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We study the ground states of lattice Hamiltonians that are invariant under permutations, in the limit where the
number of lattice sites N → ∞. For spin systems, these are product states, a fact that follows directly from the
quantum de Finetti theorem. For fermionic systems, however, the problem is very different, since mode operators
acting on different sites do not commute, but anticommute. We construct a family of fermionic states, F , from
which such ground states can be easily computed. They are characterized by few parameters whose number only
depends on M , the number of modes per lattice site. We also give an explicit construction for M = 1,2. In the first
case, F is contained in the set of Gaussian states, whereas in the second it is not. Inspired by that construction,
we build a set of fermionic variational wave functions, and apply it to the Fermi-Hubbard model in two spatial
dimensions, obtaining results that go beyond the generalized Hartree-Fock theory.
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I. INTRODUCTION

One of the simplest, yet very successful techniques to
investigate quantum many-body systems composed of bosons
or spins is mean-field theory. There, the use of variational
wave functions of product form enables the characterization
of ground state properties for certain problems. The success of
this approach can be understood from different perspectives: (i)
For spin systems with few-body interactions that are invariant
under permutations, the exact ground state is a product state in
the thermodynamic limit, where the number of spins N → ∞.
This can be viewed as a direct consequence of the quantum
de Finetti theorem [1–9]: It states that any density operator of
L spins, σ , with a symmetric extension in the thermodynamic
limit, is separable and can be written as a convex combination
of product states. (ii) If we consider regular spin lattices in
d → ∞ dimensions with nearest-neighbor interactions and
translation and rotation symmetry, monogamy of entanglement
[10,11] implies that the ground state wave functions have to
be of product type. Thus, product states provide us with the
exact ground states for certain problems in the thermodynamic
limit, and may thus capture the physics of other, more general
situations. This explains why product states provide a valuable
tool as variational wave functions, especially in high spatial
dimensions.

Another very important class of quantum states constitutes
the so-called Gaussian states, whose density operator can be
written as a Gaussian function of creation and annihilation
operators [12]. For bosonic systems, they provide us with a
very relevant tool to describe many-body quantum systems.
They capture many important phases of matter, the expectation
values of physical observables can be efficiently computed,
and they are the exact ground states of Hamiltonians that are
quadratic in the creation and annihilation operators. For spin
systems, they are intimately connected to product states in the
following way: In permutationally invariant spin systems (each
of them with K levels), we can work in second quantization
(i.e., in Fock space) and define aμ (μ = 1, . . . ,K) as the

operator that annihilates spins in level μ. In this language,
a product state of N spins is represented by a†N |�〉, where
� is the state with no spins (the vacuum), and a is a linear
combination of the aμ. Up to a normalization constant, this
state is very closely related to the coherent state, e

√
Na† |�〉

(see [13,14]). In particular, the (properly scaled) expectation
value of any finite set of creation and annihilation operators
coincides for those two states in the limit N → ∞. Coherent
states are Gaussian [12], and thus the set of (symmetric)
product states can be seen as a subset of the Gaussian states in
the thermodynamic limit.

Due to the success of mean-field theory for bosons and
spin systems, one may wonder if a similar approach exists for
fermions. In fact, this concept is usually associated with the
family of fermionic Gaussian states (see, e.g., [15] for an in-
troduction). This family includes both Hartree-Fock and BCS
states, and thus it is very widely used in many areas of physics
and chemistry (see, e.g., [16]). As their bosonic counterparts,
they are exact ground states of quadratic Hamiltonians, and
expectation values can be computed efficiently. The approach
of taking them as variational trial wave functions is also known
as generalized Hartree-Fock theory (gHFT) [17], and can be
extended to time-dependent problems and mixed states [18],
as well as to excitation spectra [19].

Alternatively, one may take the approaches (i) and (ii)
for fermions, and investigate the family of states that exactly
solves lattice systems with different symmetries, either in the
thermodynamic limit or when the spatial dimension becomes
infinite. One may expect that the family of states obtained
by such an approach will be included in the set of Gaussian
states, as in the case of spin systems. However, this is not
true, at least in the case (ii) of infinite spatial dimensions.
In fact, the latter approach has resulted in the development
of the so-called dynamical mean-field theory (DMFT) [20].
DMFT has been successfully applied to many interesting
situations, in particular to strongly correlated electron systems
in a regime where perturbation theory breaks down. Despite
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its huge success, the implementation of DMFT is highly
nontrivial, since it is not based on variational wave functions,
thus limiting the applicability of this method. Alternatively,
somewhat simpler approaches such as [21] have been recently
proposed, but their usefulness still remains to be investigated.

In this work we follow the first approach (i), and analyze
fermionic lattice systems that are invariant under permutations,
in the thermodynamic limit. More specifically, we consider a
lattice with N sites, and associate to each site M different
fermionic modes, so that the total number of fermionic modes
is NM . We are interested in the ground state of a Hamiltonian,
H , that acts on pairs of lattice sites, and that is invariant
under lattice permutations. As we will see, the definition of the
thermodynamic limit has to be revised. Mode operators acting
on different sites anticommute, and thus some of the terms in
the Hamiltonian have to be scaled with N such that they give
nontrivial contributions in the limit N → ∞. We construct a
simple family of states,F , from which one can easily derive the
ground state of any such Hamiltonian. This is the main result of
this work. Note that one can state a quantum de Finetti theorem
for the fermionic problem studied here just by calculating the
reduced state of such a family of states. The resulting theorem
is quite different from standard de Finetti theorems (see also
[22,23]) due to the scaling we perform in the Hamiltonian. In
contrast to the spin case, it will turn out that the set F cannot
be obtained by restricting ourselves to fermionic Gaussian
states, at least if the number of modes per site is sufficiently
large. Furthermore, it does not contain all the ground states of
lattice systems with nearest-neighbor interactions in the limit
of infinite spatial dimensions [see (ii) above]. Therefore our
results do not bear a clear connection to either DMFT or gHFT.
As we will show, our results, nevertheless, naturally lead to
a simple extension of the set of fermionic Gaussian states,
whose expectation values can still be computed efficiently.
We will show how to use such set variationally, in order to
simulate the physics of interacting fermionic lattice systems
in arbitrary dimensions. As an illustration of the usefulness of
this approach we will apply our method to the Fermi-Hubbard
model in two spatial dimensions. The goal of the numerical
part is not an exhaustive investigation of the phase diagram,
but we rather aim at showing how the results go well beyond
gHFT. In particular, these variational wave functions allow us
to predict the appearance of pairing for repulsive interactions, a
feature that is not possible within the framework of gHFT [17].

This paper is organized as follows. We start out in Sec. II by
formulating the problem for spin systems, where the solution
is trivial. Nevertheless, guided by the proof of the quantum de
Finetti theorem, we solve the problem with a technique that
can be adapted to fermionic systems. In Sec. III, we state the
problem for fermions, and show how the Hamiltonian has to be
scaled depending on the local parity of the terms that appear in
it. We then construct the family of states, F , and explain how it
can be used to address the problem we are considering. We also
give an explicit construction for the case of M = 1,2 modes per
site. Finally, in Sec. IV, we build a family of variational wave
functions inspired by our results, and apply it to the Fermi-
Hubbard problem. We have also included several appendices
with details or extensions of our calculations. In Appendix
A, we solve the spin problem using second quantization and
standard Bogoliubov–de Gennes techniques. In Appendix B,

we address the problem of lattices with translation and rotation
symmetries, and show how one can obtain upper and lower
bounds to the energy density by using the techniques of Secs. II
and III. In Appendix C we give the details of the derivation
of the variational method introduced in Sec. IV. Finally in
Appendix D, we show how we establish the presence of pairing
in Hubbard-like models, a result which is used in Sec. IV.

II. SYMMETRIC HAMILTONIANS IN SPIN LATTICES

We consider first N spins, interacting according to some
Hamiltonian, H . We assume that this Hamiltonian acts only
on pairs of spins, and is invariant under permutations, i.e.,
PπHPπ = H for all permutations π ∈ SN . One can view this
scenario as a spin lattice where every spin interacts with any
other in the same way. We will be interested in the set of
states that minimize the energy density associated to H in
the limit N → ∞. Such a set can be easily characterized [24]
by making use of the quantum de Finetti theorem [1–9]. This
theorem states that the two-spin reduced states of any state that
is symmetric under permutations can be written as a convex
combination of product states, σ = μ ⊗ μ, in the limit N →
∞. Thus, the set we are interested in is composed of product
states, ρ = μ⊗N . We will call such set spin symmetric basic
set (SSBS).

The purpose of this section is to present the derivation of
this simple result in a way that later on can be adapted to the
fermionic case. We will emphasize how one has to scale the
different terms of the Hamiltonian with N , as well as how to
define the energy density, such that the problem is sound. As
we will see, for fermions the scaling is very subtle, so that
this section will serve us as a warming up exercise. We will
also introduce a simple technique to solve the problem we are
interested in, and that can be easily extended to the fermionic
case.

In Appendix A we give an alternative, but very useful
method to solve the same problem and to obtain corrections in
1/N to the energy density. The method consists of using second
quantization to describe the spins, and applying the standard
Bogoliubov–de Gennes formalism to solve the Hamiltonian
in the limit N � 1. We have included it here since it
may be useful in the context of the de Finetti theorem. In
Appendix B, we consider a different but related problem,
namely, a spin Hamiltonian with nearest-neighbor interactions,
and translation and rotational invariance, in d → ∞ spatial
dimensions. This problem can also be solved by using product
states. In fact, the solution to both this and the original problem
studied in this section coincides and can be obtained by using
the monogamy of entanglement [10,11] as well. In the case
of fermions, however, the solution of those two problems
is different. We will solve the first one in the next section,
whereas the solution of the second problem is provided by
DMFT, which requires very different methods.

Throughout this section, each spin is a K-level system, and
we denote by {Xα

n }K2−1
α=1 a set of operators corresponding to

the nth spin such that, together with the identity, they form an
orthonormal basis. The operators corresponding to different
spins commute with each other, [Xα

n ,X
β
m] = 0 for n 	= m.
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A. Statement of the problem

Let us consider the terms in H that contain one and two
spin operators separately,

H (1) =
N∑

n=1

∑
α

dαXα
n =

N∑
n=1

h(1)
n , (1a)

H (2) =
N∑

n	=m=1

∑
α,β

dα,βXα
n ⊗ Xβ

m =
N∑

n	=m=1

h(2)
n,m, (1b)

where the coefficients d are such that the corresponding
operators are Hermitian. It is clear that ‖H (1)‖∞ = N ‖ h(1)‖∞,
whereas c2N (N − 1) �‖H (2) ‖∞� N (N − 1) ‖h(2) ‖∞,

c2 = max
||ϕ||2=1

|〈ϕ,ϕ|h(2)|ϕ,ϕ〉| 	= 0. (2)

Thus, if we wish that H (1) and H (2) are both relevant when
determining the ground state energy density, E0, in the limit
N → ∞ we will have to take

H = (N − 1)H (1) + H (2) =
N∑

n	=m=1

hn,m, (3)

where hn,m = h(2)
n,m + (h(1)

n + h(1)
m )/2, and

E0 = lim
N→∞

1

N2
min

||ρ||1=1
tr(Hρ), (4)

where ρ = ρ† � 0.
As mentioned above, the ground state energy density (4)

can be easily obtained by using the quantum de Finetti
theorem [1–9]. The states ρ that minimize the energy density
(4) are product states, which are widely used in mean-field
theories. Thus, as is well known, mean-field theory is exact
when dealing with lattices with permutation symmetry in the
thermodynamic limit. Since the main goal of this paper is to
obtain a similar result for fermions, we will rederive the above
result using a technique that can be extended to that problem.
This technique is based on the proof of the quantum de Finetti
theorem [13]. Following [13], it is more convenient to work
with a specific purification of ρ,

|	〉 = (
√

ρ ⊗ 1)|
+〉⊗N, (5)

where

|
+〉 =
K∑

k=1

|k,k〉 (6)

is a state defined on each lattice with two spins per site, the
original and the purifying one. The operator

√
ρ in Eq. (5)

acts only on the original spins. The state |	〉 is an element of
Hsym

N,K2 , the Hilbert space of N spin systems with K2 levels,
that is invariant under lattice permutations (that permutes the
original as well as the purifying spins). Furthermore,

ρ = trp(|	〉〈	|), (7)

where the trace is over the purifying spins. Thus, |	〉 is indeed
a purification of ρ. Thus, we can write

E0 = lim
N→∞

1

N2
min

|	〉∈Hsym

N,K2

〈	|H |	〉

= lim
N→∞

min
|	〉∈Hsym

N,K2

〈	|h1,2|	〉. (8)

Our goal is to find the family of states,F ⊂ Hsym
N,K2 , that attains

the minimum in this definition.

B. Spin Symmetric Basic States (SSBS)

Let us now consider a state |	〉 ∈ Hsym
N,K ′ , where K ′ = K2.

We can easily identify a complete set of states that span that
space, namely, {|φ〉⊗N }. Thus, we can express

|	〉 =
∫

dμφ f (φ)|φ〉⊗N, (9)

where f is a complex function and dμφ a measure in HK ′ . The
function f can be chosen to be smooth. In fact, expressing the
coefficients of φ in an orthonormal (spin) basis, {|n〉}K ′

n=1, as

cn = cos(θ1) · · · cos(θn−1) sin(θn)eiϕn , n = 1, . . . ,K ′ − 1,

(10a)

cK ′ = cos(θ1) · · · cos(θK ′−1) cos(θK ′), (10b)

and choosing the standard measure for the solid angle, we see
that the highest Fourier components of f in the expansion in
terms of θn and ϕn do not contribute to the integral. We have

〈	|h1,2|	〉 =
∫

dμφ dμφ′ f̄ (φ)f (φ′)

×〈φ,φ|h1,2|φ′,φ′〉〈φ|φ′〉N−2. (11)

Since the overlap of the two normalized wave functions |φ〉
and |φ′〉 is less than or equal to one, we can write 〈φ′|φ〉N−2 ≈
(e−θ2/2)(N−2), where θ is the angle between |φ〉 and |φ′〉. Hence,

lim
N→∞

〈φ|φ′〉N−2 ∝ δ(φ − φ′). (12)

This implies that in this limit, we will attain the minimum
in (8) if we simply take

|	〉 = |φ〉⊗N, (13)

and minimize with respect to φ. Thus, the states (13) form
the SSBS. They are product states, and if we calculate the
reduced state by tracing the purifying spins, we will obtain
σ = μ⊗N . As anticipated, states of the form (13) are those used
in mean-field theories. We also recover the result following
from the quantum de Finetti theorem, namely, that in order to
determine E0 we just have to solve a two-spin problem, and
minimize the energy density with respect to density operators
of the form σ = μ⊗2. As a side remark, note that we can
take an asymptotic expansion of 〈φ|φ′〉N−2 in terms of 1/N

(which gives corrections to the delta function involving its
derivatives), and in this way obtain corrections to the de Finetti
theorem [7,13]. In Appendix A we show how such corrections
can be obtained by using standard techniques of statistical
mechanics based on second quantization. In Appendix B we
show how the solution of the present problem can be used
to obtain upper and lower bounds of the energy in the case
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of a lattice system with nearest-neighbor interactions in the
limit where the number of spatial dimensions d → ∞. We
also show that for the case of spins, the product state (13) also
attains the minimal energy density.

III. SYMMETRIC HAMILTONIANS
IN FERMIONIC LATTICES

In the previous section we learned a strategy for the
characterization of the SSBS: First, we express the density
operators that are invariant under permutations in terms of
purifications in Hsym

N,K2 ; then, we find a complete set of vectors,
F , characterized by some parameters, whose number only
depends on K , but not on N . This set has the property that if we
write the purification as a linear combination of its elements
and determine the expectation value of a two-site operator,
the cross terms vanish in the thermodynamic limit. Thus, we
can just take the states in this set (and not superpositions
thereof) when we minimize the energy density in that limit.
Furthermore, the minimization just requires solving a two-spin
problem.

In this section we will apply an analogous strategy for
fermionic systems. We consider now a fermionic lattice system
with N sites and M modes per site. We are interested in the
ground state of a Hamiltonian, H , acting on pairs of sites, that
is invariant under site permutation, and in the limit N → ∞.
We will first show that every symmetric fermionic quantum
state has a symmetric purification with M ′ = 2M modes per
site. Then, we construct the set of states F ⊂ Hsym

N,M ′ , the Fock
space of symmetric states under permutations with M ′ modes
per site, with the same properties as in the spin case. We call the
states in the set F fermionic symmetric basic states (FSBS).
Sometimes, we will write FSBSM to indicate the number of
modes per site. Finally, we will explicitly construct the FSBS
for M = 1,2 (i.e., M ′ = 2,4). In the first case, we obtain that
the FSBS are contained in the set of Gaussian states, whereas in
the latter we obtain a class of states that goes beyond. Inspired
by this result, we will introduce a new family of states that
extends the Gaussian variational ansätze in the next section,
and we will apply it to the Hubbard model.

In this and the following sections, we will use the language
of second quantization. We denote the annihilation operators
acting on mode μ at site n by an,μ, where n = 1, . . . ,N ,
and μ = 1, . . . ,M < ∞. We will call the operators an,μ and
a
†
n,μ mode operators. As opposed to the spin case, two mode

operators corresponding to two different sites anticommute,
i.e., {an,μ,am,ν} = {an,μ,a

†
m,ν} = 0 if m 	= n or μ 	= ν (or

both). Besides that, {an,μ,a
†
n,μ} = 1. This has important con-

sequences in the way we have to scale the different terms of
the Hamiltonian in the limit N → ∞. Thus, we will start this
section by defining the problem we want to solve, and argue
about the corresponding scaling.

A. Statement of the problem

We consider a Hamiltonian H invariant under permutations,
and with terms involving two lattice sites at most. In order
to comply with the fermion parity superselection rule, each
term in H must contain an even number of mode operators.
Thus, we can consider three kinds of terms in the Hamiltonian:

(i) H (1) contains terms acting on single sites only, and which
are composed of an even number of mode operators; (ii) H (2)

ee
contains terms acting on two different sites, but with an even
number of mode operators on each of the two sites where they
act; (iii) H (2)

oo contains terms acting on two different sites, but
with an odd number of mode operators on each of the two sites
where they act. For instance, for M = 2 we can have

H (1) = μ

N∑
n=1

2∑
ν=1

a†
n,νan,ν + U

N∑
n=1

a
†
n,1a

†
n,2an,2an,1, (14a)

H (2)
ee = V

N∑
n,m=1

2∑
ν,ν ′=1

a†
n,νa

†
m,ν ′am,ν ′an,ν, (14b)

H (2)
oo = −t

N∑
n,m=1

2∑
ν=1

a†
n,νam,ν . (14c)

As in the previous section, let us compute the scaling of the
norms for each of the terms. First of all, since H (1) and H (2)

ee
only contain an even number of mode operators for each site on
which they act, they can be mapped to spins, and thus scale as N

and N2, as before. However, the term H (2)
oo does not scale as N2,

but rather as N . This can be directly seen in the example given
above. We can write H (2)

oo = −tN (A†
1A1 + A

†
2A2), where

Aμ = 1√
N

N∑
n=1

an,μ (15)

fulfill standard anticommutation relations. The operators
A†

μAμ have eigenvalues 0 and 1, so that ‖H (2)
oo ‖∞= tN .

In general, we can write

H (2)
oo =

∑
α

XαY α, (16)

where

Xα =
∑

n

Xα
n , Y α =

∑
n

Y α
n , (17)

and Xα
n and Yα

n are products of an odd number of mode
operators. Now,∥∥H (2)

oo

∥∥
∞ �

∑
α

‖XαYα‖∞

� c(M) max
α

√
‖Xα†Xα ‖∞‖ Yα†Yα ‖∞, (18)

where c(M) is a constant that only depends on the number of
modes, M . Further,

‖Xα†Xα ‖∞ � ‖{Xα†,Xα}‖∞

� 2
N∑

n=1

∥∥Xα†
n Xα

n

∥∥
∞ = 2N

∥∥X
α†
1 Xα

1

∥∥
∞, (19)

where we have used that for all n 	= m{
Xα

n ,Xβ
m

} = {
Yα

n ,Y β
m

} = 0. (20)

Using analogous arguments for Yα , we obtain∥∥H (2)
oo

∥∥
∞ � N2c(M) ‖X

α†
1 Xα

1 ‖1/2
∞ ‖Y

α†
1 Yα

1 ‖1/2
∞ . (21)

Let us draw some consequences from that fact. If we do not
scale H (2)

oo (i.e., if we do not multiply by N ), it will not give any
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contribution to the energy density. That is, if we take (4) with

H =
∑
n,m

hn,m = NH (1) + H (2)
ee + H (2)

oo , (22)

then H (2)
oo will not contribute in the limit N → ∞, and thus

can be omitted. Since the remaining terms NH (1) + H (2)
ee

conserve parity locally (in each site), we can map the
fermionic Hamiltonian into a local spin Hamiltonian (using
the appropriate Jordan-Wigner transformation); that is, the
problem of minimizing the energy density reduces to the
spin problem analyzed in the previous section. We can
thus take product states in order to solve the minimization
problem. Analogously, in the case of a lattice with transla-
tion and rotation symmetry in the limit d → ∞ we obtain
that the energy can be minimized by taking product states
(see Appendix B).

However, the above result is not very useful if we want
to develop techniques in many-body problems involving
fermions. The reason is that in those problems, the interesting
regimes occur when the terms H (2)

oo contribute to the problem.
For instance, in the example considered above (14), H (2)

oo
describes the kinetic energy of fermions moving between
different sites. The richest behavior occurs when the kinetic
energy is comparable to the interaction energies contained in
H (1) and H (2)

ee . This implies that instead of (22), we have to
consider Hamiltonians of the form

H = NH (1) + H (2)
ee + NH (2)

oo . (23)

In the following we will concentrate on this case, i.e., we will
find the states that minimize the energy density (4) with H

given in Eq. (23). Note that we can define the same problem
in the lattice in d dimensions, and in the limit where d → ∞.
In fact, this problem is solved by DMFT. There is, however,
no a priori reason why the solution we find bears any relation
to DMFT.

Let us now argue that, as in the spin case, every symmetric
fermionic mixed state has a symmetric purification. To this
end, let ρ ∈ SN,M be the (convex) set of density operators that
are invariant under permutations and that commute with the
fermion parity operator. This last property is a consequence of
the superselection rule (or, equivalently, that the Hamiltonians
we are considering also possess that property). We double the
number of modes per site and denote by bn,μ the corresponding
mode operators. We define a set of states

|{mn,μ}〉 =
∏
n,μ

[a†
n,μb†n,μ]mn,μ |�〉, (24)

where |�〉 is the vacuum and mn,μ = 0,1. Now, consider the
state |	〉 corresponding to M ′ = 2M modes, and

|	〉 = √
ρ

∑
{mn,μ}

|{mn,μ}〉. (25)

For any operator O depending on the fermionic operators an,μ

and commuting with the fermion parity operator, we have

〈	|O|	〉 =
∑

{mn,μ}
〈�|

(∏
n,μ

[an,μ]mn,μ

)

×√
ρO

√
ρ

(∏
n,μ

[a†
n,μ]mn,μ

)
|�〉 = tr(Oρ).

(26)

Furthermore, by construction,

Pπ |	〉 = |	〉, (27)

for all π ∈ SN , i.e., |	〉 ∈ Hsym
N,2M is a symmetric purification

of ρ.
Our goal is to find the FSBS, F ⊂ Hsym

N,2M , such that

E0 = lim
N→∞

min
|	〉∈F

〈	|H |	〉
N2〈	|	〉 , (28)

where H is given in (23). Furthermore, we want to show that
this quantity can be obtained by solving a few-site problem.

B. Fermionic Symmetric Basic States (FSBS)

In order to determine the FSBS, we will closely follow
the procedure for spins. We start by finding a complete set
in Hsym

N,M ′ , where M ′ = 2M is always even, since we have
shown above that all symmetric states have a symmetric
purification with an even number of modes per site. Thus,
from now on, we will drop the prime and simply write M .
Having that set at hand we will build later on the FSBS. We
define the averaged operators

Ā
(k)
�μ := Ā(k)

μ1,...,μk
=

N∑
n=1

k∏
l=1

an,μl
, (29)

where μ1 < μ2 < · · · < μk � M are integers denoting dif-
ferent modes (see Fig. 1). In order to simplify the notation,
we will simply write Ā(k)

μ in the following, and we will even
omit the script k whenever it is clear from the context. As we
show now, any symmetric pure state can be written as a linear
combination of states ∏

μ

(Ā†
μ)nμ |�〉, (30)

where nμ are integers. All those states are symmetric, given
that PπĀ†

μPπ = Ā†
μ for all π ∈ SN , and thus they will form a

complete set in Hsym
N,M , as we will see now.

Let us consider a state |	〉 ∈ Hsym
N,M , which we write as

|	〉 =
∑

�n
X�n|�〉, (31)

where X�n is a product of creation operators,

X�n =
∏

n1<n2<···<nk

Onk
[k] · · ·On2 [2]On1 [1]|�〉. (32)

Here, we have collected all the creation operators acting on a
site nj that contain at least one fermion, denoted their product

FIG. 1. Example of the operators Ā
(k)
�μ , Eq. (29), for N = 4 and

M = 3. The gray balls represent the operators a†
n,μ on site n in mode μ.
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by Onj
[j ], and sorted them with increasing site label j . Since

|	〉 is a symmetric state, it follows that

|	〉 ∝
∑

�n

∑
π∈R⊂SN

PπX�nPπ |�〉, (33)

for any subset R ⊂ SN of permutations. We show now that by
using the appropriate sequences of permutations in Eq. (33),
we can always obtain a linear combination of states in the
desired form (30). Consider first On1 [1], and take R to be the
set of transpositions of (n1,n), where n /∈ {n2, . . . ,nk}. Then,
Pπ∈R commutes with all the Onj

[j ], except for On1 [1], and we
can thus write∑

π∈R⊂SN

PπX�nPπ =
∏

n2<n2<···<nk

Onk
[k] · · · On2 [2]

×
∑

π∈R⊂Sn

PπOn1 [1]Pπ .

Further, since R is the set of transpositions of (n1,n), where
n /∈ {n2, . . . ,nk}, we have

∑
π∈R⊂SN

PπOn1 [1]Pπ = Ā[1]† −
k∑

l=2

Onl
[1],

Ā[1]† =
N∑

n=1

On[1],

and Onl
[1] is the operator obtained from On1 [1] by permuting

the sites n1 and nl . Thus,∑
π∈R⊂SN

PπX�nPπ |�〉 =
∏

n2<n2<···<nk

Onk
[k] · · ·On2 [2]Ā[1]†|�〉

−
k∑

l=2

∏
n2<n3<···<nk

Onk
[k] · · · On2 [2]

×Onl
[1]|�〉. (34)

Here, the second term is a sum of terms of the original form
(32), but in which the operators acting on site n1 are no longer
present. Thus, we can repeat the procedure with such terms,
until we are left with terms that contain one operator Ā, as in
the first part of Eq. (34). So, let us consider the first term in
(34), which looks like (32), but with On1 [1] replaced by Ā[1]†.
We repeat the steps that we have done for the operator On1 [1]
but now for the operator On2 [2]. Since Ā[1]† is symmetric
under permutations, we arrive in a second step at a similar
expression as in Eq. (34), but with an additional term Ā[2]†,
symbolically∏

n2<n2<···<nk

Onk
[k] · · · On2 [2]Ā[1]†

�→
∏

n3<n2<···<nk

Onk
[k] · · · On3 [3]Ā[2]†Ā[1]†.

Hence, repeating the procedure for On3 [3], . . . ,Onk
[k], we can

decompose the state |	〉 as in (30).
Now, let us consider the set of operators (29). It is clear that

Ā†
μĀ†

ν = εμ,νĀ
†
νĀ

†
μ, where εμ,ν = ±1. This implies that when

we write a complete set of states we can choose any ordering
of the operators. On the one hand, if k is odd, (Ā(k)†

μ )2 = 0, so
that these operators can appear at most once in the states (30).

On the other, if k is even, then several powers may appear.
Thus, we can write a complete set of states as∏

k odd

∏
μ

(
Ā(k)†

μ

)nk,μ
∏

k′ even

∏
μ′

(
Ā

(k′)†
μ′

)mk′ ,μ′ |�〉, (35)

where nk,μ = 0,1 and mk′,μ′ is an integer. Note that when we
expand the products in terms of creation operators, we can
omit the terms where two sites coincide. The reason is that all
those terms are already included in the operators with k′ odd,
and this may simplify the evaluation of expectation values.
Nevertheless, we will not consider that in the following. Since
we are considering a complete set, we can alternatively choose

|ϕ�n,�α〉 =
∏
k odd

∏
μ

(
Ā(k)†

μ

)nk,μ
∏

k′ even

∏
ν

eαk′ ,ν Ā
(k′ )†
ν |�〉. (36)

Those states are completely parametrized in terms of nk,μ =
0,1 and αk′,ν ∈ C. It is an important fact that the number of
parameters depends only on the number of modes per site M ,
but not on the number of lattice sites N . For instance, the
number of indices n is given by

r(M) =
M/2∑
k=1

(
M

2k − 1

)
. (37)

Note that we can consider �n as a bit string (taking values 0
and 1).

Any state in Hsym
N,M can be written as a linear combination of

states of the form (36). This involves sums over the bit string
�n, and integrals over the α’s, i.e.,

|	〉 =
∑

�n

∫
dμ�α f�n(�α)|ϕ�n,�α〉. (38)

In order to obtain the energy density (28), we have to determine
expectation values of operators O acting on up to two-sites,
say 1 and 2, i.e., O1,2. We will have to determine integrals over
�α and �β to calculate

〈ϕ �m, �β |O1,2|ϕ�n,�α〉. (39)

If we expand all operators Ā(k) with k odd in Eq. (36) in terms
of the lattice sites (29) for the states |ϕ�n,�α〉 and |ϕ �m, �β〉 we will
have a sum of terms of the form

〈η( �β)|Om1 · · · Omr(M)O1,2On1 · · · Onr(M) |η(�α)〉, (40)

where On is some operator acting on site n only, and

|η(�α)〉 =
∏

k even

∏
ν

eαk,νA
(k)†
ν |�〉. (41)

Now, we expand the operators Ā(k)
μ with k even (29) in this

expression and replace them in (40). They are sums of an
even number of creation (annihilation) operators, so that they
commute among each other. Furthermore, we can always find
N − gM sites such that no operator O in (40) acts on them,
where gM does not depend on N . Thus, for each k even, and
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each value of mi,nj in (40), we can take as a common factor(
〈�|

[ ∏
k′ even

∏
ν

e
β̄k′ ,νa

†
n,ν1 ···a†

n,ν
k′

]

×
[ ∏

k even

∏
μ

eαk,μa
†
n,μ1 ···a†

n,μk

]
|�〉

)N−gM

. (42)

This expression can be understood as an overlap
〈τ ( �β)|τ (�α)〉N−gM of two wave functions. When we divide
by their normalization, we see that it tends to something
proportional to a δ function of �α and �β in the thermodynamic
limit. Thus, as in the case of spin systems, we can fix the values
of α’s in the thermodynamic limit and do not need to consider
superpositions thereof. That is, the vectors

|	({c�n},�α)〉 =
∑

�n
c�n|ϕ�n,�α〉 (43)

of 2M modes in the limit N → ∞ form a FSBS.
Some remarks are in order. First, as in the case of spins,

the set of states (43) is characterized by a finite set of
complex parameters (c�n and �α for all bit strings �n), whose
number does not depend on N . Second, we can restrict the
allowed �n by imposing the fermion parity superselection
rule, i.e.,

∑
k odd,μ k nk,μ to be either even or odd. Third, in

order to determine the energy density, one should consider a
minimization for a fixed N , and then take N → ∞. In the next
sections we analyze the case of M = 1,2 (i.e., M ′ = 2,4),
and show how one can take the limit N → ∞ first, so that
the problem is highly simplified. In fact, we will show that
the determination of the energy density basically reduces to a
three-site problem.

C. Example: M = 1

We consider the simplest case of one mode per site, M = 1,
with annihilation operators an,1. The most general, symmetric
Hamiltonian with two-site interactions and that respects the
parity superselection rule is of the form

Ĥ = 1

N2
H = − t

N

∑
n,m

a
†
n,1am,1 + U

N2

∑
n,m

a
†
n,1an,1a

†
m,1am,1

+ μ

N

∑
n

a
†
n,1an,1, (44)

where we have added the scaling factors as discussed in the
previous sections. Note that terms with an odd number of
creation or annihilation operators are forbidden by parity, and
that terms like∑

n,m

a†
na

†
m + H.c. ∝ Ā

†2
1 + H.c. = 0,

vanish identically, where

Ā1 = 1√
N

∑
n

an,1. (45)

Determining the minimum energy of Ĥ for all values of t, U ,
and μ is rather trivial. The number operator

L̂ =
∑

n

a
†
n,1an,1 (46)

commutes with Ĥ , so that the terms in (44) with U and
μ (which are proportional to L̂2 and L̂, respectively) can
be considered independently. Furthermore, the first term is
proportional to Ā

†
1Ā1, which has eigenvalues 1 and 0. Thus, if

we denote by ρ0 = L/N the density, where L is the number
of particles, we have

E0 = −tx + Uρ2
0 + μρ0, (47)

where x = 0,1. Thus, we can minimize this expression for
x = 0,1 as a function of ρ0, and choose the smallest value. The
value of x depends on the sign of t only, whereas the value of
1 � ρ0 � 0 depends on the values of U and μ. Note that the
ground state is very degenerate. Furthermore, note that Hsym

N,1
just contains two states (with different parity), namely, |�〉 and
Ā

†
1|�〉. Any other states, such as |χ〉 = ∏

n a
†
n,1|�〉, are not

invariant under permutations. Therefore, if we minimize the
energy density in that space we will not obtain the right result.
This explains that if we want to restrict ourselves to symmetric
states, we must take density operators, such as, for instance,
|χ〉〈χ |, which can indeed be invariant under permutations. As
explained above, we can purify those states and indeed work
in the space Hsym

N,2.
It is illustrative to see how we can obtain the above result

with the technique introduced in the previous section. Thus, we
have to take a purification corresponding to M ′ = 2 modes in
each site, with annihilation operators an,1 and an,2, the original
one and the copy. The operators (29) are in this case

Ā(1)
μ =

N∑
n=1

an,μ, (48a)

Ā(2) =
N∑

n=1

an,2an,1. (48b)

The first ones have k odd, whereas the second one has k

even. If we restrict ourselves to even parity, we have that the
FSBS is composed of linear superpositions of two states,

|ψ(c,α)〉 = |ϕ0(α)〉 + c|ϕ1(α)〉, (49)

where

|ϕ0(α)〉 = eαĀ(2)† |�〉, (50a)

|ϕ1(α)〉 = Ā
(1)†
1 Ā

(1)†
2 eαĀ(2)† |�〉. (50b)

In fact, in order to simplify the calculations, it is more
convenient to take

|ϕ0(α)〉 =
∏
n

[cos(α) + sin(α)a†
n,1a

†
n,2]|�〉, (51a)

|ϕ1(α)〉 =
(

a
†
1,1 + a

†
2,1√

N
+ A

†
1

)(
a
†
1,2 + a

†
2,2√

N
+ A

†
2

)
|ϕ0(α)〉,

(51b)

where

Aμ = 1√
N

N∑
n=3

an,μ. (52)

In order to determine the energy density, we need to calculate
the normalization 〈ψ(c,α)|ψ(c,α)〉, as well as the expectation
value of H̄ = Ĥ /N2. Since the state |ψ〉 is already symmetric
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with respect to permutations, we just need to take the terms
in H̄ that include the first and the second sites. Thus we have
singled them out in (51), since then we will be able to take the
limit N → ∞ during the evaluation. Note that then we will
be left with a three-site problem, with sites 1, 2, combining
the remaining sites into a single one. Besides, we will have to
consider separately the terms with an even number of operators
on each site (proportional to μ and U ), and those with an odd
number (proportional to t). In the first ones, we will have
to determine the expectation value up to zero order in 1/N ,
which will become very simple since we will be able to ignore
the terms that go like 1/

√
N in (51), and treat the operators

Aμ like simple annihilation operators. In the latter, the zero
order in 1/N vanishes, in agreement with the discussion of
the previous sections. We will then have to go to order 1/N ,
where the first terms in (51b) contribute. In order to simplify
the notation, we will not write explicitly the dependence on c

and α, and denote by 〈X〉0 = 〈ϕ0|X|ϕ0〉.
We start determining some expectation values to zero order

in 1/N :

〈AμA†
μ〉0 = cos2(α), (53a)

〈A†
1A

†
2〉0 = cos(α) sin(α), (53b)

〈A1A
†
2〉0 = 0. (53c)

To the same order, we have

〈A2A1A
†
1A

†
2〉0 = 〈A1A

†
1〉0〈A2A

†
2〉0 + 〈A2A1〉0〈A†

1A
†
2〉0

−〈A2A
†
1〉0〈A1A

†
2〉0 = cos2(α), (54)

where we have used that the number of terms where four
operators act on the same site is of order N , so that it vanishes
when divided by N2. We see that this is nothing but a Wick’s
theorem, where we can decompose products of an even number
of operators into products of all possible pairs.

Using the above results, we can easily obtain the normal-
ization

〈ψ |ψ〉 = 1 + 2c sin(α) cos(α) + c2 cos2(α). (55)

Let us now concentrate on the expectation values of the terms
of H̄ acting on sites 1 and 2, and that have an even number of
operators on each site. According to our prescription, we have
to determine them in zeroth order in 1/N . This means that we
can ignore the operators a

†
1,μ and a

†
2,μ in (51b), and since the

operators Aμ do not act on sites 1 and 2, we obtain that

〈ϕi |a†
1,1a1,1|ϕj 〉 = 〈a†

1,1a1,1〉0 〈ϕi |ϕj 〉
= sin2(α)〈ϕi |ϕj 〉, (56a)

〈ϕi |a†
1,1a1,1a

†
2,1a2,1|ϕj 〉 = 〈a†

1,1a1,1a
†
2,1a2,1〉0 〈ϕi |ϕj 〉

= sin4(α)〈ϕi |ϕj 〉. (56b)

The terms of H̄ acting on sites 1 and 2, that have an odd
number of operators acting on each site (i.e., proportional to t),
can be also easily calculated. But now the first nonvanishing
order is 1/N , which will compensate the scaling factor we have
added in the Hamiltonian. As before, we have to deal with a
three-site problem, and determine the lowest order corrections.

We obtain

〈ϕ0|a†
1,1a2,1|ϕ0〉 = 0, (57a)

〈ϕ1|a†
1,1a2,1|ϕ1〉 = cos4(α)

N
, (57b)

〈ϕ0|a†
1,1a2,1|ϕ1〉 = sin(α) cos3(α)

N
. (57c)

Putting all those results together we get (47), with ρ0 =
sin2(α) and

x = [sin(α) + c cos(α)]2

1 + 2c sin(α) cos(α) + c2 cos2(α)
. (58)

Since sin2(α),x ∈ [0,1], we recover the solution given above.
Before finishing this example, let us note that the FSBS

(49) is, in fact, a Gaussian state. This can be easily shown by
noting that we can always write

|ψ(c,α)〉 = ecĀ
(1)†
1 Ā

(1)†
2 eαĀ(2)† |�〉. (59)

D. Example: M = 2

In the following, we construct for M = 2 (M ′ = 4) several
explicit forms of FSBSs. We will obtain a new class of
states, which goes beyond the class of fermionic Gaussian
states. This result motivates a new family of variational states,
extending fermionic Gaussian states, which will be used in
the next section to analyze the Hubbard model in two spatial
dimensions. We will not derive here the ground state energy
density—it can be obtained using a tedious, but straightforward
procedure, similar to that of the previous example.

To simplify notation, we introduce, instead of the operators
Ā

(k)
�μ , the operators Aμ (k = 1), Bμ1,μ2 (k = 2), Cμ (k = 3),

and D (k = 4) via

Aμ =
N∑

n=1

an,μ, Cμ =
N∑

n=1

an,μ3an,μ2an,μ1 , (60a)

Bμ1,μ2 =
N∑

n=1

an,μ2an,μ1 , D =
N∑

n=1

an,4an,3an,2an,1, (60b)

where μ1 < μ2 < μ3 and μi 	= μ in the definition of C.
According to the construction of (43), we can write the FSBSs
in terms of those operators. Here we will construct another
set of vectors which is more convenient and easy to use, and
that will be the basis of the variational states used in the next
section.

As shown in (35) we can build a complete set of states in the
symmetric subspace as products of A†’s and C†’s, times powers
of B†’s and D† acting on the vacuum, which we represent as

Ai · · ·C†
j · · · B†pk

k · · · D†m|�〉. (61)

The operators appearing in this expression all commute or
anticommute, so that we can choose their ordering arbitrarily.
It will be more convenient to work with a different complete
set of states of the form

Aj · · · A†
i · · · B†pk

k · · · D†m|�〉. (62)

In order to show that Eqs. (61) and (62) indeed span the
same space, we proceed as follows: In (61) we move the
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operator C† to the left of D† and use the fact that C†
μD†n|�〉 =

AμD†n+1|�〉/(n + 1). Then we use the commutation or anti-
commutation relations between Aμ and the rest of the operators
appearing in (61) to move Aμ all the way to the left. Those
relations read

{Aμ,A
†
k} = Nδμ,k, (63)

{Aμ,C
†
k} = δμ,k1B

†
k2k3

− δμ,k2B
†
k1k3

+ δμ,k3B
†
k1k2

, (64)

{Aμ,B
†
k1k2

} = δμk1A
†
k2

− δμk2A
†
k1

. (65)

Thus, by moving A back to the left we will generate more
states, but all of them will be of the same form. We can proceed
in the same way with all operators C†. In the end we will
arrive at linear combinations of states of the form (62). As
before, instead of using powers of operators B

†
j and D†, we

use exponentials so that we can easily take the thermodynamic
limit N → ∞, i.e.,∏
μ1,μ2

(
B†

μ1,μ2

)pμ1 ,μ2 D†m|�〉 →
∏

μ1,μ2

eαμ1 ,μ2 B
†
μ1 ,μ2 eβD† |�〉

=
∏
n

e
∑

μ1 ,μ2
αμ1 ,μ2 a

†
μ1 a

†
μ2 eβD† |�〉.

(66)

We can further replace the exponentials of B by unitary
operators, something that will simplify the determination
of expectation values, in the following way: Without loss
of generality, we can assume that the matrix (α)μ1,μ2 is
antisymmetric and complex. Then, there exists a unitary trans-
formation w such that (wT αw)2k−1,2k = −(wT αw)2k,2k−1 =
αk and (wT αw)m,n = 0 otherwise. Thus, we can define new
mode operators b

†
n,μ1 = ∑

μ2
wμ1,μ2a

†
n,μ2 that fulfill the same

anticommutation relations, and rewrite Eq. (66) as

N∏
n=1

eα1b
†
n,1b

†
n,2eα2b

†
n,3b

†
n,4eβb

†
n,1b

†
n,2b

†
n,3b

†
n,4 |�〉. (67)

It is immediate to show that one generates the same set of
states by replacing

eα1b
†
n,1b

†
n,2eα2b

†
n,3b

†
n,4 → eα′

1b
†
n,1b

†
n,2−H.c.eα′

2b
†
n,3b

†
n,4−H.c., (68)

where H.c. stands for Hermitian conjugate. These latter
exponentials are unitary operators which simply implement
Bogoliubov transformations (i.e., linear canonical transforma-
tions). Thus, we can write a set of states which spans the
symmetric space as

|ϕ�n, �m(u,v,β)〉 = Û (u,v)
4∏

i=1

A
ni

i

4∏
j=1

A
†mj

j eβD† |�〉, (69)

where Û (u,v) is characterized by its action,

Û (u,v)†an,νÛ (u,v) =
4∑

μ=1

[uν,μan,ν + vν,μa†
n,ν], (70)

with uu† + vv† = 1, uv† + vu† = 0. Note that we can write

eβD† ∝
N∏

n=1

(1 + βa
†
n,1a

†
n,2a

†
n,3a

†
n,4)|�〉. (71)

Later, we will use a class of variational wave functions
inspired by (71) to study the 2D Hubbard model with repulsive
interaction. The FSBS is given by the vectors∑

�n, �m
c�n, �m|ϕ�n, �m(u,v,β)〉, (72)

where c ∈ C are arbitrary coefficients, and �n, �m are bit strings.
With the FSBS, we can proceed as in the previous section,

namely, writing the most general symmetric Hamiltonian of
two modes per site, compatible with the parity superselection
rule, and then considering only sites 1 and 2. The terms that
have an even number of mode operators in sites 1 and 2 give a
trivial result, since the normalization factors out and one can
use the version of Wick’s theorem stated above. For the other
terms, one has to consider the three-site problem and expand
up to order 1/N as before.

IV. VARIATIONAL WAVE FUNCTIONS
AND THE HUBBARD MODEL

The simulation of large interacting fermionic many-body
systems is one of the big challenges of computational physics.
One typically seeks powerful approximation schemes to
gain insight into the physical properties of the system. One
possibility is the use of appropriate variational wave functions
that capture well the physical behavior of the system. A
paradigmatic example is fermionic Gaussian states, which can
describe a wealth of phenomena, including superconductivity.
In particular, they have been successfully applied to simulate
the superfluid phase of the attractive Hubbard model in two
dimensions within gHFT. In contrast, its application to the
repulsive Hubbard model never leads to a paired ground
state [17,18], a feature which is expected to occur in such
a model [25].

In the following we develop a numerical method to
determine the ground state energy and correlation functions of
an interacting fermionic lattice model in arbitrary dimensions.
The method is based on a class of variational wave functions
that stem from the FSBS with M ′ = 4. These states can
be efficiently described by a number of parameters that
scales polynomially in the system size, and allow for an
efficient calculation of physical observables. After a general
discussion on how to implement a variational algorithm based
on these states, we apply them to the two-dimensional spin-full
Hubbard model with repulsive interactions. Note that this
application is mainly thought of as an illustration that aims
at demonstrating that these states go well beyond gHFT,
since they allow one to describe a phase that exhibits at
the same time antiferromagnetic correlations and fermionic
pairing. Thus, the goal of this section is not the presentation
of an extensive numerical analysis, nor a comparison with
other, more developed methods as DMRG or DMFT. The
improvement of our methods and its comparison to more
sophisticated approaches is the scope of future work.

A. Simulations of fermionic lattices

We are interested in understanding the physical properties
of fermionic systems on a lattice of N sites, for instance,
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described by the generic Hamiltonian

H = −
∑

k

tkla
†
kal +

∑
Uklmna

†
ka

†
l aman, (73)

where tkl,wklmn ∈ C. Such a Hamiltonian describes most of the
strongly correlated electronic systems. In particular, it includes
the Hubbard model, which is expected to describe the most
relevant aspects of high-Tc superconductivity [26]. We ap-
proach the problem in the Majorana picture and define for k =
1, . . . ,4N the operators ck = a

†
k + ak , ck+4N = (−i)(a†

k − ak).
These operators obey the canonical anticommutation relations
(CAR) {ck,cl} = 2δkl . In this language, the Hamiltonian H is
of the form

H = i
∑
kl

Tklckcl +
∑
klmn

Wklmnckclcmcn, (74)

where Tkl,Wklmn ∈ R. The CAR allow us to antisymmetrize T

and W such that T T = −T , while W is antisymmetric under
the exchange of any of two adjacent indices.

Our goal is to find a good approximation to the ground state
of the Hamiltonian given in Eq. (74), as well as its energy. For
that, we will take an appropriate family of variational wave
functions, inspired by the FSBS for M ′ � 4 that we have
derived in Sec. IV C [(69)–(71)]. In (69), the operators Aμ

and A†
μ just involve very few modes (four out of N ), so that

for large systems they will not give noticeable consequences,
which drives us to take �n = �m = 0. Now, for β = 0, the
FSBS include states that are obtained from that vacuum by
Bogoliubov transformations generated by the unitary Û (u,v).
If we relax now the constraint that Û is of the form (70),
but instead allow for an arbitrary Bogoliubov transformation
involving all sites, we arrive at the class of fermionic Gaussian
states, which has proven successful in different contexts. Thus,
it is natural to do the same procedure with the term (71) and
allow for arbitrary exponentials of products of any sets of four
creation operators (in whatever basis). It is relatively simple to
convince oneself that the set of states one obtains at the end is

|φ �β,γ 〉 = Uγ |ψ �β〉, (75a)

|ψ �β〉 =
m∏

n=1

(cos βn + sin βna
†
n,1a

†
n,2a

†
n,3a

†
n,4)|�〉. (75b)

These states are normalized and parametrized by 8N2 − N

parameters. Some of them [4N (4N − 1)/2] parametrize the
Bogoliubov transformation Ûγ = eiHγ , where Hγ = H †

γ =
i
∑

kl(γ )klckcl and are collected in the real and antisymmetric
matrix γ . The rest (N ) are collected in the vector �β and describe
the state (75b). Note that, despite the fact that our variational
ansatz is inspired by the permutationally and rotationally
invariant states, ultimately we relax these symmetries, and
in particular break the translational symmetry, by considering
states with local Bogoliubov transformation and with local
terms of the form (75b). It is precisely the breakdown of the
translation symmetry that allows us to describe in a robust way
antiferromagnetic order, as discussed below.

Before we explain how to apply these wave functions
variationally, let us discuss a simple interacting model for
which the states defined in Eq. (75a) are the exact ground

state. Consider the Hamiltonian

H4 = −
∑
k,l

tk,l,σ,σ ′a
†
k,σ alσ ′ + U

∑
n

a
†
n,1a

†
n,2a

†
n,3a

†
n,4 + H.c.

(76)

For U = 0, the ground state is a Gaussian state, i.e., a state
where βn = 0 for all n. For t = 0, on the other hand, the ground
state is

|	〉 =
⊗

n

= 1√
2

(a†
n,1a

†
n,2 ± a

†
n,3a

†
n,4)|�〉, (77)

where ± depends on the sign of U . It is straightforward to
show that this state is of the form (75a) with βn = ±π/4 and

Uγ = eπ/2
∑

n a
†
n,1a

†
n,2−an,2an,1 . Thus, our new ansatz states will

describe well the physics of such a system, at least in the
regime of weak and strong interaction.

In the following we develop a numerical technique that
allows us to find the ground state within the variational class
of states defined in Eq. (75a). The state with minimal energy
can be obtained by solving the minimization problem

Emin = min
�β,γ

E( �β,γ ) = min
|φ �β,γ 〉

〈φ �β,γ |H |φ �β,γ 〉. (78)

We define the real one- and two-body correlation matrices

G
( �β,γ )
kl = i

2
〈φ �β,γ |[ck,cl]|φ �β,γ 〉, (79a)

K
( �β,γ )
klmn = 1

4!
〈φ �β,γ |[[ckclcmcn]]|φ �β,γ 〉. (79b)

Here, [,] denotes the usual commutator, and the symbol
[[· · ·]] denotes the complete antisymmetrization of the op-
erator ckclcmcn. These matrices uniquely define the state,
and depend on a number of parameters that scales only
polynomially in the system size. Furthermore, G and K have a
very efficient description in the following way: The unitary
matrix Uγ = eiHγ is a Bogoliubov transformation on the
mode operators, which realizes an orthogonal transformation
on the Majorana operators via Û †

γ ckÛγ = ∑
l(Oγ )klcl , where

Oγ = eγ . Then, we introduce the matrices

G
( �β,0)
kl = i

2
〈ψ �β |[ck,cl]|ψ �β〉,

K
( �β,0)
klmn = 1

4!
〈ψ �β |[[ckclcmcn]]|ψ �β〉, (80)

that are related to G( �β,γ ) and K ( �β,γ ) via

G( �β,γ ) = Oγ G( �β,0)OT
γ ,

K ( �β,γ ) = (Oγ ⊗ Oγ )K ( �β,0)
(
OT

γ ⊗ OT
γ

)
. (81)

Furthermore, using Eq. (75a), it is straightforward to see
that the matrices G( �β,0) and K ( �β,0) are sparse and depend only
on the N parameters βn, and can thus be represented efficiently
(see Appendix C). Then, using Eqs. (74) we can formulate the
minimization of the energy as an optimization problem of
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the form

Emin( �β,γ ) = min
�β,γ

(−tr[G( �β,γ )T ] + tr[K ( �β,γ )W ])

= min
�β,γ

(−tr
[
G( �β,0)OT

γ T Oγ

]
+ tr[K ( �β,0)(OT

γ ⊗ OT
γ

)
W (Oγ ⊗ Oγ )]). (82)

Minimizing Eq. (82) requires the optimization over 4N (4N −
1)/2 parameters for Oγ and N parameters for �β. For large
systems, this problem can be attacked as follows: Introduce a
time dependence in the parameters �β(t),γ (t). Then, starting
from an arbitrary initial configuration �β(t),γ (t) with energy
E( �β(t),γ (t)) and given a time interval δt , we want to
find �β(t + δt),γ (t + δ) such that E( �β(t + δt),γ (t + δt)) <

E( �β(t),γ (t)). As shown in Appendix C, this can be achieved
in the following way: First, keep �β(t) fixed and expand
γ (t + δt) = γ (t) + hγ δt , where

hγ = [T ,G( �β,γ )] − 2tr2[[W,K ( �β,γ )]] = −hT
γ . (83)

Here, tr2[WK]kl = WkxyzKxyzl . As we show in Appendix C,
the energy decreases under this operation. Next, we keep
γ (t + δt) fixed, and minimize over �β(t). This can be im-
plemented numerically, e.g., via a gradient optimization. The
energy is always decreasing under these operations, and for
t → ∞ we arrive at the ground state which is completely
described in terms of the matrices G∞ = G[β(t→∞),γ (t→∞)],
K∞ = K [β(t→∞),γ (t→∞)]. Having these matrices at hand, we
also have all one- and two-body correlation functions available,
and higher order correlation functions can be computed in a
straightforward way.

B. Application: The two-dimensional Hubbard model

In the following we apply the numerical method that we
have derived in the last section to the two-dimensional Hubbard
model on a square lattice,

H = −t
∑

〈x,y〉∈�,σ

a†
x,σ ay,σ + U

∑
x∈�

(
nx↑ − 1

2

)

×
(

nx↓ − 1

2

)
+ μ

∑
x,σ

nx,σ , (84)

where x and y are points on a two-dimensional lattice, 〈x,y〉
denote nearest neighbors, and σ = ↑,↓ denotes the spin degree
of freedom. We consider only the case where the number of
spin-up and spin-down particles are equal, so that we can use
the same chemical potential for the two species. For U <

0 (U > 0) the second term in H is an attractive (repulsive)
on-site interaction between particles of opposite spin. In the
following, we set t = 1 as the energy scale of the system. Note
that the case of half filling is characterized by μ = 0.

Despite its simple structure the Hubbard model realizes a
wide class of nontrivial phases. In the case of an attractive
interaction the system is in a superfluid state that can be
described well by the BCS wave functions [25,27] included
in the framework of gHFT. For a repulsive interaction at
half filling, the system is predicted to be in a spin ordered
phase. This is numerically confirmed by quantum Monte Carlo
simulations [28,29], and we have shown in [18] that gHFT can

be used to obtain the same results. Less is known away from
half filling, where QMC can no longer be applied due to the
notorious sign problem. In this regime, a paired superfluid
phase with d-wave symmetry is predicted (see, e.g., [30,31]).
Thus the Hubbard model with repulsive interactions has
undergone a wide investigation during past years (see [32–42],
and references therein). Since the gHFT solution for U > 0 is
always unpaired [17], this approach does not allow one to
verify this prediction.

In the following we use the variational states defined in
Eq. (75a) to get insight into the ground state properties of the
two-dimensional repulsive Hubbard model with doping on a
10 × 10 square lattice with periodic boundary conditions. As
an example, we consider three sets of parameters, (U,μ) =
(3, − 0.5),(5,−1),(6,−1.5), and arrive at the following re-
sults: (i) In all three cases the minimal energies EFSBS4 are
below the gHFT energies EgHFT. (ii) For the case (U,μ) =
(5, − 1) and (U,μ) = (6, − 1.5) the system is in a state with
antiferromagnetic order. (iii) The system is paired for all three
sets of parameters. Let us discuss these results in more detail.
First, we calculated the ground states within the family of
variational states (75a). After a fast decrease of the energy
at the beginning, the algorithm shows slow convergence. In
Table I we present results for O(5 × 104) iterations. The
results clearly show that the new ansatz allows us to achieve
smaller energies than using gHFT. At this point we would
also like to comment on the performance of our algorithm.
At the current stage, the algorithm shows slow convergence,
and we are currently working on improving the method to
make it more appropriate for an efficient application to large
systems.

Second, we study the magnetic properties of the system
by investigating the equal-time spin-spin correlation function
C(�y) = 〈(n(�x+�y)↑ − n(�x+�y)↓)(n�x↑ − n�x↓)〉, the magnetic struc-

ture factor S(�k) = ∑
�x ei�k·�xC(�x), and the order parameter for

antiferromagentic order, A(�y) = 〈n�x↑n(�x+�y)↓〉. As an example,
we show results for (U,μ) = (6, − 1.5) in Fig. 2. Similar
results are obtained for (U,μ) = (5, − 1) and clearly indicate
the presence of antiferromagnetic order in the system.

TABLE I. Numerical results for the 2D Hubbard model with
repulsive interaction U and chemical potential μ on a 10 × 10 lattice.
We present the total particle number Ntot; the minimal variational
energy obtained in gHFT, EgHFT; the minimal variational energy
obtained for the variational states obtained by using the FSBS for
M ′ = 4 defined in Eq. (75a), EFSBS4 ; as well as the pairing M(ρ) [cf.
Eq. (85)] obtained using the FSBS for M ′ = 4. The results clearly
show that the use of the variational states (75a) leads to a decrease
in the variational energy compared to gHFT. Further, a value of the
pairing measureM(ρ) > 1 indicates that the FSBS for M ′ = 4 allows
one to describe a paired phase in the repulsive regime of the Hubbard
model, a feature that is absent in gHFT.

(U,μ) (3, −0.5) (5, −1) (6, −1.5)

Ntot 74 80 98
EgHFT −152.4284 −166.9931 −206.804
EFSBS4 −155.0148 −172.1345 −209.3691
M(ρ) 1.2 1.3 1.1
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FIG. 2. Numerical results of various correlation functions for (U,μ) = (6, − 1.5). (a) Equal-time spin-spin correlation function
C(�y) = 〈(n(�x+�y)↑ − n(�x+�y)↓)(n�x↑ − n�x↓)〉. (b) Magnetic structure factor S(�k) = ∑

�x ei�k·�xC(�x). The sharp peak at (π,π ) is an indicator for
the antiferromagnetic order inherent in the system. (c) Order parameter for antiferromagnetic order, A(�y) = 〈n�x↑n(�x+�y)↓〉.

Third, we address the question if our ground states
exhibit pairing. The appearance of pairing would support
the hypothesis that the repulsive Hubbard model can support
superconductivity. We use the pairing measure defined in
Ref. [43] to provide an answer to this question. There, it has
been shown that for any unpaired state of Ntot = 2N particles
and 4M modes,

M(ρ) = 1

N
max
{a†

i }i

2M∑
k,l=1

|〈a†
2k−1a

†
2ka2la2l−1〉ρ | � 1, (85)

where we optimize over all possible bases of modes {a†
i }i . For

all three sets of parameters we find that the ground states are
paired, as shown in Table I (see Appendix D for the numerical
implementation of the minimization).

Summarizing, the variational wave functions obtained from
the FSBS with M ′ = 4 lead to smaller energies compared to
gHFT. Further, the variational ground states describe paired
phases with antiferromagnetic order for the repulsive Hubbard
model, a feature that is elusive within gHFT.

V. CONCLUSION

In this work we have investigated the ground states of
fermionic lattice systems of N sites and M modes per
site with permutation symmetry in the limit N → ∞. We
have explained that, opposed to the case of spin systems,
a careful scaling analysis of the typical terms appearing in
the Hamiltonian is necessary in order to obtain a result that
captures the rich physics of fermionic many-body systems.
Then we have introduced the FSBS from which the ground
states of such Hamiltonians can be easily computed. Such
a result can be seen as a quantum de Finetti theorem for
fermionic lattice systems. In contrast to its spin version, where

such a set is simply the set of product states, the fermionic
states obtained in this way are highly nontrivial and their
form depends on the number M of modes per site. In the
case of M = 2, the FSBS are contained within the set of
fermionic Gaussian states that have proven to be powerful
variational wave functions within generalized Hartree Fock
theory. For M > 2, however, the FSBS are no longer contained
in the set of fermionic Gaussian states, but go beyond. As an
example, we have considered the case of M = 4 modes per
site and constructed the FSBS explicitly. Having this result
at hand, we have applied those states as a variational class
of states to construct a numerical technique that allows for
an efficient simulation of the ground state and the ground
state properties of interacting fermionic lattice systems in
arbitrary dimensions and geometries. The algorithm depends
on a number of parameters that scales only polynomially
in the system size and allows one to calculate correlation
functions efficiently. To test our technique, we have applied it
to the repulsive Hubbard model on a two-dimensional 10 × 10
square lattice with doping, a scenario where gHFT fails to
capture the predicted superconducting phase, and QMC cannot
be applied due to the fermionic sign problem. We find that the
new class of variational wave functions leads to lower energies
than gHFT, and supports paired phases with antiferromagnetic
correlation functions.

Note, that the purpose of this numerical analysis performed
in this work is to show that the FSBS lead to a class of
variational trial states that goes beyond the standard approach
of gHFT and allows one to capture physical properties of
the system that are elusive in gHFT. In this respect, our
results should be seen from a qualitative point of view, while
a systematic comparison with other numerical techniques is
out of the scope of the present work. Another direction is to
systematically investigate the FSBS and the related variational
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wave functions for M > 4, to benchmark them with physically
relevant models and to compare them with other numerical
approximation schemes. This might lead to new numerical
techniques that allow one to gain insight into the physics of
interacting fermionic lattice systems that are hard to capture
otherwise.
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APPENDIX A: SECOND QUANTIZATION FORMALISM
FOR SPIN PROBLEMS

As we mentioned in the Introduction, we can also use
second quantization to solve the problem posed in Sec. II.
Denoting as before by {|n〉}K ′

n=1 a single-spin basis, we
construct the Fock space as usual, by defining a

†
n as the bosonic

operator that creates a spin in the state |n〉 out of the vacuum
�. For instance,

|φ〉⊗N → a(φ)†N |�〉, (A1)

where

a(φ) =
K ′∑

n=1

cnan, (A2)

and we have ignored the normalization constant. In this
language, an arbitrary symmetric Hamiltonian with up to two
spin interactions, where the spins are K-level systems, can be
written as

H =
K∑

ni=1

hn1,n2,n3,n4a
†
n1

a†
n2

an3an4 . (A3)

The tensor hn1,n2,n3,n4 is invariant under the exchange of indices
n1 ↔ n2, n3 ↔ n4, and Hermitian in the joint indices n1,2 and
n3,4. In principle, we could include a term quadratic in creation
and annihilation operators as well, which would account for
single-spin terms in the original Hamiltonian. However, since
[N̂,H ] = 0 with

N̂ =
K∑

n=1

a†
nan, (A4)

the total number of spins, such term can be included in the
tensor h. We are interested in determining the minimum energy
for all possible tensors with the mentioned properties, and for
〈N̂〉 = N → ∞.

The above problem is very well known in the context
of many-body physics, and it is very much related to the
phenomenon of Bose-Einstein condensation [44]. In such case,
one usually adds a “chemical potential” to the Hamiltonian,
namely, a term μN̂ , and minimizes the energy without any
restriction. In fact, the value of μ fixes a particular value of
N , so that the desired limit can be obtained by taking the
appropriate limiting procedure in μ. In order to find the lowest

energy, one chooses the set of coherent states

|	(�α)〉 = e
∑K′

n=1 αna
†
n |�〉, (A5)

and applies the variational method (note that we should take
a purification of the state by doubling the number of modes,
but we will not do that here to simplify the presentation).
Note that the state |φ〉⊗N and the state (A5) with αn = √

Ncn

give the same expectation values in the limit N → ∞, and
thus one obtains the right result in this way. Furthermore,
one can obtain corrections to the de Finetti result [13], by
following the procedure used in the study of Bose-Einstein
condensation. That is, once one has obtained cn, one can
displace the Hamiltonian H → D̂(α)HD̂(α)†, and expand the
result up to second order in the creation and annihilation
operators, from which one can determine the ground state
energy. Here D̂ is the displacement operator that transforms
|	(�α)〉 → |�〉. Note that this procedure gives corrections in
1/N . Alternatively, noticing that the state obtained from this
procedure is Gaussian (since it is the displaced state of the
ground state of a quadratic Hamiltonian), one can obtain a
more accurate description by minimizing the energy of H

with respect to the set of Gaussian states. This establishes
the connection of the de Finetti theorem and Gaussian states
mentioned in the Introduction.

APPENDIX B: LATTICES IN INFINITE DIMENSIONS

In this appendix we relate the problem studied in Secs. II and
III to the problem of lattices in infinite dimensions. As we will
show, for spin systems the solution of both coincides, whereas
for fermions, the first provides upper and lower bounds to the
second problem.

We consider a Hamiltonian Hd , in d spatial dimensions,
with N = (2� + 1)d lattice sites. Each site is characterized by
a lattice vector �i which is a d-component vector with each
of the components running from −�, − � + 1, . . . �. We will
assume two-site interactions as before, so that

Hd =
∑
〈�i, �j 〉

h�i, �j , (B1)

where 〈�i, �j 〉 denotes nearest neighbors (|�i − �j | = 1), and they
contain the appropriate factors of N , as discussed in Secs. II
and III such that they give a nontrivial contribution in the
limit procedures we will consider. We will also assume
translation and rotation symmetries. For this purpose, we
define the translation and rotation operators T�k and Rx,y ,
respectively, and assume periodic boundary conditions. They
fulfill T�kX

α
�i T

†
�k = Xα

�i+�k and Rx,yX
α
�i R

†
x,y = Xα

�i ′ , where �i,�k are
lattice vectors, x,y = 1, . . . ,d, x 	= y, i ′x = iy , i ′y = −ix , and

i ′z = iz for all z 	= x,y. Thus, Hd = T�kHdT
†
�k = Rx,yHdR

†
x,y .

We will denote by Dsym
N,K , the set of density operators that are

translational and rotational invariant, i.e.,

ρ = T�kρT
†
�k = Rx,yρR†

x,y . (B2)

We will be interested in the ground state energy density

Ed = lim
d→∞

1

(2� + 1)d
min
||ρ||1

tr(ρHd ), (B3)
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FIG. 3. Sketch illustrating the derivation behind the calculation
of the minimal mean energy for Hd .

in the limit d → ∞ (keeping � < ∞). Now we will derive an
upper and a lower bound to Ed in terms of states invariant
under permutations, which can be obtained with the methods
of Secs. II and III.

The upper bound is trivial, as we can just restrict the
minimization to the set of SSBS or FSBS,

Ed � Eup = lim
d→∞

1

(2� + 1)d
min

|	〉∈S(F)SBS
〈	|Hd |	〉. (B4)

For the lower bound, we proceed as follows (see Fig. 3). Due
to the symmetry assumption, we can take ρ ∈ Dsym

N,K in the
minimization of Eq. (B4). Therefore, we can also write

Ed = 1

2d
min

ρ0∈D(0)
2d,K

tr(H0ρ0), (B5)

where H0 contains only those terms of Hd which include the
site �0, that from now on will be referred to as site 0. Thus,

H0 =
2d∑

n=1

hn, (B6)

where n now enumerates the nearest neighbors of site 0, and
hn is the operator in Hd that is acting on the sites 0 and n.
We have denoted by D(0)

2d,K the set of density operators that are
acting on site 0 and all its neighboring sites, and which can
be obtained as reduced states out of any ρ ∈ Dsym

(2�+1)d ,K
. The

Hamiltonian H0 is obviously invariant under permutations of
any pairs of neighboring sites of 0. Thus, we can restrict the
minimization in (B5) to ρ0 ∈ D(0)

2d,K

⋂
S (0)

2d,K , where the latter
is the convex set of density operators (also acting on the site 0
and all its neighbors) that are invariant under any permutation
of the sites 1, . . . ,2d (but not 0). By relaxing this condition on
ρ0, we obtain the lower bound

E∞ � Elow = min
σ∈S (0,1)

K

tr(σh1). (B7)

Here,

S (0,1)
K = lim

d→∞
S (0,1)

2d,K, (B8)

and S (0,1)
2d,K is the set of density operators acting on sites 0 and 1,

and which are reduced from a density operator in S (0)
2d,K .

For spin lattices, one can easily show that the two bounds
coincide, and thus product states solve the lattice problem in
infinite dimensions as well. This can be shown by using a
similar procedure to the one utilized in Sec. II. We define

|	〉 =
∫

dμφ0 dμφ f (φ0,φ)|φ0〉|φ〉⊗2d , (B9)

where φ0 ∈ HK and φ ∈ H⊗2
K ′ , which is symmetric with respect

to permutations of all spins except the first one, |φ0〉. If we
calculate the reduced density operator of particles 0 and 1, and
take the limit N → ∞ we obtain

σ →
∫

dμφ0 dμφ′
0
dμφ f̄ (φ′

0,φ)f (φ0,φ)|φ0〉〈φ′
0| ⊗ |φ〉〈φ|,

(B10)

which is again separable, although not necessarily symmetric
with respect to the exchange of spins 1 and 2. We can again
use it to determine the lower bound Elow in (B7). Since h1

is symmetric with respect to particles 0 and 1, we obtain that
Elow = Eup = E∞.

APPENDIX C: DERIVATION OF EQ. (83)

In this appendix we explain how to arrive at Eq. (83) of
the main text. There, it has been shown that the minimization
problem can be reformulated as

E( �β,γ ) = min
�β,γ

−tr
[
G( �β,0)OT

γ T Oγ

]
+ tr

[
K ( �β,0)

(
OT

γ ⊗ OT
γ

)
W (Oγ ⊗ Oγ )

]
. (C1)

Recall that

G
( �β,0)
kl = i

2
〈ψ �β |[ck,cl]|ψ �β〉, (C2)

K
( �β,0)
klmn = 1

4!
〈ψ �β |[[ckclcmcn]]|ψ �β〉, (C3)

Oγ is an orthogonal transformation, and |ψ �β〉 = ∏m
n=1(xn +

yna
†
n,1a

†
n,2a

†
n,3a

†
n,4)|�〉, where xn = cos βn and yn = sin βn.

We show first that the matrices G
( �β,0)
kl and K

( �β,0)
klmn allow for an

efficient representation in terms of xn and yn. It is easy to show
that

G( �β,0) =
N⊕

n=1

(1 − 2|yn|2)

(
0 I

−I 0

)
. (C4)

Further, the tensor K ( �β,0) can be calculated in the fol-
lowing way: Consider first the case where i,j,k,l ∈
{(n,1),(n,2),(n,3),(n,4)}. Then K (0) = K1 + xnynK2, where
K1,K2 are constant tensors that are the same for each n. Now, if
i,j,k,l do not all belong to the set {(n,1),(n,2),(n,3),(n,4)}, we

can apply Wick’s theorem and obtain K
(0)
ijkl = −G

( �β,0)
ij G

( �β,0)
kl +

G
( �β,0)
ik G

( �β,0)
j l − G

( �β,0)
il G

( �β,0)
jk . Thus, G and K are sparse.

To perform the minimization of the energy, we perform
first, for fixed �β, the optimization over the parameters γ that
describe the orthogonal matrix Oγ . We define a Lagrangian

L( �β,γ ) = E( �β,γ ) −
∑
i,j

λi,j (Oγ OT
γ − I)i,j , (C5)

with Lagrangian multipliers λij . We take derivatives with

respect to Oγ , use μ = μT , and recall the definitions G( �β,γ ) =
Oγ G( �β,0)OT

γ , K ( �β,γ ) = (Oγ ⊗ Oγ )K ( �β,0)(OT
γ ⊗ OT

γ ). This
leads to the following necessary condition for a minimum:

[G( �β,γ ),T ] − 2tr2[[W ( �β,γ ),K]] = 0, (C6)
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where tr2[WK ( �β,γ )]vz = WvjklK
( �β,γ )
klzj . This matrix equation is

hard to solve for large system sizes. However, as we show now,
we can solve this equation in the following way: We linearize
γ (t + δt) = γ (t) + δthγ , so that Oγ (t+δt) = ehγ δtOγ (t). For
small δt , we can write Oγ (t+δt) = (I + hγ δt)Oγ (t) + O(δt2).
Then δE(t) = E(t + δt) − E(t) is given by

δE(t) = −(tr[[hγ ,G( �β,γ )]T ] − tr[(I ⊗ hγ + hγ ⊗ I)K ( �β,γ )

× (I ⊗ hγ + hγ ⊗ I)U ])δt + O(δt2)

= 2 tr[hγ ([T ,G( �β,γ )] − 2tr2[[W,K( �β,γ )]])]δt + O(δt2).

(C7)

Thus, if we choose hγ = [T ,G( �β,γ )] − 2 tr2[[W,K ( �β,γ )]]
= −hT

γ we have defined an evolution with an orthogonal
matrix that decreases the energy and, for large t , results
in a state that fulfills the steady-state condition, Eq. (C6).
Furthermore, the calculation of hγ requires the summation
over O(N3) parameters and can thus be performed efficiently.

APPENDIX D: PAIRING

In the following we present a possibility to calculate
numerically the pairing of a state |φ �β,γ 〉 with 2N particles
and 4M modes via

M(ρ) = 1

N
max
{a†

i }i

2M∑
k,l=1

|〈a†
2k−1a

†
2ka2la2l−1〉ρ |. (D1)

We perform the optimization over all possible set of bases
in the following way: First, we choose a fixed basis B0 by
making the identification a2k−1 ↔ ax↑ a2k ↔ ax↓. The set of
operations that are linking two different sets of modes are
called passive transformations. They can be represented by a
unitary operator UHp

= eiHp , where Hp = ∑
k,l hk,la

†
kal with

h† = h. Thus, we can write the optimization in Eq. (D1) in
the following way: Define the operator P that calculates the
pairing in the basis B0,

P = −
∑

x,y∈�

a
†
x↑a

†
x↓ay↓ay↑

= i
∑
kl

T
(P )
kl ckcl +

∑
klmn

W
(P )
klmnckclcmcn. (D2)

Then,

M(ρ) = 1

N
max
UHP

∑
x,y,∈�

〈φ �β,γ |U †
HP

a
†
x↑a

†
x↓ay↓ay↑UHP

|φ �β,γ 〉

= 1

N
〈φ �β,γ |U †

HP
PUHP

|φ �β,γ 〉.
Note that we could get rid of the absolute values since we can
always find a passive transformation so that all the terms in

the sum of Eq. (D1) are positive. Now, in order to be able to
use techniques we have developed for calculating the ground
state energy in appendix C, we define the set S|φ �β,γ 〉 of all
states that can be gained from the state |φ �β,γ 〉 via a passive
transformation. Then, it follows immediately that

−NM(|φ �β,γ 〉) = min
|	〉∈S|φ �β,γ

〉
〈	|P |	〉

= min
UHP

〈φ �β,γ |U †
Hp

PUHp
|φ �β,γ 〉

= min
UHP

( − tr
[
G( �β,γ )OT

Hp
T (P )OHp

]
+ tr

[
K ( �β,γ )(OT

Hp
⊗ OT

Hp

)
W (P )

× (OHp
⊗ OHp

)
])

= min
UHP

P �β,γ (Hp), (D3)

where OHp
is the orthogonal matrix realizing the passive

transformation UHp
on the Majorana operators. Now, we

follow a similar route as in the case of the minimization of
the energy explained in appendix C: We introduce a time
dependence in the Hamiltonian Hp and write OHp(t+δt) =
ehHp δtOHp(t). Then,

P �β,γ [Hp(t + δt)] − P �β,γ [Hp(t)] = tr[hHp
([T (P ),G( �β,γ )]

− 2 tr2[[W (P ),K ( �β,γ )]])]δt

= 2 tr[hHp
Z], (D4)

where we introduce a block decomposition for the matrix
Z ∈ R8N×8N ,

Z = [T (P ),G( �β,γ )] − 2 tr2[[W (P ),K ( �β,γ )]] =
(

Z11 Z12

−ZT
12 Z22

)
,

(D5)

where Zi,j ∈ R4N×4N . Now, in contrast to appendix C, we
cannot choose hHp

= Z, since UHp
is a passive transformation

which imposes further constraints on hHp
: If we rewrite the

Hamiltonian Hp in the basis of Majorana operators, we arrive
at

Hp = �c T

(
hI −hR

hR hI

)
�c = �c T hc�c. (D6)

Here, the 2N × 2N matrices hR = Re(h) = hT
R and hI =

Im(h) = −hT
I are the real and imaginary parts of hHp

∈
C4N×4N . Thus, hHp

has to be of the same block form as hc.
Then, it is easy to check that by choosing

hI = Z11 + Z22, (D7)

hR = −(
Z12 + ZT

12

)
, (D8)

the pairing decreases.
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