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Classification of entanglement via rigged string configurations
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We investigate the structure of bipartite entanglement in one-dimensional spin systems. The standard approach
is based on a reduced two-qubit density matrix and uses concurrence as the measure of entanglement. We show
that for a spin system consisting of four qubits the structure of bipartite entanglement can be classified by rigged
string configurations in a strictly combinatorial manner.
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I. INTRODUCTION

A key ingredient in quantum-information theory [1] is
entanglement between subsystems of a given system. In recent
years, there has been an ongoing effort to understand this
phenomenon and, for bipartite systems, one can say that this
problem has essentially been solved. How to characterize
entanglement both quantitatively and qualitatively has been
well established, in particular the necessary and sufficient con-
dition for inseparability has been derived [2,3] and measures
of bipartite entanglement have been introduced [4–6].

However, since a generalization of the notion of entan-
glement for multipartite systems remains vague, the method
of entangled graphs [7–10] has been introduced. The method
allows one to study the structure of multipartite entanglement
in terms of bipartite reduced density matrices, and introduces
concurrence as a measure of entanglement.

To have a clear understanding of the concept of entangle-
ment let us consider two classes of well-known states: N -party
Greenberger-Horne-Zeilinger (GHZ) states of the form

|GHZ〉 = 1√
2

(|0⊗N 〉 + |1⊗N 〉), (1)

representing maximally entangled states of N qubits, and so-
called W states

|W 〉 = 1√
N

(|0 . . . 01〉 + |0 . . . 10〉 + · · · + |1 . . . 00〉), (2)

where all qubits are maximally bipartite entangled.
The above picture suggests that if we prepare a system in a

given state then we create in the system the specific structure of
entanglement by creating some nonlocal (in terms of nonlocal
quantum mechanics) quantum channels between the qubits.
In other words the state imposes on the system a network of
quantum channels (an entangled graph) which are the subject
of further investigation. Deep understanding of this approach
gives us a possibility of building quantum algorithms with a
wide range of potential implementations.

On the other hand, according to classical information
theory, a basic memory unit is a register and every calculation
comes down to a change of state of one of these. This implies
a question about all the possible states of this register, at
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any instant of time, in order to control our calculations. If
we restrict ourselves to the register being a one-dimensional
Heisenberg magnet consisting of four nodes with a one-node
spin s = 1/2 and a Heisenberg Hamiltonian responsible for
the dynamics of the system, then all eigenstates can be labeled
by combinatorial objects known as rigged string configurations
[11–13]. Here we want to show that such combinatorial objects
(quantum numbers) contain also full information about the
quantum structure of bipartite entanglement in the system.

The paper is organized as follows: Section II starts with
a brief description of a one-dimensional Heisenberg model
which forms a quantum register of a basic memory unit of
quantum computer. Next, in Sec. III we introduce the notion
of rigged string configuration and classification of the one-
dimensional Heisenberg magnetic ring solutions. In Sec. IV we
present the standard way of calculation of quantum structure of
bipartite entanglement in terms of the reduced density matrix
and concurrence as a measure of entanglement. Section V
is devoted to bipartite aspects of multipartite entanglement
leading to the introduction of the notion of entangled molecules
and resulting in an exemplary classification of entangled
molecules by rigged string configurations for a Heisenberg
magnet with four nodes of spin 1/2. Conclusions, along with
a brief summary of our results, can be found in Sec. VI.

II. MODEL

Let us consider a one-dimensional Heisenberg model (spin
system) which reveals the symmetry under collective unitary
rotations and some permutations of subsystems (Fig. 1). The
vector space of this model SU(n)⊗N can be interpreted either
as the state-space of a quantum system or as a representation of
the symmetric and unitary groups. Here, the single-node spaces
hj , j = 1, . . . ,N are spanned by single-node spin projections
|i〉, i = 1, . . . ,n, i.e., by the set ñ = {i | i = 1,2, . . . ,n} and
can be modeled mathematically by the fundamental irre-
ducible representation (irrep) D(1) of the unitary group SU(n)
with transformation properties D(1)(u)|i〉 = ∑

i ′∈ñ ui ′i |i ′〉. The
group �N with elements σi ∈ �N is the permutation group of
nodes, and the set Ñ = {j | j = 1,2, . . . ,N} labels the nodes
of the system.

In the language of quantum computation this model can
be interpreted as the quantum register consisting of N qudits
(qubits for n = 2), each with the local (computational) basis
|i〉,i ∈ ñ. A natural state of this system is represented by the
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FIG. 1. One-dimensional Heisenberg model with a symmetry un-
der collective unitary rotations and some permutations of subsystems.

configuration |f 〉 = |i1,i2, . . . ,iN 〉, ij ∈ ñ, j ∈ Ñ , which is
a product of single-node states in the space SU(n)⊗N . In
the remainder of this work we intend to call this state the
configuration.

The set of all configurations forms a basis b = {|f 〉, | f ∈
ñÑ } which spans the Hilbert space H = lcC b ∼= h⊗N

j of the
model. The space H of all quantum states, with dimH = 2N ,
can be decomposed as

H =
N∑

r=0

⊕ Hr , dimHr =
(

N

r

)
(3)

into subspaces Hr , with fixed number r of Bethe pseudoparti-
cles (spin deviations), where Hr is given by

Hr =
N/2∑

S=N/2−r

⊕ HrS where S = N/2 − r ′, 0 � r ′ � r.

(4)

The space HrS carries the irreducible representations �λ of
the symmetric group �N , with λ = {N − r ′,r ′}.

The dynamics of the Heisenberg magnet is governed by the
Hamiltonian

Ĥ = J
∑
j∈Ñ

(ŝj · ŝj+1 − 1/4), where ŝj = (
ŝx
j ,ŝ

y

j ,ŝz
j

)
,

(5)

and J = 1 is the coupling constant for a one-dimensional
model. Using this particular one-dimensional spin model with
the above properties we are also required to introduce a way
of classification of the eigenstate and to choose an appropriate
measure of entanglement in order to derive a set of states
capable of creating any entangled graph of interest.

III. CLASSIFICATION OF EIGENSTATES
BY RIGGED STRING CONFIGURATIONS

It is known that the exact solutions of such a model are given
by the famous Bethe ansatz [11] (BA), and can be classified
in terms of combinatorial objects: rigged string configurations

FIG. 2. Here, ν = (m1,m2, . . .) denotes the Young diagram of the
string configuration with ml being the number of strings of length
l = 1,2, . . . . Each part of the partition ν is referred to as a string, and
its size (the number of boxes in a row of the Young diagram of ν) -
the length of the string is the number of boxes in the first l columns
of the Young diagram of the string configuration ν.

[12,13]. A string configuration ν (Fig. 2) is, by definition, a
partition of the integer r ′, ν 	 r ′, and

∑
l lml = r ′. Each string

(lv), v ∈ m̃l = {1,2, . . . ,ml}, is equipped with a nonnegative
integer L, called its rigging. The rigging L varies within the
range 0 � L � Pl, where Pl = N − 2Ql. The integer Pl is
referred to as the number of holes for strings of length l. The
pair νL, where

L = {Llv|l = 1,2, . . . ; v ∈ m̃l}, (6)

is the set of all riggings of ν, referred to as a rigged string
configuration. All ml strings of length l are distinguished by
their riggings only, so that they can be arranged in νL in
nondecreasing order (from the top to the bottom of the l × ml

- rectangle incorporated in the Young diagram ν 	 r ′), that is,

0 � Llv � Llv′ � Pl for 1 � v < v′ � ml, l = 1,2, . . . .

(7)

Such a counting implies that the set z(ν) = {νL} of all rigged
string configurations corresponding to a given ν 	 r ′ has the
cardinality

|z(ν)| =
∏

l

(
Pl + ml

ml

)
, and dim �λ =

∑
ν	r ′

|z(ν)|.

(8)

Each rigged string configuration νL classifies an exact eigen-
state |�〉 of the Heisenberg Hamiltonian (5) in each space Hr ,
r ′ � r � N/2. In another words string configurations νL can
be seen as multiquantum numbers which label the eigenstates
of the considered system.

IV. REDUCED DENSITY MATRIX, CONCURRENCE

Now we are interested in the quantum structure of the
bipartite entanglement. To find such a structure in the standard
way let us consider an eigenstate of the Hamiltonian (5) of the
form

|�〉 =
∑

a(i1 . . . iN )|i1 . . . iN 〉 (9)
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with a density matrix ρ = |�〉〈�|. The reduced density
matrix

Rjk = Trrest of the qubits ρ (10)

for a pair of qubits j,k can be constructed by performing a
partial trace over the rest of the qubit to be eliminated

(Rjk)
i ′j i

′
k

ij ik
=

∑
i1 . . . iN

a(i1 . . . ij . . . ik . . . iN )

× a∗(i1 . . . i ′j . . . i ′k . . . iN ), (11)

where the sum runs over all permutations of nodes 1 . . . N

except for nodes j and k. In general the reduced density matrix
for the nodes (j,k) represents mixed states.

To determine how these qubits are entangled among
themselves, the concurrence measure C = max{√r1 − √

r2 −√
r3 − √

r4,0} can be used, where {ri : i ∈ 4̃} are the eigen-
values in decreasing order of the matrix R = RjkR̃jk, and R̃jk

is the time-reversed matrix R̃jk = (σy ⊗ σy)[Rjk]T (σy ⊗ σy).
We take the concurrence as a quantitative measure of entan-
glement since the amount of entanglement required for an
assembly of a state monotonically increases with the increase
of concurrence, so it proves to be a good measure of the
strength of the quantum “bindings.”

Here we concentrate on the bipartite aspects of multipartite
entanglement by considering the entanglement between a pair
(j,k) in a particular exact BA eigenstate |νL〉, cf. (9). We
use the notion of entangled molecules as a generalization of
Wootters idea of an “Entangled chain” [14]. In this work, we
evaluate concurrence C on each pair (j,k) of the chain for all
eigenstates of the system. Thus, for each eigenstate |νL〉, we
have N (N − 1)/2 different bipartite reduced density operators

ρjk, j < k, j,k ∈ Ñ,

with matrix elements given by Eq. (11). These operators
describe whether nodes j and k are entangled or not, and how
strong this quantum correlation is. This approach allows us to
build entangled molecules, which characterize the quantum
structure of the system in a given eigenstate |νL〉.

V. ENTANGLEMENT MOLECULES VIA
RIGGED STRING CONFIGURATIONS

From a different point of view, if we take into account
the irreducible basis of the Schur-Weyl duality [15–20] for N

spins, then 1/2 is characterized by the chain of intermediate
angular momenta

1
2 = S1,S12,S123, . . . ,S1...j , . . . ,S1...N = S, (12)

where S1...j is the angular momentum of the first j nodes, and
thus S is (a particular value of) the total angular momentum
of the magnetic ring. The neighbor angular momenta in this
chain differ by ±1, that is,

S1...j = S1...j−1 ± 1. (13)

The chain (12) corresponds to the chain of Young diagrams
[21,22] λ(j ) = (λ(j )

1 ,λ
(j )
2 ), differing by a single box. The

Robinson-Schensted-Knuth [23–25] algorithm associates thus

the chain (12) with the Young tableau y = {yαβ} of the shape

λ = {λ1,λ2}, λ1 = (N + 2S)/2, λ2 = (N − 2S)/2, (14)

filled in by letters j ∈ Ñ by the following prescription

S1...j − S1...j−1 =
{

1 ⇒ j = y1β,

−1 ⇒ j = y2β,
(15)

for some β. In other words, if the intermediate angular
momentum at the step j increases (decreases), then the letter
j ∈ Ñ is placed in the first (second) row of the Young diagram
λ. This process of consecutive coupling of angular momenta
can be equivalently coded in the tableau word

w(y) = i1i2 . . . iN , (16)

defined by the formula

ij =
{

1 if j = y1β,

2 if j = y2β.
(17)

The word w(y) is thus a magnetic configuration which
represents the chain (12) of all intermediate angular momenta
S1...j , j ∈ Ñ . Clearly, combinatorial data y and w(y) are
equivalent.

The chain (12), or, equivalently, its corresponding Young
tableau y given by Eqs. (14) and (15), defines N points, which
are (1,1), (2,2S12), . . . ,(j,2S1..j ), . . . ,(N,2S) in the plane
(j,2S). Joining the nearest neighbor points and, moreover,
joining the first point (1,1) with the origin (0,0), one gets
a path which lies in the first quarter of the (j,2S) plane,
and is constrained from the top by the line j = 2S, and
from the right by N . Such a path has the form of a zigzag,
with each step j being either ascent or descent by one,
according to the position of j in y. These paths prove to
be a surprisingly powerful combinatoric tool for a complete
classification of solutions of the system of Bethe equations
in terms of rigged string configurations. This correspondence
can be confirmed using the KKR (Kerov-Kirillov-Reshetikhin)
algorithm [12,26].

Results for the Heisenberg magnet with N = 4 nodes and
r = 2 spin deviations are presented in Table I. Here, the second
column presents quantum numbers E,k connected with energy
and quasimomentum, the third presents the corresponding
exact eigenstates, while the fourth and fifth give rigged string
configurations and entangled molecules, respectively.

VI. CONCLUSIONS

We have shown in Sec. II that all eigenstates of the
Heisenberg magnet with spin s = 1/2 are classified by rigged
string configurations. On the other hand, if we calculate an
entanglement structure (using tools from Sec. III) between
all pairs of nodes of the magnet, which is prepared in a
certain state, we obtain an entangled molecule (as described
in Sec. IV). It implies connections between rigged string
configurations and entangled molecules.

In Table I we present results for the Heisenberg magnet
with N = 4, r = 2. Here, if the system is in the state given
by quantum numbers E = −6, k = 0 (first row of the table)
then only the nearest neighbor nodes are entangled, which
is in good agreement with the physical interpretation of the

string configuration
0

0
0, which corresponds to two magnons
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TABLE I. Classification of entangled molecules by rigged string configurations for Heisenberg magnet with N = 4 nodes and r = 2 spin
deviations. An entanglement between two nodes of the magnet is presented on the picture of the molecule by the solid line, and the number
near this line is equal to concurrence.

Quantum Rigged string Entangled
No. numbers Eigenstate configuration molecule

1 E = −6, k = 0 |�〉 = −
√

3
6 (|12〉 + |23〉 + |34〉 + |14〉) +

√
3

3 (|13〉 + |24〉) 0

0
0

2 E = −2, k = 2 |�〉 =
√

1
2 (−|12〉 + |23〉 − |34〉 + |14〉) 0 0

3 E = 0, k = 0 |�〉 =
√

2
2 (|12〉 + |23〉 + |34〉 + |14〉 + |13〉 + |24〉) ∅

4 E = −4, k = 2 |�〉 =
√

2
2 (−|13〉 + |24〉) 0 2

5 E = −2, k = −1 |�〉 = 1
2 (−I |12〉 − |23〉 + I |34〉 + |14〉) 1 2

6 E = −2, k = 1 |�〉 = 1
2 (I |12〉 − |23〉 − I |34〉 + |14〉)) 2 2

moving independently across the magnet. The eigenstate in
the second row is labeled by string configuration 0 0
which corresponds to two magnons bound onto a string. This
system of two bound magnons can exist only in two space
configurations: either node 1 is bound to 3, or node 2 to 4. As
we see on the entangled molecule there are only two possible
positions of this string. In the case of the second descendant
of the vacuum state (third row), we have obtained that the
concurrence is the same for each pair of nodes. In the last
case (fourth, fifth, and sixth rows), corresponding to the first
descendants of the single magnon states, the concurrence is

zero everywhere, in accordance with physical interpretation of
a 1-string.

This article had shown how rigged string configurations
can be used for classification purposes based on an example of
the Heisenberg magnet with N = 4 nodes and spin s = 1/2.
Further extension of this work for more advanced systems is
currently being carried out which should lead us to a general
picture and understanding of physics of the magnon. The main
purpose of this work is presentation of the effect along with
revealing the possibility of its helping to solve the cases for
bigger sets.
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