by adjusting the external driving field �. We have shown that
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in the regime of strong field-mirror coupling (G2/γm � κ)
the entanglement of two-mode fields can be transferred to the
two movable mirrors. Among the three cases considered, we
obtain the macroscopic entanglement of movable mirrors only
in the case of both field-mirror pairs interacting in a BSL
process. The two mirrors are coupled effectively in a PDC
process in this case and the steady state of the field-mirror
system is stable in the regime of strong field-mirror coupling.
The degree of entanglement EM is significant for a high atom-
cavity coupling g and a low cavity loss κ . With the stability

condition Eq. (18) and experimentally accessible parameters
[11,35], macroscopic entanglement for two movable mirrors
can be realized with the current state-of-the-art experimental
apparatus.
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